Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57038
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳
dc.contributor.authorChien-Ting Chenen
dc.contributor.author陳建廷zh_TW
dc.date.accessioned2021-06-16T06:33:27Z-
dc.date.available2015-08-08
dc.date.copyright2014-08-08
dc.date.issued2014
dc.date.submitted2014-08-04
dc.identifier.citationReference1
1. http://en.wikipedia.org/wiki/Industrial_Revolution
2. http://en.wikipedia.org/wiki/Effects_of_global_warming
3. http://environment.nationalgeographic.com/environment/global-warming/gw-effects/
4. http://www.nytimes.com/2014/04/01/science/earth/climate.html?_r=0
5. Green, M. A. Solar cells: Operating Principles, Technology and System Applications; The University of New SouthWales: Sydney, Australia, 1998.
6. Markvart, T.; Castaner, L. Solar cells : materials, manufacture and operation; Elsevier Advanced Technology: Oxford, 2005
7. Nelson, J. The Physics of Solar Cells; Imperial College Press: London, 2003.
8. Randall, J. F. Designing indoor solar products: photovoltaic technologies for AES; J. Wiley & Sons, 2005
9. Green, M. A. Third generation photovoltaics: advanced solar energy conversion; Berlin; New York: Springer, 2003.
10. Serap Gu‥nes, Helmut Neugebauer, and Niyazi Serdar Sariciftci, Chem. Rev., 107, 1324−1338 (2007).
11. H. Hoppea , and N. S. Sariciftci, J. Mater. Res., 19, No. 7, Jul (2004).
12. http://www.nature.com/news/365-days-nature-s-10-1.14367
13. T. C. Sum , and N. Mathews, Energy Environ. Sci., Advance Article (2014).
14. Gary Hodes, Perovskite-Based Solar Cells, Science 342, 317 (2013)
Reference2
1. http://people.seas.harvard.edu/~jones/es154/lectures/lecture_2/pn_junction/pn_junction.html
2. T. Markvart, L. Castaner, Solar cells : materials, manufacture and operation, Oxford, 2005.
3. http://www.tf.uni-kiel.de/matwis/amat/semitech_en
4. Nelson, J. The Physics of Solar Cells; Imperial College Press: London, 2003.
5. Wurfel, P. Physics of Solar Cells; Wiley-VCH Verlag GmbH & Co. HGaA: Weinheim, Germany, 2003.
6. Green, M. A. Solar cells: Operating Principles, Technology and System Applications; The University of New SouthWales: Sydney, Australia, 1998.
7. Markvart, T.; Castaner, L. Solar cells : materials, manufacture and operation; Elsevier Advanced Technology: Oxford, 2005.
8. G. Li, R. Zhu , and Yang Yang, Nat.Photonics ,6 ,153-159 (2012).
9. R. Liu , Materials, 7, 2747-2771 (2014).
10. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
Reference3
1. Schroder, D. K., Semiconductor Material and Device Characterization, Wiley, 1998.
2. http://www.hk-phy.org/atomic_world/tem/tem02_e.html
3. Beiser, A. Concepts of Modern Physics, 6th Ed, 2003.
4. G.Juska, K.Arlauskas, M.Viliunas, Physical Review Letters 84 , 21 (2000)
5. http://en.wikipedia.org/wiki/Kelvin_probe_force_microscope
6. http://en.wikipedia.org/wiki/Fourier_transform_infrared_spectroscopy
References4
1. F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, J. Mater. Chem. 19 5442–5451 (2009).
2. F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, Sol. Energy Mater. Sol. Cells 93 422–441 (2009).
3. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295 2425–2427 (2002).
4. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 151 617–1622 (2005).
5. H. Y. Chen, J. Hou, S. Zang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Nature Photon. 3 649–653 (2009).
6. J. H. Hou, H. Y. Chen, S. Q. Zhang, R. I. Chen, Y. Yang, Y. Wu, G. Li, J. Am. Chem. Soc. 131 15586–15587 (2009).
7. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coats, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, Nat. Photonics 3 297–303 (2009).
8. Y. Y. Liang, Z. Xu, J. B. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. P. Yu, Adv. Mater. 22 E135 – E138 (2010).
9. V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom, Adv. Func. Mater. 16 699–708 (2006) .
10. G. Li, Shrotriya, J. S. Huang, Y. Yao, T. moriarty, K. Emery, Y. Yang, Nat. Mater. 4 864–868 (2005).
11. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, D. S. Ginley, Appl. Phys. Lett. 89 143517-1–143517-3 (2006).
12. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, D. L. Kwong, Appl. Phys. Lett. 93 221107-1–221107-3 (2009).
13. F. C. Krebs, T. D. Nielsen, J. Fyenbo, M. Wadstrom, and M. S. Pedersen, Energy Environ. Sci. 3 512–525 (2010).
14. F. C. Krebs, T. Tromholt, and M. Jorgensen, Nanoscale 2 873–886 (2010).
15. F. C. Krebs, Sol. Energy Mater. Sol. Cells 93 465–475 (2009).
16. F. C. Krebs, Org. Electron. 10 76 –768 (2009).
17. P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. Nelson, J. Phys. Chem. B 110 7635–7639 (2006).
18. D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, and D. S. Ginley, Thin Solid Films 496 26–29 (2006).
19. J. S. Huang, C. Y. Chou, M. Y. Liu, K. H. Tsai, W. H. Lin, and C. F. Lin, Org. Electron. 10 1060–1065 (2009).
20. K. Takanezawa, K. Hirota, Q. Wei, K. Tajima, and K. Hashimoto, J. Phys. Chem. C 111 7218–7223 (2007).
21. A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O’Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, J. Mater. Chem. 16 2088–2096 (2006).
22. C. T. Chen, F. C. Hsu, S. W. Kuan, and Y. F. Chen, Sol. Energy Mater. Sol. Cells. 95 740 – 744 (2011).
23. N. Sekine, C. H. Chou, W. L. Kwan, and Y. Yang, Org. Electron.10 1473–1477 (2009).
24. Y. Y. Lin, Y. Y. Lee, L. Chang, J. J. Wu, and C. C. Chen, Appl. Phys. Lett. 94 063308-1–063308-3 (2009).
25. R. Thitima, C. Patcharee, S. Takashi, and Y. Susumu, Solid State Electron. 53 176–180 (2009) .
26. T. C. Monson, M. T. Lloyd, D. C. Olson, Y. J. Lee, and J. W. P. Hsu, Adv. Mater. 20 4755 – 4759 (2008).
27. X. Bulliard, S. G. Ihn, S. Yun, Y. Kim, D. Choi, J. Y. Choi, M. Kim, M. Sim, J. H. Park, W. Choi, and K. Cho, Adv. Eng. Mater. 20 438 –4387 (2010).
28. Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D., Adv. Mater. 11 250–253 (1999).
29. M. Jeffries-El, G. Sauve, and R. D. McCullough, Macromolecules, 38 10346–10352 (2005) .
30. M. Ohyama, H. Kozuka, T. Yoko, Thin Solid Films, 306 78–85 (1997).
31. L. Vayssieres, Adv. Mater, 15 464–466 (2003).
32. Y. D. Park, D. H. Kim, Y. Jang, J. H. Cho, M. Hwang, H. S. Lee, J. A. Lim, and K. Cho, Org. Electron. 7 514–520 (2006).
33. X. M. Jiang, C. O. Au, R. Osterbacka, and Z. V. Vardeny, Syn. Met. 16 203–206 (2001).
34. V. Palermo, M. Palma, and P. Samori, Adv. Mater. 18 145–164 (2006).
35. M. C. Wu, Y. J. Wu, W. C. Yen, H. H. Lo, C. F. Lin and W. F. Su, Nanoscale 2 1448–1454 (2010).
36. Y. M. Sung, F. C. Hsu, D. Y. Wang, I. S. Wang, C. C. Chen, H. C. Liao, W. F. Su, and Y. F. Chen, J. Mater. Chem. 21 17462 – 17461 (2011).
37. K. Maturova, M. Kemerink, M. M. Wienk, D. S. H. Charrier, R. A. J. Janssen, Adv. Funct. Mater. 19 1379–1386 (2009).
38. T. W. Zeng, F. C. Hsu, Y. C. Tu, T. H. Lin, and W. F.Su, Chem. Phys. Lett. 479 105–108 (2009).
39. G. Juška, K. Arlauskas, M. Viliūnas, and J. Kočka, Phys. Rev. Lett. 22 4946–4949 (2000).
40. A. J. Mozer, N. S. Sarciftci, A. Pivrikas, R. Osterbacka, G. Juška, L. Brassat, and H. Bassler, Phys. Rev. B 71 035214-1–035214-9 (2005).
