請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57077完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊宗傑(Tsung-Chieh Yang) | |
| dc.contributor.author | Chien-Chi Huang | en |
| dc.contributor.author | 黃千豈 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:34:19Z | - |
| dc.date.available | 2019-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-04 | |
| dc.identifier.citation | 1. Hickey, J.C., G.A. Zarb, and C.L. Bolender, Boucher’s prosthodontic treatment for edentulous patients. 9th edition. St. Louis (MO): CV Mosby Co, 1985: p. 99.
2. Modern chairside liners do more than improve the fit of dentures. Cal, 1983. 46(8): p. 18-23. 3. Woelfel, J.B., Newer materials and techniques in prosthetic resin materials. Dental Clinics of North America, 1971. 15(1): p. 67-79. 4. Braden, M., P.S. Wright, and S. Parker, Soft lining materials--a review. Eur J Prosthodont Restor Dent, 1995. 3(4): p. 163-174. 5. Garcia, L.T. and J.D. Jones, Soft liners. Dental clinics of North America, 2004. 48(3): p. 709-720. 6. O’Brien, W., Dental materials and their selection. 3rd edition. Chicago: Quintessence Publishing Co. 2002: p. 78, 85-87. 7. Gettleman, L., et al., Results of clinicians evaluations of a polyphosphazine resilient denture liner and a silicone rubber liner. . Transactions of the Third World Biomaterials Congress 1988, 1988(162): p. 20-32. 8. McCabe, J.F. and A. Walls, Applied Dental Materials. 9th Edition. Wiley-Blackwell, 2008: p. 129. 9. International Organization for Standardization. ISO. 10139-1. Dentistry—resilient lining materials for removable dentures—part 1: short-term materials. 1st edition. December 1, 1991. 10. International Organization for Standardization. ISO/FDIS 10139-2. Dentistry—soft lining materials for removable dentures—part 2: materials for long-term use. 10139-2:1999. 11. Manfredi, M., et al., Urban legends series: oral candidosis. Oral Diseases, 2013. 19(3): p. 245-261. 12. Gendreau, L. and Z.G. Loewy, Epidemiology and etiology of denture stomatitis. Journal of Prosthodontics 2011. 20(4): p. 251-260. 13. Nikawa, H., T. Yamamoto, and T. Hamada, Effect of components of resilient denture-lining materials on the growth, acid production and colonization of Candida albicans. Journal of Oral Rehabilitation, 1995. 22(11): p. 817-824. 14. Lytle, R.B., Complete denture construction based on a study of the deformation of the underlying soft tissues Journal of Prosthetic Dentistry, 1959. 9(4): p. 539-551. 15. Jones, D.W., et al., Chemical and molecular weight analyses of prosthodontic soft polymers. Journal of Dental Research, 1991. 70(5): p. 874-879. 16. Braden, M., Tissue conditioners. I. Composition and structure. Journal of Dental Research, 1970. 49(1): p. 145-148. 17. Parker, S. and M. Braden, Formulation of tissue conditioners. Biomaterials, 1990. 11(8): p. 579-584. 18. Murata, H., et al., Viscoelasticity of Dental Tissue Conditioners during the Sol-gel Transition. Journal of Dental Research, 2005. 84(4): p. 376-381. 19. Jones, D.W., et al., Dental soft polymers: plasticizer composition and leachability. Dental Materials, 1988. 4(1): p. 1-7. 20. Murata, H., et al., An alcohol-free tissue conditioner—A laboratory evaluation. Journal of Dentistry, 2006. 34(4): p. 307-315. 21. Hong, G., et al., Effect of PMMA polymer on the dynamic viscoelasticity and plasticizer leachability of PEMA-based tissue conditioners. Dental Materials, 2010. 29(4): p. 374-380. 22. Aiken, W., et al., Creep behavior of plasticized vinylite VYNW. Journal of Polymer Science, 1947. 2(2): p. 178-198. 