請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57053完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王勝仕 | |
| dc.contributor.author | Yao-Zong Chen | en |
| dc.contributor.author | 陳耀宗 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:33:46Z | - |
| dc.date.available | 2019-08-14 | |
| dc.date.copyright | 2014-08-14 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-04 | |
| dc.identifier.citation | 1. Inouye, H., P.E. Fraser, and D.A. Kirschner, Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by x-ray diffraction. Biophys J, 1993. 64(2): p. 502-19.
2. Requena, J.R. and H. Wille, The structure of the infectious prion protein: Experimental data and molecular models. Prion, 2014. 8(1). 3. Spector, A., Aggregation of a-crystallin and its possible relationship to cataract formation. Isr J Med Sci, 1972. 8(8): p. 1577-82. 4. Rost, B., Review: protein secondary structure prediction continues to rise. J Struct Biol, 2001. 134(2-3): p. 204-18. 5. Bush, K., Antimicrobial therapeutics reviews : the bacterial cell wall as an antimicrobial target. Annals of the New York Academy of Sciences,. 2013, Boston, Mass.: Published by Blackwell Pub. on behalf of the New York Academy of Sciences. vii, 159 p. 6. Wimley, W.C., Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol, 2010. 5(10): p. 905-17. 7. Chothia, C., M. Levitt, and D. Richardson, Structure of proteins: packing of alpha-helices and pleated sheets. Proc Natl Acad Sci U S A, 1977. 74(10): p. 4130-4. 8. Chothia, C., Principles that determine the structure of proteins. Annu Rev Biochem, 1984. 53: p. 537-72. 9. Xu, F., Y.C. Shi, and D. Wang, X-ray scattering studies of lignocellulosic biomass: a review. Carbohydr Polym, 2013. 94(2): p. 904-17. 10. Andrew, E.R., A historical review of NMR and its clinical applications. Br Med Bull, 1984. 40(2): p. 115-9. 11. Ranjbar, B. and P. Gill, Circular dichroism techniques: biomolecular and nanostructural analyses- a review. Chem Biol Drug Des, 2009. 74(2): p. 101-20. 12. Rose, P.W., et al., The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res, 2011. 39(Database issue): p. D392-401. 13. Finn, R.D., et al., The Pfam protein families database. Nucleic Acids Res, 2010. 38(Database issue): p. D211-22. 14. Pavlopoulou, A. and I. Michalopoulos, State-of-the-art bioinformatics protein structure prediction tools (Review). Int J Mol Med, 2011. 28(3): p. 295-310. 15. Molloy, K., S. Saleh, and A. Shehu, Probabilistic search and energy guidance for biased decoy sampling in ab initio protein structure prediction. IEEE/ACM Trans Comput Biol Bioinform, 2013. 10(5): p. 1162-75. 16. Jothi, A., Principles, challenges and advances in ab initio protein structure prediction. Protein Pept Lett, 2012. 19(11): p. 1194-204. 17. Singh, S.P., et al., Prediction of the three-dimensional structure of serine/threonine protein kinase pto of Solanum lycopersicum by homology modelling. Bioinformation, 2012. 8(5): p. 212-5. 18. Zheng, W. and S. Doniach, Protein structure prediction constrained by solution X-ray scattering data and structural homology identification. J Mol Biol, 2002. 316(1): p. 173-87. 19. Karakas, M., et al., BCL::Fold--de novo prediction of complex and large protein topologies by assembly of secondary structure elements. PLoS One, 2012. 7(11): p. e49240. 20. Govindarajan, S., R. Recabarren, and R.A. Goldstein, Estimating the total number of protein folds. Proteins, 1999. 35(4): p. 408-14. 21. UniProt, C., Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res, 2013. 41(Database issue): p. D43-7. 22. UniProt, C., Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res, 2012. 40(Database issue): p. D71-5. 23. Jenuth, J.P., The NCBI. Publicly available tools and resources on the Web. Methods Mol Biol, 2000. 132: p. 301-12. 24. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Res, 2000. 28(1): p. 235-42. 25. Sickmeier, M., et al., DisProt: the Database of Disordered Proteins. Nucleic Acids Res, 2007. 35(Database issue): p. D786-93. 26. Vucetic, S., et al., DisProt: a database of protein disorder. Bioinformatics, 2005. 21(1): p. 137-40. 27. Sigrist, C.J., et al., New and continuing developments at PROSITE. Nucleic Acids Res, 2013. 41(Database issue): p. D344-7. 28. Fox, N.K., S.E. Brenner, and J.M. Chandonia, SCOPe: Structural Classification of Proteins--extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res, 2014. 42(Database issue): p. D304-9. 29. Jefferson, E.R., T.P. Walsh, and G.J. Barton, A comparison of SCOP and CATH with respect to domain-domain interactions. Proteins, 2008. 70(1): p. 54-62. 30. Lyden, P. and P. Lapchak, Sisyphus and translational stroke research. Sci Transl Med, 2012. 4(156): p. 156ps20. 31. Chen, J., et al., MMDB: Entrez's 3D-structure database. Nucleic Acids Res, 2003. 31(1): p. 474-7. 32. Li, Z., Y. Ye, and A. Godzik, Flexible Structural Neighborhood--a database of protein structural similarities and alignments. Nucleic Acids Res, 2006. 34(Database issue): p. D277-80. 33. Ye, Y. and A. Godzik, Database searching by flexible protein structure alignment. Protein Sci, 2004. 13(7): p. 1841-50. 34. Holm, L. and P. Rosenstrom, Dali server: conservation mapping in 3D. Nucleic Acids Res, 2010. 38(Web Server issue): p. W545-9. 35. Krishnan, N.M., et al., COPS: a sensitive and accurate tool for detecting somatic Copy Number Alterations using short-read sequence data from paired samples. PLoS One, 2012. 7(10): p. e47812. 36. Johnson, M., et al., NCBI BLAST: a better web interface. Nucleic Acids Res, 2008. 36(Web Server issue): p. W5-9. 37. Pearson, W.R., Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol, 2000. 132: p. 185-219. 38. Finn, R.D., J. Clements, and S.R. Eddy, HMMER web server: interactive sequence similarity searching. Nucleic Acids Res, 2011. 39(Web Server issue): p. W29-37. 39. MacEachren, A.M. and S. Miksch, Special section on the IEEE conference on visual analytics science and technology (VAST). IEEE Trans Vis Comput Graph, 2012. 18(5): p. 660-1. 40. Shindyalov, I.N. and P.E. Bourne, Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng, 1998. 11(9): p. 739-47. 41. Sippl, M.J. and M. Wiederstein, Detection of spatial correlations in protein structures and molecular complexes. Structure, 2012. 20(4): p. 718-28. 42. Zhang, Y. and J. Skolnick, TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res, 2005. 33(7): p. 2302-9. 43. Glaser, F., et al., ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics, 2003. 19(1): p. 163-4. 44. Kearn, J., N. Dalliere, and J. Dillon, Meeting report: 2012 Caenorhabditis elegans Neurobiology meeting, EMBL Advanced Training Centre, Germany. Invert Neurosci, 2013. 13(1): p. 85-90. 45. Waterhouse, A.M., et al., Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics, 2009. 25(9): p. 1189-91. 46. Yada, R.Y., R.L. Jackman, and S. Nakai, Secondary structure prediction and determination of proteins--a review. Int J Pept Protein Res, 1988. 31(1): p. 98-108. 47. Chou, P.Y. and G.D. Fasman, Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol, 1978. 47: p. 45-148. 48. Lim, V.I., [Far interactions and their relation to secondary structure in globular proteins]. Dokl Akad Nauk SSSR, 1972. 203(2): p. 480-2. 49. Pan, Y., J. Jiang, and Z. Wang, Quantitative structure-property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network. J Hazard Mater, 2007. 147(1-2): p. 424-30. 50. Batruni, R., A multilayer neural network with piecewise-linear structure and back-propagation learning. IEEE Trans Neural Netw, 1991. 2(3): p. 395-403. 51. McGuffin, L.J., K. Bryson, and D.T. Jones, The PSIPRED protein structure prediction server. Bioinformatics, 2000. 16(4): p. 404-5. 52. Seo, M.D., et al., Antimicrobial peptides for therapeutic applications: a review. Molecules, 2012. 17(10): p. 12276-86. 53. Boman, H.G., I. Nilsson, and B. Rasmuson, Inducible antibacterial defence system in Drosophila. Nature, 1972. 237(5352): p. 232-5. 54. Boman, H.G. and H. Steiner, Humoral immunity in Cecropia pupae. Curr Top Microbiol Immunol, 1981. 94-95: p. 75-91. 55. Gordon, Y.J., E.G. Romanowski, and A.M. McDermott, A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res, 2005. 30(7): p. 505-15. 56. Garrod, L.P., Alexander Fleming. A dedication on the 50th anniversary of the discovery of penicillin. Br J Exp Pathol, 1979. 60(1): p. 1-2. 57. Wright, G.D. and H. Poinar, Antibiotic resistance is ancient: implications for drug discovery. Trends Microbiol, 2012. 20(4): p. 157-9. 58. Lee, D.G., et al., Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2-20), derived from N-terminus of Helicobacter pylori ribosomal protein L1. Biochim Biophys Acta, 2002. 1598(1-2): p. 185-94. 59. Prado Montes de Oca, E., Antimicrobial peptide elicitors: new hope for the post-antibiotic era. Innate Immun, 2013. 19(3): p. 227-41. 60. Sato, F.S., E. Rompen, and E. Heinen, [Antimicrobial peptide in dentisty. Literature review]. Rev Med Liege, 2009. 64(12): p. 645-50. 61. Wang, G., Post-translational Modifications of Natural Antimicrobial Peptides and Strategies for Peptide Engineering. Curr Biotechnol, 2012. 1(1): p. 72-79. 62. Berkowitz, B.A., C.L. Bevins, and M.A. Zasloff, Magainins: a new family of membrane-active host defense peptides. Biochem Pharmacol, 1990. 39(4): p. 625-9. 63. Terwilliger, T.C. and D. Eisenberg, The structure of melittin. II. Interpretation of the structure. J Biol Chem, 1982. 257(11): p. 6016-22. 64. Terwilliger, T.C. and D. Eisenberg, The structure of melittin. I. Structure determination and partial refinement. J Biol Chem, 1982. 257(11): p. 6010-5. 65. Porcelli, F., et al., NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles. Biochemistry, 2008. 47(20): p. 5565-72. 66. Wu, Z., et al., Synthesis and characterization of human alpha-defensins 4-6. J Pept Res, 2004. 64(3): p. 118-25. 67. Hwang, P.M., et al., Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry, 1998. 37(12): p. 4288-98. 68. Hoover, D.M., O. Chertov, and J. Lubkowski, The structure of human beta-defensin-1: new insights into structural properties of beta-defensins. J Biol Chem, 2001. 276(42): p. 39021-6. 69. Rozek, A., C.L. Friedrich, and R.E. Hancock, Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry, 2000. 39(51): p. 15765-74. 70. Hao, G., et al., Design and analysis of structure-activity relationship of novel antimicrobial peptides derived from the conserved sequence of cecropin. J Pept Sci, 2008. 14(3): p. 290-8. 71. Chen, H.M., et al., Distinguishing between different pathways of bilayer disruption by the related antimicrobial peptides cecropin B, B1 and B3. Eur J Biochem, 2003. 270(5): p. 911-20. 72. Gaspar, D., A.S. Veiga, and M.A. Castanho, From antimicrobial to anticancer peptides. A review. Front Microbiol, 2013. 4: p. 294. 73. Guilhelmelli, F., et al., Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol, 2013. 4: p. 353. 74. Bessin, Y., et al., Antibacterial activity and pore-forming properties of ceratotoxins: a mechanism of action based on the barrel stave model. Biochim Biophys Acta, 2004. 1667(2): p. 148-56. 75. Yoneyama, F., et al., Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrob Agents Chemother, 2009. 53(8): p. 3211-7. 76. Fernandez, D.I., et al., The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys Chem Chem Phys, 2012. 14(45): p. 15739-51. 77. Hoskin, D.W. and A. Ramamoorthy, Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta, 2008. 1778(2): p. 357-75. 78. Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol, 2005. 3(3): p. 238-50. 79. Yang, L., et al., Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J, 2001. 81(3): p. 1475-85. 80. Ehrenstein, G. and H. Lecar, Electrically gated ionic channels in lipid bilayers. Q Rev Biophys, 1977. 10(1): p. 1-34. 81. Bechinger, B., The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta, 1999. 1462(1-2): p. 157-83. 82. Cristian VA Munteanu, P.A., Laurentiu N. Spiridon, Andrei-Jose and A.-L.M. Petrescu, INSIGHTS INTO CECROPIN-MEMBRANE INTERACTION MECHANISM GIVEN BY MOLECULAR DYNAMICS SIMULATIONS ROM. J. BIOCHEM, 2012. 83. Steiner, H., et al., Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981. 292(5820): p. 246-8. 84. Eswar, N., et al., Protein structure modeling with MODELLER. Methods Mol Biol, 2008. 426: p. 145-59. 85. Edsall, J.T., Blood and hemoglobin: the evolution of knowledge of functional adaptation in a biochemical system, part I: The adaptation of chemical structure to function in hemoglobin. J Hist Biol, 1972. 5(2): p. 205-57. 86. Takahashi, T., Peptide signaling molecules: ancient signal and functional diversity. Protein Pept Lett, 2013. 20(6): p. 613-4. 87. Sander, C. and R. Schneider, Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins, 1991. 9(1): p. 56-68. 88. Browne, W.J., et al., A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen's egg-white lysozyme. J Mol Biol, 1969. 42(1): p. 65-86. 89. Greer, J., Comparative model-building of the mammalian serine proteases. J Mol Biol, 1981. 153(4): p. 1027-42. 90. Bordoli, L. and T. Schwede, Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal. Methods Mol Biol, 2012. 857: p. 107-36. 91. Jenny Gu, P.E.B., Structural Bioinformatics, Second Edition Edited. 2009. 92. Cheung, L.W., Use of runs statistics for pattern recognition in genomic DNA sequences. J Comput Biol, 2004. 11(1): p. 107-24. 93. Quiring, R., et al., Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science, 1994. 265(5173): p. 785-9. 94. Healy, M.D., Using BLAST for performing sequence alignment. Curr Protoc Hum Genet, 2007. Chapter 6: p. Unit 6 8. 95. Pearson, W.R., BLAST and FASTA similarity searching for multiple sequence alignment. Methods Mol Biol, 2014. 1079: p. 75-101. 96. Vingron, M. and M.S. Waterman, Sequence alignment and penalty choice. Review of concepts, case studies and implications. J Mol Biol, 1994. 235(1): p. 1-12. 97. Mullan, L., Pairwise sequence alignment--it's all about us! Brief Bioinform, 2006. 7(1): p. 113-5. 98. De Filippo, C., et al., Bioinformatic approaches for functional annotation and pathway inference in metagenomics data. Brief Bioinform, 2012. 13(6): p. 696-710. 99. Mount, D.W., Using BLOSUM in Sequence Alignments. CSH Protoc, 2008. 2008: p. pdb top39. 100. Pazos, F. and M.J. Sternberg, Automated prediction of protein function and detection of functional sites from structure. Proc Natl Acad Sci U S A, 2004. 101(41): p. 14754-9. 101. Aloy, P., et al., Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. J Mol Biol, 2001. 311(2): p. 395-408. 102. Elbegdorj, O., R.B. Westkaemper, and Y. Zhang, A homology modeling study toward the understanding of three-dimensional structure and putative pharmacological profile of the G-protein coupled receptor GPR55. J Mol Graph Model, 2013. 39: p. 50-60. 103. Agarwal, V., et al., PDBalert: automatic, recurrent remote homology tracking and protein structure prediction. BMC Struct Biol, 2008. 8: p. 51. 104. Lei, C., et al., Fully automated protein complex prediction based on topological similarity and community structure. Proteome Sci, 2013. 11(Suppl 1): p. S9. 105. Arnold, K., et al., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 2006. 22(2): p. 195-201. 106. Pieper, U., et al., ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res, 2011. 39(Database issue): p. D465-74. 107. Chivian, D. and D. Baker, Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection. Nucleic Acids Res, 2006. 34(17): p. e112. 108. Hildebrand, A., et al., Fast and accurate automatic structure prediction with HHpred. Proteins, 2009. 77 Suppl 9: p. 128-32. 109. Zhang, Y., I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008. 9: p. 40. 110. Larsson, P., et al., Improved predictions by Pcons.net using multiple templates. Bioinformatics, 2011. 27(3): p. 426-7. 111. Kelley, L.A. and M.J. Sternberg, Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc, 2009. 4(3): p. 363-71. 112. Fernandez-Fuentes, N., et al., M4T: a comparative protein structure modeling server. Nucleic Acids Res, 2007. 35(Web Server issue): p. W363-8. 113. Kallberg, M., et al., RaptorX server: a resource for template-based protein structure modeling. Methods Mol Biol, 2014. 1137: p. 17-27. 114. Lambert, C., et al., ESyPred3D: Prediction of proteins 3D structures. Bioinformatics, 2002. 18(9): p. 1250-6. 115. Sali, A., et al., Evaluation of comparative protein modeling by MODELLER. Proteins, 1995. 23(3): p. 318-26. 116. Bordoli, L., et al., Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc, 2009. 4(1): p. 1-13. 117. Sippl, M.J., Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J Comput Aided Mol Des, 1993. 7(4): p. 473-501. 118. Melo, F. and E. Feytmans, Novel knowledge-based mean force potential at atomic level. J Mol Biol, 1997. 267(1): p. 207-22. 119. Melo, F. and E. Feytmans, Assessing protein structures with a non-local atomic interaction energy. J Mol Biol, 1998. 277(5): p. 1141-52. 120. Shapovalov, M.V., et al., BioAssemblyModeler (BAM): User-Friendly Homology Modeling of Protein Homo- and Heterooligomers. PLoS One, 2014. 9(6): p. e98309. 121. Krivov, G.G., M.V. Shapovalov, and R.L. Dunbrack, Jr., Improved prediction of protein side-chain conformations with SCWRL4. Proteins, 2009. 77(4): p. 778-95. 122. Pettersen, E.F., et al., UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem, 2004. 25(13): p. 1605-12. 123. Eswar, N., et al., Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics, 2006. Chapter 5: p. Unit 5 6. 124. Xu, Q. and R.L. Dunbrack, Jr., The protein common interface database (ProtCID)--a comprehensive database of interactions of homologous proteins in multiple crystal forms. Nucleic Acids Res, 2011. 39(Database issue): p. D761-70. 125. Melo, F., R. Sanchez, and A. Sali, Statistical potentials for fold assessment. Protein Sci, 2002. 11(2): p. 430-48. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57053 | - |
| dc.description.abstract | 對於蛋白質的結構有更深入的了解有助於引導誘變實驗設計,而誘變實驗可 以探討與證實結構與功能之間的相關性,在發展新的疾病療法上有相當程度的幫 助。同源模擬法(homology modeling)是一種電腦模擬方法用於蛋白質結構預測,從 具有同源性蛋白質之現存解出結構(可能由 NMR 或 X-ray diffraction 得到)為模板, 模擬出未知序列的蛋白質結構。該方法立基於觀察到蛋白質三級結構和一級結構 相較之下更為保守,因此兩個蛋白質即使在序列下有較大落差,還是有可能存在 相同的折疊方式。同源模擬方法的主要步驟為選擇模板、排比、主鏈與側鏈預測、 結構最佳化及模型評估。模板的選擇最為重要,與能否模擬出正確的結構有很大 關聯;排比是將目標序列與未知序列調整至兩者對應到最佳的同源區域;模型的 主鏈原子將對應到模板的三維結構,因此不保守的側鏈方向也會被預測出來;最 佳化則是透過力場模擬立體空間的障礙,改善原子間的氫鍵作用力關係;最後對 最終模型評估其正確性,找出模型中出現錯誤的區域;而如非保守型的 loop 二級 結構,則需要和保守型區域獨立開來模擬。本研究之實驗分為四個獨立的流程, 包含 SWISS-MODEL 自動化同源模擬、SWISS-pdbviewer、Modeller、BAM 模擬 流程,嘗試得到抗菌胜肽—天蠶素 cecropin a 的三級結構,其中由 BAM 流程分別 基於 1F0H、1D9J、2LA2 等三個模板建構而得之模型,在 GA341 的評分標準下, 符合蛋白質的正確摺疊。本研究提供不同模擬流程的比較,建構出合理的模型。 | zh_TW |
| dc.description.abstract | Better understanding on protein structure can aid in designing mutagenesis experiments, leading to verification of the structure–function relationships and even facilitating the development of new therapeutics for diseases. Homology modelling is an in silico simulation method for protein structure prediction. Modeling structure of query amino acid sequence is based on a homologous template structure experimentally solved by NMR or X-ray diffraction. The construction of homology modelling is based upon the observation that the tertiary structure of proteins is more conserved than their primary structure. This can be used to explain the fact that even two proteins with distinct primary structures may still share the same folding behavior.
The key steps in homology modelling are template selection, alignment, backbone and side-chain prediction, structure optimization and model evaluation. The crucial step is template choosing. Inappropriate selection would result in incorrect structures. The purpose of alignment step aims at adjusting the alignment to ensure that the sequences fit optimal correspondence between the homologous regions. In the next step, the backbone atoms of model would be translated to fit the tertiary structure of the template, and the non-conservative side-chains can then be predicted. The optimization step serves to remove the steric clashes and hydrogen-bonding relations between atoms. Finally, the correctness of the model is evaluated and the errors in the model are determined. The non-conservative loops and the conservative regions may be modelled separately. In this thesis, attempt was made to model the tertiary structure of a 37-residue antimicrobial peptide cecropin A using four different methods, including SWISS-MODEL, SWISS-pdb viewer, modeler, and BAM. Through BAM process, we obtained three reliable structures which were built upon the templates of 1F0H, 1D9J, and 2LA2 according to the GA341 scoring critera. In this research, the reliable models were built by comparing different modelling processes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:33:46Z (GMT). No. of bitstreams: 1 ntu-103-R01524085-1.pdf: 4858458 bytes, checksum: 541e9f5fae4e917dffe742b1abe4e519 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT II 目錄 IV 圖目錄 VII 表目錄 X 第一章 序論 1 1.1前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1蛋白質結構概述 3 2.1.1蛋白質結構層次 3 2.1.2蛋白質結構的測定方法 7 2.1.3生物資料庫 10 2.1.4蛋白質結構預測 12 2.1.5二級結構預測理論 19 2.1.6二級結構預測工具 20 2.2抗菌胜肽 (ANTIMICROBIAL PEPTIDES) 22 2.2.1抗菌胜肽簡介 22 2.2.2抗菌胜肽類別 23 2.2.3抗菌機制 25 2.2.4 天蠶素(cecropin)之簡介 32 2.3 同源模擬法 (HOMOLOGY MODELING METHOD) 37 2.3.1同源模擬法原理 37 2.3.2同源模擬預測蛋白質的基本步驟 39 2.3.3生物資訊學簡介 42 2.3.4自動化模擬(automated modelling)簡介 48 2.3.5 SWISS-MODEL簡介 51 2.3.6 模型品質評估 54 第三章 實驗儀器與步驟 58 3.1實驗軟體與伺服器 58 3.1.1 BioAssemblyModeler 58 3.1.2 Scrwl4 58 3.1.3 UCSF Chimera 59 3.1.4 Modeller 59 3.2軟體安裝與設定 60 3.3同源模擬步驟 65 3.3.1 Modeller模擬流程 65 3.3.2 BAM模擬流程 66 第四章 結果與討論 79 4.1 QMEAN Z-SCORE分析 79 4.1.1 SWISS-MODEL結果分析 80 4.1.2 SWISS-pdbviewer結果分析 85 4.2 GA341分析 90 4.2.1 Modeller結果分析 92 4.2.2 SWISS-MODEL結果分析 95 4.2.3 BAM結果分析 96 4.3 結果討論 99 第五章 未來展望 103 附錄 104 附錄A SWISS-MODEL操作流程 104 附錄B KOBAMIN 107 附錄C 圖檔對照表 109 參考文獻 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | SWISS-MODEL | zh_TW |
| dc.subject | 同源模擬法 | zh_TW |
| dc.subject | cecropin a | zh_TW |
| dc.subject | 蛋白質結構預測 | zh_TW |
| dc.subject | 抗菌胜? | zh_TW |
| dc.subject | SWISS-pdbviewer | zh_TW |
| dc.subject | BAM | zh_TW |
| dc.subject | Modeller | zh_TW |
| dc.subject | antimicrobial peptides | en |
| dc.subject | SWISS-MODEL | en |
| dc.subject | Modeller | en |
| dc.subject | BAM | en |
| dc.subject | SWISS-pdbviewer | en |
| dc.subject | cecropin A | en |
| dc.subject | prediction of protein structure | en |
| dc.subject | homology modelling | en |
| dc.title | 以同源模擬法預測天蠶素結構 | zh_TW |
| dc.title | Cecropin A Structure Prediction Using Homology Modelling | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳美娥,吳宛儒,林達顯,侯劭毅 | |
| dc.subject.keyword | 同源模擬法,蛋白質結構預測,抗菌胜?,SWISS-MODEL,Modeller,BAM,SWISS-pdbviewer,cecropin a, | zh_TW |
| dc.subject.keyword | homology modelling,prediction of protein structure,antimicrobial peptides,SWISS-MODEL,Modeller,BAM,SWISS-pdbviewer,cecropin A, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