41. A. J. Mozer, N. S. Sariciftci, L. Lutsen, D. Vanderzande, R. Osterbacka, M. Westerling, and G. Juška, Appl. Phys. Lett. 86 112104-1–112104-3 (2005).
42. Y. M. Sung, F. C. Hsu, C. T. Chen, W. F. Su and Y. F. Chen, Sol. Eng. Mater. Sol. Cells 98 103 – 109 (2012) .
43. G. Juška, N. Nekrasas, K. Arlauskas, J. Stuchlik, A. Fejfar, and J. Kočka, J. Non-Cryst. Solids, 338-340 353–356 (2004).
44. A. Baumann, J. Lormann, C. Deibel, and V. Dyakonov, Appl. Phys. Lett. 93 252104-1–252104-3 (2008).
45. S. Wu, J. Li, Q. Tai, and F. Yan, J. Phys. Chem. C 114 21873–21877 (2010) .
46. V. D. Mihailetchi, H. Xie, B. De Boer, L. J. A. Koster, and P. W. M. Blom, Adv. Func. Mater. 16 699–708 (2006) .
47. J. Huang, G. Li, and Y. Yang, Appl. Phys. Lett. 87 112105-1–112105-3 (2005).
48. Y. Y. Lin, T. H. Chu, S. S. Li, C. H. Chuang, C. H. Chang, W. F. Su, C. P. Chang, M. W. Chu, and C. W. Chen, J. Am. Chem. Soc. 131 3644 – 3649 (2009).
49. Y. C. Huang, J. H. Hsu, Y. C. Liao, W. C. Yen, S. S. Li, S. T. Lin, C. W. Chen and W. F. Su , J. Mater. Chem. 21 (12) 4450–4456 (2011).
References5
1. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 295 (2002) 2425–2427.
2. F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009)
3. F. C. Krebs, S. A. Gevorgyan, J. Alstrup, Journal of Materials Chemistry 19 (2009) 5442–5451.
4. F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, Solar Energy Materials and Solar Cells 93 (2009) 422–441.
5. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency tables (version 41), Progress in Photovoltaics: research and Applications 20 (2012) 12 – 20.
6. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nature Photonics 6, (2012) 591 – 595.
7. J. Y. Chen, F.C. Hsu, Y.M. Sung, Y. F. Chen, Journal of Materials Chemistry 22 (2012) 15726–15731.
8. M. Reyes-Reyes, K. Kim, D. L. Carroll, Applied Physics Letter 87 (2005) 083506-1 – 083506-3.
9. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature Materials 4 (2005) 964 – 868.
10. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Advanced Functional Materials 15 (2005) 1617 – 1622.
11. C. J. Ko, Y. K. Lin, F. C. Chen, Advanced Materials 19 (2007) 3520 – 3523.
12. C. C. Lin, Y. Y. Lin, C. C. Yu, C. L. Huang, S. H. Lee, C. H. Du, J. J. Lee. H. L. Chen, C. W. Chen, Energy and Environmental Science 4 (2011) 2134 – 2139.
13. Y. M. Shen, C. S. Chen, P. C. Yang, S. Y. Ma, C. F. Lin, Solar Energy Materials and Solar Cells 99 (2012) 263–267.
14. F. Padinger, R. S. Rittberger, N. S. Sariciftci, Advanced Functional Materials 13 (2003) 85 – 88.
15. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Advanced Functional Materials 17 (2007) 1636 – 1644.
16. Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Advanced Functional Materials 18 (2008) 1783 – 1789.
17. T. Burkert, O. Eriksson, S. I. Simak, A. V. Ruban, B. Sanyal, L. NordstrLm, J. M. Wills, Physical Review B 71 (2005) 134411 – 134411-8 ; C. Antoniak, J. Lindner, M. Spasova, D. Sudfeld, M. Acet, M. Farle, K. Fauth, U. Wiedwald, H.-G. Boven, P. Ziemann, F. Wilhelm, A. Rogalev, S. Sun, Physical Review Letter 97 (2006) 117201-1 – 117201-4.
18. M. Lu, H. Gong, T. Song, J. P. Wang, H. W. Zhang, T. J. Zhou, Journal of Magnetism and Magnetic Materials 303 (2006) 323–328.
19. M. Chen, J. Kim, J. P. Liu, H. Fan, S. Sun, Journal of American Chemical Society 128 (2006) 7132 – 7133.
20. C. Wang, Y. Hou, J. Kim, and S. Sun, Angewandte Chemie International Edition 46 (2007) 6333 – 6335.
21. K. Elkins, D. Li, N. Poudyal, V. Nandwana, Z, O. Jin, K. H. Chen, J. P. Liu, Journal of Physics D 38 (2005) 2306 – 2309.
22. A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, E. E. Fullerton, Journal of Physics D: Applied Physics 35 (2002) R157-R167.
23. H. Zeng, J. Li, Z. L. Wang, J. P. Liu, S. Sun, Nature 420 (2002) 395 – 398.
24. M. Ohyama, H. Kozuka, T. Yoko, Thin Solid Films, 306 (1997) 78–85.
25. L. Vayssieres, Advanced Materials 15 (2003) 464 – 466.
26. D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, D. S. Ginley, Thin Solid Films 496 (2006) 26–29.
27. Y. M. Sung, F. C. Hsu, D. Y. Wang, I. S. Wang, C. C. Chen, H. C. Liao, W. F. Su, Y. F. Chen, Journal of Materials Chemistry 21 (2011)17462–17461.
28. C. J. Barbec, N. S. Sariciftci, J. C. Hummelen, Advanced Functional Materials 11 (2001) 15 – 26.
29. M. Campoy-Quiles, P. G. Etchegion, D. D. C. Bradley, Physical Review B 72 (2005) 045209-1 – 045209-16.
30. U. Zhokhavets, G. Gobsch, H. Hoppe, and N. S. Sariciftci, Thin Solid Films, 451 (2004) 69 – 73.
31. G. Dennler, M. C. Scharber , and C. J. Brabec , Adv. Mater. 21, 1323(2009).
32. L. M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1434 (2009).
33. S. Y. Chuang, H. L. Chen, W. H. Lee, Y. C. Huang, W. F. Su, W. M. Jen, C. W. Chen, Journal of Materials Chemistry 19 (2009) 5554–55
REFERENCES6
1. S. Ravipati, J. Shieh, F. H. Ko, C. C. Yu, and H. L. Chen, Adv. Mater. 25, 1724 (2013).
2. Y. Huang, N. Sahraei, P. Widenborg, I. M. Peters, G. K. Dalapati, A. Iskander, and A. G. Aberle, Sol. Energy Mater. Sol. Cells 122, 146 (2014).
3. H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, Energy Environ. Sci. 4, 2863 (2011).
4. L. Hu, and G. Chen, Nano Lett. 7, 3249 (2007).
5. S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. G. Rivas, ACS Nano 5, 2316 (2011).
6. J.-Y. Jung, K. Zhou, H.-D. Um, Z. Guo, S.-W. Jee, K.-T. Park, and J.-H. Lee, Opt. Lett. 36, 2677 (2011).
7. C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, J. Non-Cryst. Solids 216, 77 (1997).
8. K. Ali, S. A. Khan, and M. Z. M. Jafri, Sol. Energy 101, 1 (2014).
9. R. Hezel, and R. Schorner, J. Appl. Phys. 52, 3076 (1981).
10. P. Singh, S. M. Shivaprasad, M. Lal, and M. Husain, Solar Cell. Sol. Energy Mater. Sol. Cells 93, 19 (2009).
11. S. E. Lee, S. W. Choi, and J. Yi, Thin Solid Films 376, 208 (2000).
12. V. M. Aroutiounian, K. R. Maroutyan, A. L. Zatikyan, and K. J. Touryan, Thin Solid Films 403, 517 (2002).
13. K.P. Bhandari, P.J. Roland, H. Mahabaduge, N. O. Haugen, C. R. Grice, S. Jeong, T. Dykstra, J. Gao, and R. J. Ellingson, Sol. Energy Mater. Sol. Cells 113, 476 (2013).
14. C. Y. Huang, D. Y. Wang, C. H. Wang, Y. T. Chen, Y. T. Wang, Y. T. Jiang, Y. J. Yang, C. C. Chen, and Y. F. Chen, ACS Nano 4, 5849 (2010).
15. J. Y. Jung, K. Zhou, J. H. Bang, and J. H. Lee, J. Phys. Chem. C 116, 12409 (2012).
16. D. Wan, H. L. Chen, T. C. Tseng, C. Y. Fang, Y. S. Lai and F. Y. Yeh, Adv. Func. Mater. 20, 3064 (2010).
17. W.H.C.F. Kooistra, R. Gersonde, L.K.Medlin, and D.G.Mann, Evolution of Primary Producers in the Sea, Elsevier Academic Press, Burlington, 207 (2007).
18. E.V. Armbrust, Nature 459, 185 (2009).
19. H. Chang, H. M. Wu, T. L. Chen, K. D. Huang, C. S. Jwo, and Y. J. Lo, J. Alloys and Compounds 495, 606 (2010).
20. S. Hao, J. Wu, Y. Huang, and J. Lin, Sol. Eng. 80, 209 (2006).
21. K. Wongcharee, V. Meeyoo, and S. Chavadej, Sol. Eng. Mater. Sol. Cells 91, 566 (2007).
22. Guillard and Lorenzen, Journal of Phycology 8, 10–14 (1972).
23. S. Akimoto, A. Teshigahara, M. Yokono, M. Mimuro, R. Nagao, and T. Tomo, Biochimica et Biophysica Acta (2014), http:/dx.doi.org/10.1016/j.bbabio.2014.02.002
24. R. Hezel R., and R. Schorner, J. Appl. Phys. 52, 3076 (1981).
25. P. Singh, S. M. Shivaprasad, M. Lal, and M. Husain, Solar Cell. Sol. Energy Mater. Sol. Cells 93, 19 (2009).
REFERENCES7
1. A.Kolima, K. Techima, Y. Shirai, and T. Miyasaka, J.Am.Chem.Soc. 131, 6050-6051 (2009).
2. J. H. Im, C.R. Lee, J. W .Lee, S. W. Park, and N. G. Park, Naoscale 3, 4088-4093 (2011).
3. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M.Gratzel, and N. G. Park, Sci Rep-Uk 2 (2012).
4. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643-647 (2012).
5. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel and, S. I. Seok, Nat. Photonics, 7, 487–492 (2013).
6. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and, M. Gratzel, Nature, 499, 316–319 (2013).
7. D. Bi, S.-J. Moon, L. Haggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Gratzel and, A. Hagfeldt, RSC Adv., 3, 18762–18766 (2013).
8. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and, S. I. Seok, Nano Lett., 13, 1764–1769 (2013).
9. M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix and, N. Mathews, Chem. Commun. , 49, 11089–11091 (2013).
10. D. Bi, G. Boschloo, S. Schwarzmuller, L. Yang, E. M. J. Johansson and, A. Hagfeldt, Nanoscale, 5, 11686–11691 (2013).
11. J. Burschka, N. Pellet, S. J. Moon, R. H. Baker, Peng Kao, M. K. Nazeeruddin and, M. Gratzel, Nature 499, 316-319 (2013).
12. Harry A. Atwater, and Albert Polman , Nature materials 9, 205-213 (2010).
13. J.L. Wu, F.C Chen, Y.S. Hsiao, F.C. Chien, P. Chen, C.. Kuo, M. H. Huang, and C.S. Hsu, ACS Nano 5 , 959–967 (2011).
14. B. Niesen, B.P. Rand, Pol Van Dorpe, D. Cheyns, L. Tong, A. Dmitriev, and P. Heremans, Adv. Energy Mater 3, 145-150 (2013).
15. W. J. Yoon, K. Y. Jung, J. Liu, T. Duraisamy, R. Revur , F. Teixeira, S. Sengupta ,and P. R. Berger , Sol. Eng. Mater. Sol. Cells 94, 128-132 (2010).
16. E. Formo, E. Lee, D. Campbell, Y. Xi, Nano Lett. , 2, 668-672 (2008).
17. C. B. Murray, S. Sun, H. Doyle, and T. Betley, Mater. Res. Soc. Bull. , 26, 985-991 (2001).
18. M. Rycenga, J. M. McLellan, and Y. Xia, Adv. Mater. , 20, 2416–2420 (2008).
19. J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, Org. Electron.,10, 416–420 (2009).
20. S. S. Kim, S. I. Na, J. Jo, D. Y. Ki ,and Y. C. Nah ,Appl. Phys. Lett., 93,073307 (2008).
21. D.H. Wang, D.Y. Kim, K.W. Choi, J.H. Seo, S.H. Im, J.H. Park, O.O. Park, and A.J. Heeger, Angew. Chem., 123 , 5633–5637 (2011).
22. X.C. Jiang, A. Brioude, M.P. Pileni, Colloid Surf. A , 277 , 201–206 (2006).
23. E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H Chu, S Pushpanketh.;, J. F. McDonald, and M. A. El-Sayed ,Cancer Lett., 269, 57−66 (2008).
24. T.R. Kuo, D.Y. Wang, Y.C. Chiu, Y.C. Yeh, W.T. Chen, C.H. Chen, C.W. Chen, H.C. Chang, C.C. Hu, and C.C. Chen, Analytica Chimica Acta 809,97– 103 (2014).
25. A.V. Alekseeva, V.A. Bogatyrev, B.N. Khlebtsov, A.G. Mel’nikov, L.A. Dykman, N.G. Khlebtsov, Colloid J.,68 ,661–678. (2006)
26. M.G. Kang, T. Xu, H.J. Park, X. Luo, L.J. Guo, Adv. Mater., 22,4378–4383 (2010).
27. W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, Nano Lett.,13, 4505−4510 (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57038-
dc.description.abstract中文摘要
近年來,隨著石化燃料的缺少,無論是科學界和工業界都傾注了自己的努力在發展可再生能源。在所有的可再生能源中,太陽能電池已被廣泛研究的研究。在本篇論文中,我們報導了有關於有機-無機太陽能電池、矽基板太陽能電池和鈣鈦礦型太陽能電池的改進。利用有機-無機介面之間的修飾、使用磁性奈米線作為添加劑,以提高主動層內吸光高分子的排列,進而提高了元件的效率。另一方面,利用天然的葉綠素A,來提高矽基板太陽能電池的效率。最後,經由一系列改變金的奈米結構以及濃度添加到電子傳輸層,進而提升鈣鈦礦太陽能電池的效率。本論文包含了四大主題,其摘要如下:
1. 使用不含金屬的新穎合成共軛聚合物修飾有機/無機介面
有機/金屬氧化物混摻太陽能電池的研究中,有機/無機介面之間的的性質,是個關鍵的研究主題。本章節中,我們合成了一種共軛聚合物(O3HT-(Br)NH2),將此種聚合物當作表面修飾劑,用於有機/氧化鋅奈米柱太陽能電池當中。此聚合物與主動層當中的吸光有機高分子相比長度大約只有高分子的十二分之一。利用此種聚合物修飾氧化鋅奈米柱,可發現在修飾過後,元件的電子遷移率有顯著的提升。因為此種共軛聚合物本身的特性,修飾過後,元件中載子傳輸特性進而可以獲得明顯的改進。最後在元件量測中,發現到元件的光電流可以提升將近35%左右。
2. 增進吸光有機高分子的排列:添加磁性奈米材料以及外加磁場
本章節中,在反式有機太陽能電池中,添加些許的鐵鉑合金,再利用外加磁場以增進有機高分子的排列。在吸光主動層慢乾的過程中,因為鐵鉑合金本身帶有磁性,在外加磁場下,可增加有機高分子的排列。利用光學量測可發現不論是垂直基板(out-of-plane)的方向,或是平行基板(in-plane)的方向,反射係數都有所下降,特別是在垂直基板(out-of-plane)的方向。有如此特異的光學異向性,再利用高功率X光繞射分析儀,可證明利用外加磁場以及添加磁性奈米柱於反式有機太陽能電池中,會增加有機高分子的排列,進而增進元件的效率。最後在元件量測中,可發現元件的效率提升將近57%左右。此種新穎的方式,將可廣泛運用在有機混合光電元件系統中。此外,在製作元件的過程中,因其更加簡單、低溫、少耗能的特性;也為高效率可彎曲有機太陽能電池開創了一個新的製程方式。
3. 利用矽藻萃取物增進矽基板太陽能電池的集光性
本實驗中,我們利用一個簡單的方式,利用矽藻萃取物當作矽基板太陽能電池的抗反射層。實驗過程中可以發現,在波長350奈米到1100奈米,矽藻萃取物會提高反射系數7%左右。此外,也發現到矽藻萃取物會吸收短波段光子的能量,進而轉換放出可見光光子。此種效應(downconversion)以及抗反射的效果,將會提高矽基板光電流的大小,以及提升太陽能電池的效率。如此有效、環保的方法將可以大幅運用在大面積矽基板太陽能電池製成方式中。
4. 藉由表面電漿的效應以增進鈣鈦礦太陽能電池效率
在本章節中,我們提供了一個新穎的方式來增進鈣鈦礦太陽能電池的效率。在電子傳輸層中,混入少量的奈米金;再藉由改變奈米金的形貌,來調控表面電將的位置,進而來增進元件的效率。在製作元件整個過程中,電子傳輸層、只要吸光層,溫度都是處於在低溫狀態之下。在最後量測元件效率時,可發現添加奈米金的元件,整體效率比標準元件可以提高將近10%左右。如此簡單、低溫製作元件的方法,將更加適合應用到可彎曲性鈣鈦礦太陽能電池上。
zh_TW
dc.description.abstractAbstract
Recently, with the shortage of nature fossil, both scientific and industrial communities have devoted their efforts in developing renewable energy. Among the renewable resources, solar cells have been intensively studied nowadays. In this thesis, we report the improved efficiency of organic-inorganic hybrid solar cells, Si solar cells, and halide perovskite solar cells. With the organic-inorganic interface modification and using magnetic NWs as additive, we are able to improve organic matter arrangement, and thus enhance the efficiency of the devices. On the other hand, we use eco-friendly chlorophyll A to improve the efficiency of silicon based solar cells. Finally, a series of organic-inorganic halide perovskite solar cells with addition of spherical, rod Au nanostructures to the electron-transporting compact layer have been investigated. The highlight of our scientific achievement is briefly described as follows.
1. Effects of metal-free conjugated oligomer as a surface modifier in hybrid polymer/ZnO solar cells
The interface property has been one of the critical issues in developing hybrid polymer/metal oxide solar cells. We synthesize a conjugated oligomer, an amine-and bromine-terminated 3-hexyl thiophene (O3HT-(Br)NH2), to modify the ZnO-nanorod (ZnO-NR) surface in hybrid polymer/ZnO-NR photovoltaic cells. This oligomer is of the same repeat unit structure as and ~1/12 the contour length of the light-harvesting polymer. In addition to passivate the NR surface, the presence of this conjugated oligomer enhances the electron mobility, and drives larger hole density toward the anodic surface for collection. The improved charge transport property of the hybrid is presumably a result of modulating the nano morphology of the bi-carrier transport network induced by the conjugated oligomer. As a result, there is a large enhancement in photocurrent and photovoltage leading to an improved device performance of ~ 35%.
2. Magnetic-Field Annealing of Inverted Polymer:fullerene Hybrid Solar Cells with FePt Nanowires as Additive
We demonstrate a novel annealing method to improve the polymer chain ordering of poly(3-hexythiophene):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) blend triggered by a small amount of FePt nanowires (NWs). By applying a magnetic field (B-field) perpendicular to the substrate during the solvent drying process, the resulting P3HT:PCBM:FePt NWs film exhibits a relatively lower reflectance intensity in both in-plane and out-of-plane directions and becomes highly optical anisotropy with a preferential out-of-plane orientation. The improved polymer chain ordering revealed by the optical anisotropic measurements leads to more than 57% increment in the power conversion efficiency (PCE) of the devices. The method of magnetic-field assisted annealing is simple and can be applied to a wide variety of polymer blend systems. Additionally, it can be easily integrated into low-temperature and cost-effective fabrication processes, providing a new route for advancing flexible polymer solar cell development.
3. Improved light harvesting of surface textured Si solar cells using diatom extract
We demonstrate an effective approach to improve the light harvesting of silicon solar cells by incorporating the diatom extract as an antireflection coating. The diatom extract layer can suppress the overall light reflection up to 7% over spectrum regions of 350 – 1100 nm. Additionally, it also shows a strong photon downconversion effect within visible light regime. With both optical characteristics, the short circuit current is largely enhanced and hence the cell efficiency. The presented approach is simple, doable, suitable for large area application, and more importantly, it is eco-friendly.
4. Power conversion efficiency enhancement of organic-inorganic halide perovskite solar cells by addition of Au nanospheres and nanorods
We demonstrate a novel method to improve the organic-inorganic halide perovskite solar cells blend triggered by different morphologies amount of Au nanostructures. Addition of Au nanostructures with various morphologies into electron-transporting-layer of organic-inorganic halide perovskite solar cell increase the PCE as compared to the cell constructed without the addition of Au nanostructures. The increment is around 10% in the power conversion efficiency (PCE) of the devices. The method of fabricating organic-inorganic halide perovskite solar cells by sequential deposition and process of ZnO compact layer with low temperature is simple. Additionally, it can be easily integrated into low-temperature and cost-effective fabrication processes, providing a new route for advancing flexible organic-inorganic halide perovskite solar cell development.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:33:27Z (GMT). No. of bitstreams: 1
ntu-103-D99222017-1.pdf: 2608379 bytes, checksum: 0954affe13498a671d466d8bd34cbb5b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContents
Chapter 1 Introduction…………………………………………………………………………1
1.1 Energy Economy & Alternative Energy………………………………………
……1
1.2 Solar cells………………………………………………………………………………2
1.3 Si-based solar cell…………………………………………………….……………………..3
1.4 Organic based solar cell…………………………………………………………………..3
1.5 Perovskite based solar cell………………………………………………………………..4
1.6 Overview of this dissertation………………………………………………………………..5
Reference………………………………………………………...……………………...………7
Chapter 2 Theoretical background …………………………………………………….………...…10
2.1 Solar spectrum.................................……………………… ……...……...…….……….…10
2.2 Basic principle of solar cells…...……………………….…………..….……...……...…...12
2.3 Equivalent Circuit of Solar Cell……………..……………………………………...……..13
2.4 Basic Principle of Organic Solar Cells………...…………...……..……………………….14
2.5 Localized surface plasmon resonance on metal nanoparticles.......……...……...……...16
Reference…………………………………………………………………….....……...………18
Chapter 3 Experimental Setup……………………..…………...……...……...……...……...…..…19
3. 1 Transmission Electron Microscopy...……...……...……...……...……...……...……...…19
3. 2 Scanning Electron Microscopy……...…………………...……...……..........……....……20
3. 3 X-Ray Powder Diffractometer…………...…...……...……...……...……...……………..22
3. 4 Solar simulator…………………...……...……...……...……...……...……...……...……24
3. 5 Incident Photon-to-Electron Conversion Efficiency………………………………...……24
3. 6 Carrier extraction by linearly increasing voltage…………………………………………25
3. 7 Kelvin Probe Force Microscopy…………………………………………………………26
3. 8 Fourier Transform Infrared Spectroscopy……….……………………………………….28
Reference………………………………………………………………...…………….....……29
Chapter 4 Effect of metal-free conjugated olgomer as a surface modifier in hybrid polymer/ZnO solar cells….……...……...……........................................................................................30
4. 1 Introduction……………………...……...……...……...……...……...……...……...……30
4. 2 Experiment…………………...……...……...……...……...……...……...……...……….32
4. 3 Results and discussion……………...……...……...……...……...……...………………..35
4. 4 Summary………………………...……...……...……...……...……...……...……...……41
Reference……………………………………………………………………...……….....……46
Chapter 5 Magnetic-field annealing of inverted polymer:fullerene hybrid solar cells with FePt nanowires as additive………………....….……...……...……...……...……...……........50
5. 1 Introduction………………………...……...……...……...……...……...……...……..…50
5. 2 Experiment………………………...……...……...……...……...……...……...……...…52
5. 3 Results and discussion…………………………...……...……...……...……...……........54
5. 4 Summary…………………………...……...……...……...……...……...……...……......58
Reference………………………………………………………………...…………….....……63
Chapter 6 Improved light harvesting of surface textured solar cells using diatom extract….………...……...……...……...……...……...……...……...……...……...…….66
6. 1 Introduction………………...……...……...……...……...……...……...……..…………66
6. 2 Experiment…………...……...……...……...……...……...……...……...………………68
6. 3 Results and discussion………………...…….…...……...……...……...……...…………70
6. 4 Summary…………………...……...……......……...……...……...……...……...………74
Reference…………………………………………...…..…………………………….....……..79
Chapter 7 Power conversion efficiency enhancement of organic-inorganic halide perovskite solar cells by the addition of Au nanospheres and nanorods…………………....……………..........................................................………..82
7. 1 Introduction.......................................................................................................................82
7. 2 Experiment........................................................................................................................85
7. 3 Results and discussion.......................................................................................................88
7. 4 Summary............................................................................................................................91
Reference………………………………………...…..…………………………….....………..96
Chapter 8 Conclusion……………………………………………………………………………….99
dc.language.isoen
dc.title高效率新穎太陽能電池研究zh_TW
dc.titleHigh Power Conversion Efficiency Based on Solar Cell with Novel Structuresen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee許芳琪,林泰源,董成淵,陳家俊,沈志霖
dc.subject.keyword混摻太陽能電池,氧化鋅,表面修飾,鐵鉑合金,矽基板太陽能電池,鈣鈦礦太陽能電池,zh_TW
dc.subject.keywordhybrid solar cell,ZnO,interface modification,FePt,Si based solar cell,Perovskite solar cell,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2014-08-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
2.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved