Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57072
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明(Chung-Ming Chen)
dc.contributor.authorKuo-Lung Loren
dc.contributor.author羅國榮zh_TW
dc.date.accessioned2021-06-16T06:34:12Z-
dc.date.available2023-02-01
dc.date.copyright2021-03-08
dc.date.issued2021
dc.date.submitted2021-02-05
dc.identifier.citation1. Gooneratne, N.S., N.P. Patel, and A. Corcoran, Chronic obstructive pulmonary disease diagnosis and management in older adults. Journal of the American Geriatrics Society, 2010. 58(6): p. 1153-1162.
2. Gelb, A.F., et al., Contribution of emphysema and small airways in COPD. Chest, 1996. 109(2): p. 353-359.
3. Morrell, N.W., et al., Collateral ventilation and gas exchange in emphysema. American journal of respiratory and critical care medicine, 1994. 150(3): p. 635-641.
4. Budweiser, S., R.A. Jörres, and M. Pfeifer, Treatment of respiratory failure in COPD. International journal of chronic obstructive pulmonary disease, 2008. 3(4): p. 605.
5. Roussos, C. and P.T. Macklem, The respiratory muscles. New England Journal of Medicine, 1982. 307(13): p. 786-797.
6. Wang, Z., et al., Optimal threshold in CT quantification of emphysema. European radiology, 2013. 23(4): p. 975-984.
7. Vogelmeier, C.F., et al., Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. American journal of respiratory and critical care medicine, 2017. 195(5): p. 557-582.
8. Group, N.E.T.T.R., A randomized trial comparing lung-volume–reduction surgery with medical therapy for severe emphysema. New England Journal of Medicine, 2003. 348(21): p. 2059-2073.
9. Gurney, J.W., et al., Regional distribution of emphysema: correlation of high-resolution CT with pulmonary function tests in unselected smokers. Radiology, 1992. 183(2): p. 457-463.
10. Schuhmann, M., et al., Computed tomography predictors of response to endobronchial valve lung reduction treatment. Comparison with Chartis. American journal of respiratory and critical care medicine, 2015. 191(7): p. 767-774.
11. Mishima, M., et al., Complexity of terminal airspace geometry assessed by lung computed tomography in normal subjects and patients with chronic obstructive pulmonary disease. Proceedings of the National Academy of Sciences, 1999. 96(16): p. 8829-8834.
12. Coxson, H., et al., Selection of patients for lung volume reduction surgery using a power law analysis of the computed tomographic scan. Thorax, 2003. 58(6): p. 510-514.
13. Mondoñedo, J.R., et al., CT imaging-based low-attenuation super clusters in three dimensions and the progression of emphysema. Chest, 2019. 155(1): p. 79-87.
14. Madani, A., et al., Pulmonary emphysema: size distribution of emphysematous spaces on multidetector CT images—comparison with macroscopic and microscopic morphometry. Radiology, 2008. 248(3): p. 1036-1041.
15. Martini, K. and T. Frauenfelder, Emphysema and lung volume reduction: the role of radiology. Journal of thoracic disease, 2018. 10(Suppl 23): p. S2719.
16. Hetzel, J., et al., A new functional method to choose the target lobe for lung volume reduction in emphysema–comparison with the conventional densitometric method. International journal of chronic obstructive pulmonary disease, 2017. 12: p. 2621.
17. Nakano, Y., et al., Comparison of low attenuation areas on computed tomographic scans between inner and outer segments of the lung in patients with chronic obstructive pulmonary disease: incidence and contribution to lung function. Thorax, 1999. 54(5): p. 384-389.
18. Saitoh, T., et al., Lobar distribution of emphysema in computed tomographic densitometric analysis. Investigative radiology, 2000. 35(4): p. 235-243.
19. Parr, D.G., et al., Pattern of emphysema distribution in α1-antitrypsin deficiency influences lung function impairment. American journal of respiratory and critical care medicine, 2004. 170(11): p. 1172-1178.
20. Ju, J., et al., Impact of emphysema heterogeneity on pulmonary function. PLoS One, 2014. 9(11).
21. Matsuoka, S., et al., Quantitative CT assessment of chronic obstructive pulmonary disease. Radiographics, 2010. 30(1): p. 55-66.
22. Sakai, N., et al., An automated method to assess the distribution of low attenuation areas on chest CT scans in chronic pulmonary emphysema patients. Chest, 1994. 106(5): p. 1319-1325.
23. Lor, K.-L., et al., Predictive Modelling of Lung Function using Emphysematous Density Distribution. Scientific Reports, 2019. 9(1): p. 19763.
24. Higgins, W.E., et al., Virtual bronchoscopy for three--dimensional pulmonary image assessment: state of the art and future needs. Radiographics, 1998. 18(3): p. 761-778.
25. Vining, D.J., et al., Virtual bronchoscopy: relationships of virtual reality endobronchial simulations to actual bronchoscopic findings. Chest, 1996. 109(2): p. 549-553.
26. Hasegawa, M., et al., Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 2006. 173(12): p. 1309-1315.
27. Tozaki, T., et al. 3-D visualization of blood vessels and tumor using thin slice CT images. in Proceedings of 1994 IEEE Nuclear Science Symposium-NSS'94. 1995. IEEE.
28. Schlathoelter, T., et al. Simultaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy. in Medical imaging 2002: image processing. 2002. International Society for Optics and Photonics.
29. Fetita, C.I., et al., Pulmonary airways: 3-D reconstruction from multislice CT and clinical investigation. IEEE transactions on medical imaging, 2004. 23(11): p. 1353-1364.
30. Fetita, C.I. and F.J. Preteux. Bronchial tree modeling and 3D reconstruction. in Mathematical Modeling, Estimation, and Imaging. 2000. International Society for Optics and Photonics.
31. Ebert, D., P. Brunet, and I. Navazo, An augmented fast marching method for computing skeletons and centerlines. Proceedings of VisSym, Barcelona, Spain, 2002.
32. Osher, S. and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 1988. 79(1): p. 12-49.
33. Coxson, H.O., Quantitative computed tomography assessment of airway wall dimensions: current status and potential applications for phenotyping chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 2008. 5(9): p. 940-945.
34. Li, K., et al., Optimal surface segmentation in volumetric images-a graph-theoretic approach. IEEE transactions on pattern analysis and machine intelligence, 2005. 28(1): p. 119-134.
35. Petersen, J., et al. Optimal graph based segmentation using flow lines with application to airway wall segmentation. in Biennial International Conference on Information Processing in Medical Imaging. 2011. Springer.
36. Cohen, L.D. and I. Cohen, Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and machine intelligence, 1993. 15(11): p. 1131-1147.
37. Spreeuwers, L. and M. Breeuwer. Detection of left ventricular epi-and endocardial borders using coupled active contours. in International Congress Series. 2003. Elsevier.
38. Xu, C. and J.L. Prince. Gradient vector flow: A new external force for snakes. in Proceedings of IEEE computer society conference on computer vision and pattern recognition. 1997. IEEE.
39. Kass, M., A. Witkin, and D. Terzopoulos, Snakes: Active contour models. International journal of computer vision, 1988. 1(4): p. 321-331.
40. Terzopoulos, D. and K. Fleischer, Deformable models. The visual computer, 1988. 4(6): p. 306-331.
41. Terzopoulos, D., A. Witkin, and M. Kass, Constraints on deformable models: Recovering 3D shape and nonrigid motion. Artificial intelligence, 1988. 36(1): p. 91-123.
42. Liotta, L.A., J. Kleinerman, and G.M. Saidel, Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer research, 1974. 34(5): p. 997-1004.
43. Lindeberg, T., Scale-space theory: A basic tool for analyzing structures at different scales. Journal of applied statistics, 1994. 21(1-2): p. 225-270.
44. Sato, Y., et al., Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical image analysis, 1998. 2(2): p. 143-168.
45. Shikata, H., E.A. Hoffman, and M. Sonka. Automated segmentation of pulmonary vascular tree from 3D CT images. in Medical Imaging 2004: Physiology, Function, and Structure from Medical Images. 2004. International Society for Optics and Photonics.
46. Frangi, A.F., et al. Multiscale vessel enhancement filtering. in International conference on medical image computing and computer-assisted intervention. 1998. Springer.