23. Kirkpatrick, A., Some Relations Between Molecular Structure and Plasticizing Effect. Journal of Applied Physics, 1940. 11(4): p. 255-261. 24. Wilkes, C.E., et al., PVC Handbook. 2005. 25. George, W., Handbook of Plasticizers. 2004. 26. 楊中文, 塑料用樹脂與助劑. 2009, 印刷工業出版社. 27. Mascia, L., The role of additives in plastics. 1975: Wiley. 172. 28. 廖榮元, 塑膠原理與應用. 1975: 頂文書局. 452-453. 29. Hong, G., et al., The dynamic viscoelasticity and plasticizer leachability of tissue conditioners. Gerodontology, 2012. 29(4): p. 284-291. 30. 李繼強, 塑膠配料. 1993: 三民書局股份有限公司. 31. Hashimoto, Y., et al., Estrogenic activity of tissue conditioners in vitro. Dental Materials, 2003. 19(4): p. 341-346. 32. Penalver, A., et al., Determination of phthalate esters in water samples by solid-phase microextraction and gas chromatography with mass spectrometric detection. Journal of Chromatography A, 2000. 872(1-2): p. 191-201. 33. Poon, R., et al., Subchronic oral toxicity of di-n-octyl phthalate and di(2-Ethylhexyl) phthalate in the rat. Food and Chemical Toxicology, 1997. 35(2): p. 225-239. 34. Food and Drug Administration (FDA). List of Indirect Additives Used in Food Contact. 2011. 35. Johnson, W.J., Final Report on the Safety Assessment of Acetyl Triethyl Citrate, Acetyl Tributyl Citrate, Acetyl Trihexyl Citrate, and Acetyl Trioctyl Citrate. International Journal of Toxicology (Taylor & Francis), 2002. 21: p. 1-17. 36. Finkelstein, M. and H. Gold, Toxicology of the citric acid esters: Tributyl citrate, acetyl tributyl citrate, triethyl citrate, and acetyl triethyl citrate. Toxicology and Applied Pharmacology, 1959. 1(3): p. 283-298. 37. Meyers, D.B., J. Autian, and W.L. Guess, Toxicity of plasticizer used in medical practice. II. Toxicity of citric acid esters used as plasticizer. Journal of Pharmaceutical Sciences 1964. 53: p. 774-777. 38. Russell, J.V., Toughening of epoxy resin systems using low-viscosity additives. Polymer International, 2004. 53(1): p. 78-84. 39. McGarry, F.J. and A.M. Willner, Org. Coat Plast. Chem. (ACS), 1968. 28: p. 512. 40. Hedrick, J.L., et al., Chemical modification of matrix Resin networks with engineering thermoplastics. Polymer Bulletin, 1985. 13(3): p. 201-208. 41. Bucknall, C.B., C.M. Gomez, and I. Quintard, Phase separation from solutions of poly(ether sulfone) in epoxy resins. Polymer, 1994. 35(2): p. 353-359. 42. Bucknall, C.B. and A.H. Gilbert, Toughening tetrafunctional epoxy resins using polyetherimide. Polymer, 1989. 30(2): p. 213-217. 43. Ohsako, T., K. Nagura, and I. Nozue, Morphologies and tensile properties of elastomer-modified epoxy and polycarbonate blended systems. Polymer, 1993. 34(24): p. 5080-5084. 44. Chen, M.C., D.J. Hourston, and W.B. Sun, Miscibility and fracture behaviour of an epoxy resin-bisphenol-a polycarbonate blend. European Polymer Journal, 1992. 28(12): p. 1471-1475. 45. Boogh, L., B. Pettersson, and J.-A.E. Manson, Dendritic hyperbranched polymers as tougheners for epoxy resins. Polymer, 1999. 40(9): p. 2249-2261. 46. Hobson, L.J. and W.J. Feast, Poly(amidoamine) hyperbranched systems: synthesis, structure and characterization. Polymer, 1999. 40(5): p. 1279-1297. 47. Braden, M., Tissue conditioners: II. Rheologic properties. Journal of Dental Research, 1970. 49(3): p. 496-501. 48. Parker, S. and M. Braden, The effect of particle size on the gelation of tissue conditioners. Biomaterials, 2001. 22(14): p. 2039-2042. 49. Schramm, G., A Practical Approach to Rheology and Rheometry. 1994. 50. Hong, G., et al., The dynamic viscoelasticity and water absorption characteristics of soft acrylic resin materials containing adipates and a maleate plasticizer. Dental Materials 2012. 31(1): p. 139-149. 51. Saitoh, S., et al., Viscoelastic behavior of commercially available tissue conditioners under compression. Dental Materials 2010. 29(4): p. 461-468. 52. Santawisuk, W., et al., Dynamic viscoelastic properties of experimental silicone soft lining materials. Dental Materials, 2010. 29(4): p. 454-460. 53. Murata, H., et al., Dynamic viscoelastic properties and the age changes of long-term soft denture liners. Biomaterials, 2000. 21(14): p. 1421-1427. 54. Jepson, N.J., J.F. McCabe, and R. Storer, Age changes in the viscoelasticity of a temporary soft lining material. Journal of Dentistry, 1993. 21(4): p. 244-7. 55. Jones, D.W., et al., Influence of plasticizer on soft polymer gelation. Journal of Dental Research, 1986. 65(5): p. 634-42. 56. Jones, D.W., et al., Dental soft polymers-plasticizer composition and leachability. Dental Materials, 1988. 4(1): p. 1-7. 57. Graham, B.S., D.W. Jones, and E.J. Sutow, An in vivo and in vitro study of the loss of plasticizer from soft polymer-gel materials. Journal of dental research, 1991. 70(5): p. 870-3. 58. Wilson, J., In vitro loss of alcohol from tissue conditioners. The International Journal of Prosthodontics 1992. 5(1): p. 17-21. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57077 | - |
| dc.description.abstract | 組織調理材(tissue conditioner)常用於義齒暫時墊底以舒緩因義齒(denture)不密合口腔黏膜引起的不適感,而目前臨床使用上最大問題是組織調理材所含之酯類增塑劑及乙醇會釋出導致材料黏彈性質(viscoelasticity)快速喪失。
為延長組織調理材黏彈性的維持時間及減少生物毒性成份的使用,本研究以適用於食品及醫療器材的無毒環保增塑劑—檸檬酸三丁酯(tributyl citrate, TBC)及乙醯檸檬酸三丁酯(acetyl tributyl citrate, ATBC)取代市售產品常使用的三種酯類增塑劑—鄰苯二甲酸乙醇酸丁酯(butyl phthalyl butyl glycolate, BPBG)、鄰苯二甲酸二丁酯(dibutyl phthalate, DBP)、苯甲酸芐酯(benzyl benzoate, BB),另亦將ATBC及TBC兩組加入10% TAH進行比較。希望藉由添加分子量較大(Mn=1306 g.mol-1, Mw=4245 g.mol-1)之超分支聚酯(hyperbranched polyester)以減少增塑劑於口內的釋出進而減少組織調理材料黏彈性質的喪失。本研究亦將三種市售組織調理材(Shofu、GC、Densply)加入比較黏彈性質穩定性。為符合臨床使用需求,第二部分實驗將乙醇加入增塑劑中,並測其膠化時間,求得各組樣品之膠化時間符合臨床需求之增塑劑所需最少乙醇量。 藉由流變儀(Rheometer)、紫外光/可見光光譜儀(UV-vis Spectroscopy)、接觸角(Contact angle)及電子天平(Electronic balance)分析各種不同增塑劑成分的組織調理材隨浸泡於37℃水中時間增加其黏彈性質、增塑劑釋出量、表面親水性、材料重量改變、材料吸水性及材料溶解性。 結果顯示,組織調理材使用ATBC作為增塑劑的黏彈性穩定度較使用TBC、BPBG、DBP及BB為增塑劑高,且ATBC釋出量為所有組別中最低。而將環保增塑劑(ATBC、TBC)的組別加入10% TAH後,發現接觸角減少、親水性增加。組織調理材使用液劑為78.3%ATBC、8.7%TAH和13%乙醇之複數剪切模數(G*)的百分比變化量為所有組別中最小。故本研究認為78.3%ATBC、8.7%TAH和13%乙醇為適用於長時間使用之組織調理材。 | zh_TW |
| dc.description.abstract | Tissue conditioners are often used in edentulous patients to treat lesions of the alveolar mucosa caused by ill-fitted dentures. The main problem in clinical use is the rapid loss of viscoelasticity due to the leaching of ester plasticizer and ethanol into the oral environment.
In this study, butyl phthalyl butyl glycolate (BPBG), dibutyl phthalate (DBP) and benzyl benzoate (BB), which are commonly used in commercial products, were replaced by tributyl citrate (TBC) and acetyl tributyl citrate (ATBC), which are non-toxic and often used in food packing and medical appliances, to extend the life span of tissue conditioners and reduce the use of biological toxic ingredients. 10% of hyperbranched polyester TAH with large molecular weight (Mn=1306 g.mol-1, Mw=4245 g.mol-1) was added to TBC and ATBC respectively to reduce the release of plasticizer into the oral cavity and the loss of viscoelastic property. The viscoelasticity of commercial products (Shofu, GC, and Densply) was also measured. In order to meet the clinical requirements, we added different percentages of ethanol to plasticizers and measured the gelation time in the second part of the experiment. The purpose is to determine the least ethanol which is able to meet the clinical working time. The viscoelasticity, leaching of plasticizer, hydrophilicity, weight change, water absorption, and solubility were evaluated using rheometer, UV-vis spectroscopy, contact angle, and electronic balance. The results showed that the viscoelasticity stability of tissue conditioners using ATBC as plasticizer was better than that of those using TBC, BPBG, DBP and BB as plasticizer. In addition, the leaching of ATBC was the least. The contact angle decreased and hydrophilicity increased after adding 10% TAH to ATBC. The changes in the percentage of complex modulus (G*) with time for the tissue conditioner using ATBC 78.3%, TAH 8.7% and ethanol 13% as plasticizer was the smallest of all the groups. Therefore, in this study, ATBC 78.3%, TAH 8.7% and ethanol 13%is the most suitable combination for tissue conditioners. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:34:19Z (GMT). No. of bitstreams: 1 ntu-103-R01450005-1.pdf: 3156519 bytes, checksum: 132fda6fec266869177dad390396b285 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 I
摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 前言 1 第二章 文獻回顧 2 2.1軟性墊底材料(Soft liner) 2 2.1.1使用時機 2 2.1.2材料性質 2 2.1.3分類 3 2.1.4使用軟性墊底材料之併發症 4 2.2組織調理材 6 2.2.1功能 6 2.2.2組成 7 2.3塑化理論 8 2.4增塑劑 9 2.4.1塑化作用 9 2.4.2增塑劑之要求 10 2.4.3鄰苯二甲酸酯類使用之疑慮 11 2.4.4環保增塑劑 - 檸檬酸酯類(Citrate ester) 12 2.4.5環氧樹脂增韌改質 14 2.5組織調理材凝膠化現象 18 2.6組織調理材機械性質 20 2.7 文獻回顧結論 23 第三章 實驗動機與目的 24 3.1研究動機 24 3.2研究目的 24 第四章 實驗材料與方法 26 4.1實驗藥品 26 4.2實驗儀器 32 4.3實驗流程圖 33 4.4樣品製備與實驗 34 4.4.1合成超分支聚酯TAH 34 4.4.2增塑劑溶液的配置 35 4.4.3實驗樣品製作 36 4.5觀察聚甲基丙烯酸乙酯(PEMA)顆粒大小 37 4.5.1說明 37 4.5.2實驗步驟 37 4.6膠化時間測試 38 4.6.1說明 38 4.6.2實驗步驟 39 4.7黏彈性穩定性測試 40 4.7.1說明 40 4.7.2實驗步驟 40 4.8增塑劑釋出量測試 42 4.8.1說明 42 4.8.2實驗步驟 42 4.9表面疏水性測試 45 4.9.1說明 45 4.9.2實驗步驟 45 4.10重量改變、吸水性、溶解性(solubility)測試 46 4.10.1說明 46 4.10.2實驗步驟 46 4.11生物相容性測試(MTT assay) 48 4.11.1 MTT assay原理 48 4.11.2樣品製作 48 4.11.3實驗步驟 49 4.12統計分析 50 第五章 實驗結果 51 5.1聚甲基丙烯酸乙酯顆粒大小 51 5.2膠化時間 53 5.3黏彈性穩定度隨時間之變化 58 5.3.1黏彈性-G’、G”、tanδ、G* 58 5.3.2黏彈性百分比變化量-G* 69 5.4增塑劑隨時間之釋出量 72 5.4.1 ATBC、TBC、BPBG、DBP和BB之檢量線 72 5.4.2 ATBC、TBC、BPBG、DBP和BB之釋出量 75 5.5靜態表面接觸角分析 78 5.6隨時間之重量變化、溶解性、吸水性 80 5.7細胞生物相容性測試 84 第六章 討論 85 6.1聚甲基丙烯酸乙酯顆粒大小和乙醇含量對膠化時間之影響 85 6.2增塑劑隨時間之釋出量分析 86 6.3靜態表面接觸角分析 87 6.4隨時間之重量變化、溶解性、吸水性 87 6.5黏彈性穩定度隨時間之變化分析 88 6.6細胞生物相容性測試 90 第七章 結論 91 第八章 參考文獻 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 親水性 | zh_TW |
| dc.subject | 組織調理材 | zh_TW |
| dc.subject | 增塑劑 | zh_TW |
| dc.subject | 超分支聚酯 | zh_TW |
| dc.subject | 黏彈性 | zh_TW |
| dc.subject | 彈性儲存模數 | zh_TW |
| dc.subject | 黏性儲存模數 | zh_TW |
| dc.subject | storage modulus | en |
| dc.subject | loss modulus | en |
| dc.subject | tissue conditioner | en |
| dc.subject | plasticizer | en |
| dc.subject | hyperbranched polyester | en |
| dc.subject | hydrophilic | en |
| dc.subject | viscoelasticity | en |
| dc.title | 使用檸檬酸三丁酯、乙醯檸檬酸三丁酯及超分支聚酯提升組織調理材黏彈性質穩定性 | zh_TW |
| dc.title | Development of new tissue conditioner with TBC&ATBC and hyperbranched polyester to improve the stability of viscoelasticity. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 李伯訓(Bor-Shiunn Lee) | |
| dc.contributor.oralexamcommittee | 鄭國忠(Kuo-Chung Cheng) | |
| dc.subject.keyword | 組織調理材,增塑劑,超分支聚酯,親水性,黏彈性,彈性儲存模數,黏性儲存模數, | zh_TW |
| dc.subject.keyword | tissue conditioner,plasticizer,hyperbranched polyester,hydrophilic,viscoelasticity,storage modulus,loss modulus, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-04 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
