請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57065完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅(Chih-I Wu) | |
| dc.contributor.author | Chih-Ting Yeh | en |
| dc.contributor.author | 葉治鼎 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:34:02Z | - |
| dc.date.available | 2016-08-05 | |
| dc.date.copyright | 2014-08-05 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-04 | |
| dc.identifier.citation | [1] http://www.nrel.gov/
[2] http://cnx.org/content/m41217/latest/ [3] Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions.Science-AAAS-Weekly Paper Edition, 270(5243), 1789-1790. [4] Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., & Yang, Y. (2005). High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends.Nature materials,4(11), 864-868. [5] Li, G., Zhu, R., & Yang, Y. (2012). Polymer solar cells.Nature Photonics,6(3), 153-161. [6] http://org.ntnu.no/solarcells/index.php [7] Chen, J. T., & Hsu, C. S. (2011). Conjugated polymer nanostructures for organic solar cell applications.Polymer Chemistry,2(12), 2707-2722. [8] Scharber, M. C., Muhlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A. J., & Brabec, C. J. (2006). Design rules for donors in bulk‐heterojunction solar cells—Towards 10% energy‐conversion efficiency.Advanced Materials,18(6), 789-794. [9] Zhao, G., He, Y., & Li, Y. (2010). 6.5% Efficiency of Polymer Solar Cells Based on poly (3‐hexylthiophene) and Indene‐C60 Bisadduct by Device Optimization.Advanced Materials,22(39), 4355-4358. [10] http://ridb.kanazawa-u.ac.jp/file/image_003439.jpg/ [11] http://www.paperdisplay.se/Portals/81/itemimageslarge/3f931326-2fd2-48c8-aa08-83dec724c3d8.jpg [12] http://www.greenrhinoenergy.com/solar/radiation/spectra.php# [13] http://upload.wikimedia.org/wikipedia/commons/7/7c/Atomic_force_microscope_block_diagram.svg [14] http://www.enli.com.tw/style/frame/templates16/product_detail.asp?lang=1&customer_id=874&content_set=color_1&name_id=43303&Directory_ID=27186&id=130892 [15] Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A. J., Li, H., ... & Kippelen, B. (2012). A universal method to produce low–work function electrodes for organic electronics.Science,336(6079), 327-332. [16] http://www.sigmaaldrich.com/catalog/product/aldrich/423475?lang=enRion=TW [17] http://www.sigmaaldrich.com/catalog/product/aldrich/408700?lang=enRion=TW [18] Maldonado, F., & Stashans, A. (2010). Al-doped ZnO: Electronic, electrical and structural properties.Journal of Physics and Chemistry of Solids,71(5), 784-787. [19] http://carbon.physics.ncsu.edu/2010/07/scattering-factors-for-p3ht/ [20] Li, Y. (2013). Fullerene‐Bisadduct Acceptors for Polymer Solar Cells.Chemistry–An Asian Journal,8(10), 2316-2328. [21] http://www.1-material.com/icba/ [22] Xu, H., Ohkita, H., Benten, H., & Ito, S. (2014). Open-circuit voltage of ternary blend polymer solar cells.Japanese Journal of Applied Physics,53(1S), 01AB10. [23] http://spl.hanyang.ac.kr/bbs/board.php?bo_table=sub3_1&wr_id=34 [24] Li, Y. (2013). Fullerene‐Bisadduct Acceptors for Polymer Solar Cells.Chemistry–An Asian Journal,8(10), 2316-2328. [25] Lee, B. R., Jung, E. D., Nam, Y. S., Jung, M., Park, J. S., Lee, S., ... & Song, M. H. (2014). Amine‐Based Polar Solvent Treatment for Highly Efficient Inverted Polymer Solar Cells.Advanced Materials,26(3), 494-500. [26] http://en.wikipedia.org/wiki/2-Methoxyethanol [27] Kyaw, A. K. K., Wang, D. H., Gupta, V., Zhang, J., Chand, S., Bazan, G. C., & Heeger, A. J. (2013). Efficient Solution‐Processed Small‐Molecule Solar Cells with Inverted Structure.Advanced Materials,25(17), 2397-2402. [28] http://en.wikipedia.org/wiki/Graphene [29] Wang, Y., Tong, S. W., Xu, X. F., Ozyilmaz, B., & Loh, K. P. (2011). Interface Engineering of Layer‐by‐Layer Stacked Graphene Anodes for High‐Performance Organic Solar Cells.Advanced Materials,23(13), 1514-1518. [30] Park, H., Rowehl, J. A., Kim, K. K., Bulovic, V., & Kong, J. (2010). Doped graphene electrodes for organic solar cells.Nanotechnology,21(50), 505204. [31] http://www.nanocarbon.cz/research.html [32] Shin, Young Jun, et al. 'Surface-energy engineering of graphene.' Langmuir26.6 (2010): 3798-3802. [33] Lin, Wei-Hsiang, et al. 'A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate.' ACS nano8.2 (2014): 1784-1791. [34] Wang, Y., Tong, S. W., Xu, X. F., Ozyilmaz, B., & Loh, K. P. (2011). Interface Engineering of Layer‐by‐Layer Stacked Graphene Anodes for High‐Performance Organic Solar Cells.Advanced Materials,23(13), 1514-1518. [35] Jiang, X. C., Li, Y. Q., Deng, Y. H., Zhuo, Q. Q., Lee, S. T., & Tang, J. X. (2013). Anode modification of polymer light-emitting diode using graphene oxide interfacial layer: The role of ultraviolet-ozone treatment.Applied Physics Letters,103(7), 073305. [36] http://en.wikipedia.org/wiki/Reactive-ion_etching [37] 郭雅菁. (2013). 異質接面倒置型有機太陽能電池效率及結構研究.臺灣大學光電工程學研究所學位論文 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57065 | - |
| dc.description.abstract | 本篇論文以乙氧基聚乙烯亞胺(PEIE)陰極介面層和石墨烯陰極製備本體異質接面有機太陽能電池,並探討其電池特性。
本篇論文皆以倒置型結構、P3HT:ICBA為主動層製備太陽能電池。首先,針對PEIE陰極介面層進行最佳化,經過實驗測試元件效率提升至5.23%,而PEIE使ITO的功函數下降為最主要原因,讓ITO更適合當作陰極製備倒置型元件。接下來,將AZO加入元件結構中,利用PEIE調控功函數以及使其與主動層的接面更加平整,效率來到最佳的5.72%。其中,透過UPS量測可清楚看到PEIE使介面功函數下降的結果,而AFM則可了解PEIE對於表面型態的影響。 接著本論文利用石墨烯為陰極取代ITO製備太陽能電池,石墨烯元件在製程上較為複雜,利用PMMA方法轉印三層氟化銫(CsF)層間參雜之石墨烯後,尚須利用氧電漿轟擊石墨烯表面方能進行後續的製程。CsF參雜後使得石墨烯功函數下降,對於石墨烯當作陰極更加有利;而受到石墨烯本質疏水性的限制,氧電漿則用來增加石墨烯的親水性,提升接下來的溶劑式製程薄膜的品質。最終,石墨烯陰極元件的效率來到了3.22%,與ITO陰極的元件仍有不小的差距,過高的片電阻值以及親水性不足是兩個最重要的原因。但即使如此,在石墨烯製程尚未成熟的情況下,些許的突破仍然令人鼓舞,增加日後廣泛使用的可能性。 | zh_TW |
| dc.description.abstract | In this study, we fabricate bulk heterojunction organic solar cells with polyethylenimine ethoxylated (PEIE) cathode interlayers and graphene cathodes. The performance of solar cells is systematically investigated.
The solar cells investigated in this thesis are fabricated in inverted structures with P3HT:ICBA as the active layer. First, we optimize the PEIE cathode interlayer, and the efficiency can reach 5.23% after optimization. The PEIE layer lowers the ITO work function (WF) , and can be used as a cathode . Then, the AZO layer is introduced in the devices along with PEIE to modify the WF and make the active layer junction smoother and the PCE achieves 5.72%. UPS measurements on PEIE-coated ITO or AZO film show the consequence of WF modification. AFM measurements were also carried out to figure out the morphology of these layers. In addition, we fabricate solar cells using graphene as cathodes. We transfer three layer graphene with cesium fluoride (CsF) interlayer doping to make the graphene WF lower and is more favorable as cathodes. Due to graphene’s hydrophobic nature, we use oxygen plasma treatment to improve the hydrophilicity of graphene. After this treatment, the follow-up AZO film quality can be enhanced. The PCE of graphene-cathode solar cell is 3.22%, which is still a little bit lower than that of ITO-based device. The high sheet resistance and the inadequate hydrophilicity are the two main reasons for the low PCE of the graphene solar cells. However, these works still make the graphene as cathodes realized for the first time. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:34:02Z (GMT). No. of bitstreams: 1 ntu-103-R01941064-1.pdf: 5925236 bytes, checksum: edec24d69998361d32403c9c24edf28a (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv ABSTRACT v 目錄 vii 圖目錄 viii 表目錄 xi 第一章 緒論與簡介 1 1.1 太陽能電池介紹 1 1.2 有機高分子太陽能電池 3 1.2.1 有機高分子太陽能電池背景 3 1.2.2 有機高分子太陽能電池工作原理 4 1.2.3 太陽能電池等效電路與參數介紹 6 1.3 倒置型太陽能電池 9 第二章 實驗儀器、材料及步驟 11 2.1 實驗儀器介紹 11 2.1.1 氮氣手套箱與太陽能量測模擬器 11 2.1.2 原子力顯微鏡 12 2.1.3 外部量子效率 13 2.1.4 X射線光與紫外光電子頻譜 14 2.2 實驗材料介紹 15 2.2.1 氧化銦錫基板 15 2.2.2 陰極介面層材料 15 2.2.3 主動層材料 17 2.2.4 電洞傳輸層與陽極材料 18 2.3 實驗步驟 19 2.3.1 元件製作流程圖 19 2.3.2 元件製作步驟 20 第三章 以PEIE製備ITO陰極倒置型太陽能電池 23 3.1 研究動機 23 3.2 單純PEIE作為陰極介面層 24 3.2.1 主動層(P3HT:ICBA)條件測試 24 3.2.2 陰極介面層PEIE條件測試 25 3.3 不同陰極介面層之元件效率比較 31 3.4 結論 38 第四章 以石墨烯陰極製備倒置型太陽能電池 39 4.1 研究動機 39 4.2 石墨烯陰極的製備方式 40 4.2.1 石墨烯轉印 40 4.2.2 石墨烯改質 43 4.3 石墨烯陰極倒置型太陽能電池之探討 45 4.3.1 石墨烯陰極元件條件測試 45 4.3.2 不同陰極介面層之元件效率比較及探討 50 4.3.3 ITO陰極與石墨烯陰極元件比較及探討 57 4.4 結論 60 第五章 總結與未來展望 62 5.1 總結 62 5.2 未來展望 63 參考文獻 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 石墨烯陰極 | zh_TW |
| dc.subject | 乙氧基聚乙烯亞胺陰極介面層 | zh_TW |
| dc.subject | 倒置結構 | zh_TW |
| dc.subject | 有機太陽能電池 | zh_TW |
| dc.subject | polyethylenimine ethoxylated (PEIE) cathode interlayer | en |
| dc.subject | organic solar cells | en |
| dc.subject | inverted structure | en |
| dc.subject | graphene cathode | en |
| dc.title | 利用乙氧基聚乙烯亞胺陰極介面層與石墨烯陰極製備倒置型有機太陽能電池及其元件特性分析 | zh_TW |
| dc.title | Fabrications and device characterizations of inverted organic solar cells using polyethylenimine ethoxylated
cathode interlayers and graphene cathodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳錦地(Chih-Ti Chen),余沛慈(Pei-Chen Yu),林清富(Ching-Fuh Lin) | |
| dc.subject.keyword | 有機太陽能電池,倒置結構,乙氧基聚乙烯亞胺陰極介面層,石墨烯陰極, | zh_TW |
| dc.subject.keyword | organic solar cells,inverted structure,polyethylenimine ethoxylated (PEIE) cathode interlayer,graphene cathode, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