47. Xiao, C., et al. A strain energy filter for 3D vessel enhancement. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 2010. Springer.
48. Mansoor, A., et al., Segmentation and image analysis of abnormal lungs at CT: current approaches, challenges, and future trends. RadioGraphics, 2015. 35(4): p. 1056-1076.
49. Mori, K., et al. Recognition of bronchus in three-dimensional X-ray CT images with applications to virtualized bronchoscopy system. in Proceedings of 13th International Conference on Pattern Recognition. 1996. IEEE.
50. Casaburi, R., Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Medicine Science in Sports Exercise, 2001. 33(7): p. S662-S670.
51. Ottenheijm, C.A., et al., Diaphragm dysfunction in chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 2005. 172(2): p. 200-205.
52. Gerscovich, E.O., et al., Ultrasonographic evaluation of diaphragmatic motion. Journal of ultrasound in medicine, 2001. 20(6): p. 597-604.
53. Baria, M.R., et al., B-mode ultrasound assessment of diaphragm structure and function in patients with COPD. Chest, 2014. 146(3): p. 680-685.
54. Chun, E.M., S.J. Han, and H.N. Modi, Analysis of diaphragmatic movement before and after pulmonary rehabilitation using fluoroscopy imaging in patients with COPD. International journal of chronic obstructive pulmonary disease, 2015. 10: p. 193.
55. Ünal, Ö., et al., Evaluation of diaphragmatic movement with MR fluoroscopy in chronic obstructive pulmonary disease. Clinical imaging, 2000. 24(6): p. 347-350.
56. Swastika, W., et al. Evaluation of COPD's diaphragm motion extracted from 4D-MRI. in Medical Imaging 2015: Image Processing. 2015. International Society for Optics and Photonics.
57. Zhang, J., et al., Fast segmentation of bone in CT images using 3D adaptive thresholding. Computers in biology and medicine, 2010. 40(2): p. 231-236.
58. Kim, S.S., et al., Chronic obstructive pulmonary disease: lobe-based visual assessment of volumetric CT by using standard images—comparison with quantitative CT and pulmonary function test in the COPDGene study. Radiology, 2013. 266(2): p. 626-635.
59. Dournes, G., et al., Computed tomographic measurement of airway remodeling and emphysema in advanced chronic obstructive pulmonary disease. Correlation with pulmonary hypertension. American journal of respiratory and critical care medicine, 2015. 191(1): p. 63-70.
60. Patel, B.D., et al., Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 2008. 178(5): p. 500-505.
61. Koyama, H., et al., 3D lung motion assessments on inspiratory/expiratory thin-section CT: Capability for pulmonary functional loss of smoking-related COPD in comparison with lung destruction and air trapping. European journal of radiology, 2016. 85(2): p. 352-359.
62. Hardin, M., et al., Sex-specific features of emphysema among current and former smokers with COPD. European Respiratory Journal, 2016. 47(1): p. 104-112.
63. Pazokifard, B., A. Sowmya, and D. Moses, Automatic 3D modelling of human diaphragm from lung MDCT images. International journal of computer assisted radiology and surgery, 2016. 11(5): p. 767-776.
64. Behr, M., et al., 3D reconstruction of the diaphragm for virtual traumatology. Surgical and Radiologic Anatomy, 2006. 28(3): p. 235-240.
65. Valipour, A., et al., Patterns of emphysema heterogeneity. Respiration, 2015. 90(5): p. 402-411.
66. Hogg, J.C., J.E. McDonough, and M. Suzuki, Small airway obstruction in COPD: new insights based on micro-CT imaging and MRI imaging. Chest, 2013. 143(5): p. 1436-1443.
67. Koo, H.-K., et al., Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study. The Lancet Respiratory Medicine, 2018. 6(8): p. 591-602.
68. McDonough, J.E., et al., Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. New England Journal of Medicine, 2011. 365(17): p. 1567-1575.
69. Lutchmedial, S.M., et al., How common is airflow limitation in patients with emphysema on CT scan of the chest? Chest, 2015. 148(1): p. 176-184.
70. Wang, G., Q. Zhou, and Y. Chen, Robust non-rigid point set registration using spatially constrained Gaussian fields. IEEE Transactions on Image Processing, 2017. 26(4): p. 1759-1769.
71. Hermann, S. Evaluation of scan-line optimization for 3D medical image registration. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014.
72. Galbán, C.J., et al., Computed tomography–based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nature medicine, 2012. 18(11): p. 1711.
73. Wang, H. and M. Song, Ckmeans. 1d. dp: optimal k-means clustering in one dimension by dynamic programming. The R journal, 2011. 3(2): p. 29.
74. Karimi, R., et al., Differences in regional air trapping in current smokers with normal spirometry. European Respiratory Journal, 2017. 49(1): p. 1600345.
75. Ostridge, K., et al., Relationship of CT-quantified emphysema, small airways disease and bronchial wall dimensions with physiological, inflammatory and infective measures in COPD. Respiratory research, 2018. 19(1): p. 31.
76. Bodduluri, S., et al., Signs of gas trapping in normal lung density regions in smokers. American journal of respiratory and critical care medicine, 2017. 196(11): p. 1404-1410.
77. Chen, W., et al., An Individualized Prediction Model for Long-term Lung Function Trajectory and Risk of COPD in the General Population. Chest, 2019.
78. McLennan, G., et al., Virtual bronchoscopy. Imaging Decisions MRI, 2007. 11(1): p. 10-20.
79. Lee, M., et al. Size-based emphysema cluster analysis on low attenuation area in 3D volumetric CT: comparison with pulmonary functional test. in Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging. 2015. International Society for Optics and Photonics.
80. Uppaluri, R., et al., Interstitial lung disease: a quantitative study using the adaptive multiple feature method. American journal of respiratory and critical care medicine, 1999. 159(2): p. 519-525.
81. Lynch, D.A., et al., CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology, 2015. 277(1): p. 192-205.
82. Kim, W.-D., et al., The association between small airway obstruction and emphysema phenotypes in COPD. Chest, 2007. 131(5): p. 1372-1378.
83. Sverzellati, N., et al., Physiologic and quantitative computed tomography differences between centrilobular and panlobular emphysema in COPD. Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation, 2014. 1(1): p. 125.
84. Mura, M., et al., Bullous emphysema versus diffuse emphysema: a functional and radiologic comparison. Respiratory medicine, 2005. 99(2): p. 171-178.
85. Arjomandi, M., et al., Radiographic lung volumes predict progression to COPD in smokers with preserved spirometry in SPIROMICS. European Respiratory Journal, 2019. 54(4).
86. Hoff, B.A., et al., CT-Based local distribution metric improves characterization of COPD. Scientific reports, 2017. 7(1): p. 2999.
87. Kloth, C., et al., Segmental bronchi collapsibility: computed tomography-based quantification in patients with chronic obstructive pulmonary disease and correlation with emphysema phenotype, corresponding lung volume changes and clinical parameters. Journal of thoracic disease, 2016. 8(12): p. 3521.
88. Kloth, C., et al., Prediction of response to endobronchial coiling based on morphologic emphysema characterization of the lung lobe to be treated and the ipsilateral non-treated lobe as well as on functional computed tomography-data: correlation with clinical and pulmonary function. Journal of Thoracic Disease, 2019. 11(1): p. 93.
89. Washko, G.R. and G. Parraga, COPD biomarkers and phenotypes: opportunities for better outcomes with precision imaging. European Respiratory Journal, 2018. 52(5): p. 1801570.
90. Oh, S.Y., et al., Size variation and collapse of emphysema holes at inspiration and expiration CT scan: evaluation with modified length scale method and image co-registration. International journal of chronic obstructive pulmonary disease, 2017. 12: p. 2043.
91. Gibbons, W.J., et al., Detection of excessive bronchoconstriction in asthma. American journal of respiratory and critical care medicine, 1996. 153(2): p. 582-589.
92. McNulty, W. and O.S. Usmani, Techniques of assessing small airways dysfunction. European clinical respiratory journal, 2014. 1(1): p. 25898.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57072-
dc.description.abstract慢性阻塞性肺疾病(COPD)是一種進行性肺部疾病,據世界衛生組織(WHO)統計顯示,慢性阻塞性肺病(COPD)將於2030年成為全球第三大死亡原因。COPD會引起全身性炎症和合併症,包括缺血性心髒病,肺動脈高壓,骨質疏鬆症,貧血,憂鬱和惡病質。慢性咳嗽和暴露於空氣汙染危險因子(例如吸煙)可用於評估COPD,COPD的診斷基於肺功能檢查;對氣流受限的測量。然而COPD更像是一種綜合徵而不是一種疾病,肺功能檢查只能用於功能性的評估而不能用於探討疾病的異質性。造成氣道阻塞的主要原因是肺氣腫,慢性支氣管炎和慢性哮喘性支氣管炎。電腦斷層掃描(CT)成為表徵和量化COPD惡化的標準工具。儘管低衰減體積百分比(LAV%)代表CT上肺氣腫體積與整個肺體積的比例;雖然該指數與COPD患者的肺功能相關,但由於肺氣腫異質性,LAV%測量值相似的患者肺功能可能會有較大差異。除了透過測量吸氣和呼氣CT的低衰減區域對肺氣腫和功能性細支氣管疾病進行量化和分類外,橫膈膜的檢測還提供了有關細小支氣管功能障礙程度的有用資訊。例如橫膈肌偏移量的減少間接顯示出呼吸衰竭的現象。儘管進行了診斷和治療,但COPD的特徵是持續性氣流受阻且不可完全逆轉。目前有效的改善的治療方針是使用支氣管鏡植入氣管瓣膜(EBV)進行支氣管鏡肺減容治療(BLVR)。此手術將成為治療嚴重肺氣腫患者的常規方法。儘管治療的長期療效取決於瓣膜位置的準確定位,但目前的術前計畫仍未能有效定位出可有效治療的肺葉。為了精準治療,術前需要透徹分析區域性肺氣腫的破壞程度以及該區域對肺功能的影響程度。本文根據肺氣腫密度(ED)的大小變化及其空間分佈,為三維肺氣腫大皰建立了肺氣腫異質性描述子。第二個目的是基於肺氣腫和功能性細支氣管疾病(fSAD)的區域異質性,得出氣流受限的預測模型。進而推導出利用球狀結構的特徵因子描述位於上,下肺葉的多個尺度的低衰減簇(LAC),使用線性回歸模型計算出預測模型,透過影像對位的吸氣和呼氣CT估計肺功能的嚴重性。zh_TW
dc.description.abstractChronic obstructive pulmonary disease (COPD) is a progressive lung disease and the estimates show that COPD becomes in 2030 the third leading cause of death worldwide according to WHO statistics. Body of evidence demonstrates that COPD causes systemic inflammation and co-morbidities, including ischemic heart disease, pulmonary hypertension, osteoporosis, anemia, depression, and cachexia. The symptoms of chronic cough and exposure to the risk factors, such as cigarette smoking can be used to assess COPD, the diagnosis of COPD is based on the airflow limitation measurement by spirometry. However, COPD is more like a syndrome than a disease that the global measurement of spirometry cannot be used to assess the heterogeneous disorder.
The main causes of this airway obstruction are emphysema, chronic bronchitis, and chronic asthmatic bronchitis. Computed tomography (CT) is becoming a standard tool for characterizing and quantifying COPD exacerbation. Although low attenuation volume percentage (LAV%) which represents the proportion of emphysema volume to whole lung volume on CT, correlates with lung function in patients with COPD, patients with similar measurements of LAV% may have large variations in lung function due to emphysema heterogeneity. Other than quantification and classification of emphysema and functional small airway disease by measuring the low attenuation regions on inspiratory and expiratory CT, the detection of diaphragm excursion also provides useful information on the extent of small airway dysfunction. Decreased diaphragmatic excursion prolongs expiration in patients with respiratory failure due to COPD.
Despite the diagnosis and treatment, COPD is characterized by progressive airflow limitation and not fully reversible. Advanced bronchoscopy lung volume reduction treatment (BLVR) using endobronchial valves (EBV) is now a routine care option for treating patients with severe emphysema. While the long-term efficacy of the treatment relies on the accurate positioning of the valve placement, the method for target lobe selection remains unmet medical need. To target the treatment candidate, the functional information for regional emphysema destruction is required for supporting the choice of optimal target. In this thesis, we develop an emphysema heterogeneity descriptor for the three-dimensional emphysematous bullae according to the size variations of emphysematous density (ED) and their spatial distribution. The second purpose is to derive a predictive model of airflow limitation based on the regional heterogeneity of emphysema and functional small airway disease (fSAD). Deriving the bullous representation and grouping them into multiple scales of low attenuation clusters (LACs) in the upper and lower lobes, a predictive model is computed using a linear model fitting to estimate the severity of lung function using co-registered inspiratory and expiratory CT.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:34:12Z (GMT). No. of bitstreams: 1
U0001-0402202114151500.pdf: 7606699 bytes, checksum: db6f7edb65f7b61f902945bfda5d8721 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgment ii
Abstract iii
1. Introduction......................................... 7
1.1. Phenotypes of COPD................................... 8
1.1.1. Emphysema............................................ 8
1.1.2. Functional Small Airway Disease...................... 9
1.2. Diagnosis of COPD.................................... 11
1.2.1. Image Analysis of Phenotypes......................... 11
1.2.2. Diagnosis of Severity................................ 12
1.3. Treatment of COPD.................................... 19
1.4. Objectives........................................... 23
2. Methods and Material................................. 25
2.1. Dataset.............................................. 25
2.2. Methods of CT Imaging in COPD........................ 27
2.2.1. Airway lumen and wall extraction..................... 27
2.2.2. Vessel............................................... 44
2.2.3. Lung................................................. 51
2.2.4. Fissure.............................................. 52
2.2.5. Lobe................................................. 54
2.2.6. Diaphragm............................................ 55
2.2.7. Spine and Ribs....................................... 56
2.3. Correlational Study of LAV% and PFT.................. 57
2.4. Correlational Study of Excursion and PFT............. 58
2.5. Predicting COPD Heterogeneity Using Inspiratory CT... 61
2.5.1. Feature Extraction and Selection of Emphysema........ 61
2.5.2. Prediction Model of Airflow Limitation............... 69
2.6. Predicting COPD Heterogeneity Using Paired CT........ 72
2.6.1. Non-rigid Point Set Registration..................... 74
2.6.2. Feature Extraction and Selection of PRM.............. 78
2.6.3. Prediction Model of Airflow Limitation............... 80
2.7. Predicting Regional COPD Severity using Paired CT.... 85
3. Results.............................................. 88
3.1. Correlational Studies................................ 88
3.2. Model Selections..................................... 93
3.3. Data Analysis using Prediction Model................. 99
4. Discussion........................................... 101
5. Conclusion........................................... 111
Supplementary of Texture Analysis ........................... 113
Introduction ................................................ 113
Methods and Material ........................................ 117
Result ...................................................... 124
Discussion .................................................. 128
Conclusion .................................................. 129
Appendix..................................................... 130
References................................................... 133
dc.language.isoen
dc.title使用吸氣和呼氣電腦斷層影像進行「慢性阻塞性肺病」之異質性和嚴重性的定量、分類和預測zh_TW
dc.titleQuantification, Classification, and Prediction of COPD Heterogeneity and Severity using Paired Inspiratory and Expiratory CTen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree博士
dc.contributor.author-orcid0000-0003-3471-9198
dc.contributor.oralexamcommittee潘亭壽(Tinsu Pan),張允中(Yeun-Chung Chang),鄭國順(Kuo-Sheng Cheng),余忠仁(Chong-Jen Yu)
dc.subject.keyword慢性阻塞性肺病 (COPD),吸氣呼氣電腦斷層CT影像對位,肺氣腫,功能性細小支氣管疾病 (fSAD),肺氣腫密度 (ED),低衰減簇 (LACs),預測模型,氣流受限,肺氣腫異質性描述子,zh_TW
dc.subject.keywordChronic obstructive pulmonary disease (COPD),co-registered inspiratory and expiratory CT,emphysema,functional small airway disease (fSAD),emphysematous density (ED),low attenuation clusters (LACs),predictive model,airflow limitation,emphysema heterogeneity descriptor,en
dc.relation.page142
dc.identifier.doi10.6342/NTU202100511
dc.rights.note有償授權
dc.date.accepted2021-02-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0402202114151500.pdf
  目前未授權公開取用
7.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved