Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57037
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅昭銘
dc.contributor.authorChang-Yu Linen
dc.contributor.author林璋佑zh_TW
dc.date.accessioned2021-06-16T06:33:26Z-
dc.date.available2019-08-08
dc.date.copyright2014-08-08
dc.date.issued2014
dc.date.submitted2014-08-04
dc.identifier.citation[1] S. Ishrat, K. Maaz, K. J. Lee, M.-H. Jung, and G.-H. Kim, Journal of Alloys and Compounds 541, 483 (2012).
[2] S. Iijima, Nature 354, 56 (1991).
[3] T. Thurn-Albrecht, J. Schotter, C. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell, Science 290, 2126 (2000).
[4] T. Nautiyal, T. H. Rho, and K. S. Kim, Physical Review B 69 (2004).
[5] S. J. Hurst, E. K. Payne, L. D. Qin, and C. A. Mirkin, Angewandte Chemie-International Edition 45, 2672 (2006).
[6] S. Kato, H. Shinagawa, H. Okada, G. Kido, and K. Mitsuhashi, Science and Technology of Advanced Materials 6, 341 (2005).
[7] S. Ishrat, K. Maaz, K.-J. Lee, M.-H. Jung, and G.-H. Kim, Journal of Solid State Chemistry 210, 116 (2014).
[8] 楊素華 and 蔡銘維, 科學發展 471, 62 (2012).
[9] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science 292, 1897 (2001).
[10] L. Vayssieres, Advanced Materials 15, 464 (2003).
[11] J. Y. Li, C. G. Lu, B. Maynor, S. M. Huang, and J. Liu, Chemistry of Materials 16, 1633 (2004).
[12] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Applied Physics Letters 80, 4232 (2002).
[13] A. M. Morales and C. M. Lieber, Science 279, 208 (1998).
[14] M. L. Tian, J. U. Wang, J. Kurtz, T. E. Mallouk, and M. H. W. Chan, Nano Letters 3, 919 (2003).
[15] Q. Xu, L. Zhang, and J. Zhu, Journal of Physical Chemistry B 107, 8294 (2003).
[16] 陳冠宇, 國立中央大學化學工程與材料工程研究所碩士論文 (2007).
[17] 曹公誠, 南台科技大學化工與材料工程研究所碩士論文 (2006).
[18] J. A. Venables, G. D. T. Spiller, and M. Hanbucken, Reports on Progress in Physics 47, 399 (1984).
[19] X. Y. Yuan, T. Xie, G. S. Wu, Y. Lin, G. W. Meng, and L. D. Zhang, Physica E-Low-Dimensional Systems & Nanostructures 23, 75 (2004).
[20] J. T. Hu, T. W. Odom, and C. M. Lieber, Accounts of Chemical Research 32, 435 (1999).
[21] K. K. Lew, L. Pan, E. C. Dickey, and J. M. Redwing, Advanced Materials 15, 2073 (2003).
[22] T. Kuykendall, P. Pauzauskie, S. K. Lee, Y. F. Zhang, J. Goldberger, and P. D. Yang, Nano Letters 3, 1063 (2003).
[23] K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, Journal of Applied Physics 77, 447 (1995).
[24] X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, Nature 409, 66 (2001).
[25] G. S. Cheng, L. D. Zhang, S. H. Chen, Y. Li, L. Li, X. G. Zhu, Y. Zhu, G. T. Fei, and Y. Q. Mao, Journal of Materials Research 15, 347 (2000).
[26] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, Applied Physics Letters 76, 2011 (2000).
[27] Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, Science 293, 1289 (2001).
[28] S. W. Kuo, H. I. Lin, J. H. C. Ho, Y. R. V. Shih, H. F. Chen, T. J. Yen, and O. K. Lee, Biomaterials 33, 5013 (2012).
[29] A. Hultgren, M. Tanase, C. S. Chen, G. J. Meyer, and D. H. Reich, Journal of Applied Physics 93, 7554 (2003).
[30] D. Choi, A. Fung, H. Moon, D. Ho, Y. Chen, E. Kan, Y. Rheem, B. Yoo, and N. Myung, Biomedical Microdevices 9, 143 (2007).
[31] N. Gao, H. J. Wang, and E. H. Yang, Nanotechnology 21 (2010).
[32] 陳惠如, 國立高雄師範大學物理學系碩士論文 (2007).
[33] 李金航, 國立臺灣大學物理學系碩士論文 (2012).
[34] D. Grieshaber, R. MacKenzie, J. Voros, and E. Reimhult, Sensors (2008).
[35] 李嘉偉, 國立臺灣大學物理學系碩士論文 (2009).
[36] D. S. Choi, J. Park, S. Kim, D. H. Gracias, M. K. Cho, Y. K. Kim, A. Fung, S. E. Lee, Y. Chen, S. Khanal, S. Baral, and J. H. Kim, Journal of Nanoscience and Nanotechnology 8, 2323 (2008).
[37] 李景明、張慶瑞, 中華民國磁性技術協會磁性學會, 5 (2002).
[38] C. D. G. B. D. Cullity, Wiley-IEEE Press (2008).
[39] 蘇書玄, 國立成功大學物理學系碩士論文 (2006).
[40] B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (2009).
[41] 黃忠良, 臺南:復漢 (1999).
[42] 戴道生、錢昆明, 科學出版社 (2000).
[43] 馮端, 建宏書局有限公司 (1998).
[44] S. Chikazumi, OUP (1997).
[45] D. Sellmayer and R. Skomski, Springer (2006).
[46] 林麗娟, 工業材料 86 (1994).
[47] B. D. Josephson, Physics Letters 1, 251 (1962).
[48] R. C. Jaklevic, A. H. Silver, J. Lambe, and J. E. Mercereau, Physical Review Letters 12, 159 (1964).
[49] H. Mamiya and B. Jeyadevan, Sci Rep 1, 157 (2011).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57037-
dc.description.abstract奈米線近年來於生醫上應用的研究已有許多進展,主要為生物細胞分離、生物感測器、熱炙治療等生醫用途。而在生物醫學領域,同時具有檢測與治療功能的材料是相當有發展潛力與應用價值的。故本研究結合鎳與金以電化學沉積法製備成多功能型奈米線,並將鎳與鎳金奈米線在交變磁場下作發熱測試。
鎳奈米線製備的電鍍時間控制為5分鐘,可得到直徑為0.2 μm 、 長度為1 μm的鎳奈米線。接著本研究將金電鍍於製成的鎳奈米線一端,電鍍時間為25分鐘,可得到金段部分為長度0.3 μm的鎳金奈米線。再以氫氧化鈉去除陽極氧化鋁濾膜 ( AAO ),並將其乾燥成粉末狀以作發熱量測。接下來利用100 kHz的射頻磁場,量測不同重量的鎳奈米線在2 Oe ~ 14 Oe磁場強度下的發熱效率。可觀察到鎳奈米線在不同的外加磁場大小下,重量少的鎳奈米線皆有最佳的發熱效率。
最後比較鎳奈米線與鎳金奈米線在低重量下之發熱效率,得知鎳金奈米線在低外加磁場強度下,其SAR皆較鎳奈米線來得高。此外,本研究更進一步探討平行與垂直外加磁場排列對於發熱效率的差異。由本研究之鎳與鎳金奈米線的發熱特性分析,可以發現鎳金奈米線的一項特性。當在重量少、交變磁場強度低、垂直外加磁場排列的情況下,鎳金奈米線的發熱效果較優。本研究選用的磁場大小處於生物體安全範圍( H∙f < 6.09×10^6 Oe/sec )內,因此可作為未來在熱炙治療方面的應用與參考。
zh_TW
dc.description.abstractThe nanowires have been applied to biomedical applications in recent years, such as cell separation, biosensor, hyperthermia therapy, etc. Materials which can be applied to not only detector but also cure are great potential .In this study, we prepare multifunctional nanowires made of electrochemical deposition composed of nickel and gold and use them for the heating experiment under altering magnetic.
In this study, Ni and Ni-Au nanowires were fabricated by electrochemical deposition. The plating time for Ni nanowires was 5 minutes, and we can get Ni nanowires with the diameter of 0.3 μm and the length of 1 μm. For fabricating the Ni-Au nanowires, we plate the end of Ni nanowires with Au 25 minutes to get a Au segment with length of 0.3 μm. After deposition, anodic aluminum oxide (AAO) was removed by NaOH and the nanowires were dried into powders. Next, we measure heating efficiency of different weights of Ni nanowires under 2 - 14 Oe altering magnetic field of 100 kHz. We can observe that the less mass of Ni nanowires has greater heating efficiency under any magnitude of magnetic field.
Finally, we compare heating efficiency in a small mass of Ni nanowires with Ni-Au nanowires. We find that the SAR value of the Ni-Au nanowires is higher than Ni nanowires under weak magnetic field. In addition, we discuss heating efficiency under magnetic field parallel and perpendicular to alignment of nanowires. According to the analysis in heating efficiency of Ni nanowires and Ni-Au nanowires, we find a special property of Ni-Au nanowires. When it is a small mass and under low-magnitude altering magnetic field (perpendicular to alignment), Ni-Au nanowires has the better heating efficiency. The magnetic flied we choose is in the safe range of the organisms under the radio-frequency (RF) magnetic field (H∙f < 6.09×10^6 Oe/sec). These results can be the application and the reference for hyperthermia therapy in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:33:26Z (GMT). No. of bitstreams: 1
ntu-103-R01245001-1.pdf: 4925124 bytes, checksum: 25b6c22fe3f3e8dce61636896a624a6a (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
Abstrac iv
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1-1 一維奈米結構介紹 1
1-2 奈米線物性介紹 2
1-3 奈米線製備方法介紹 3
1-4 奈米線之應用 5
1-5 研究動機與目的 9
第二章 奈米線的理論背景 10
2-1 磁性來源 10
2-2 磁性物質的種類 12
2-3 磁異向性分類及介紹 17
2-4 磁區與磁滯曲線 20
2-4-1 磁區 20
2-4-2 磁滯曲線 22
2-5 鐵磁性物質在交變磁場中的磁化過程 23
2-5-1 交流磁滯曲線 23
2-5-2 複數磁導率 24
2-6 磁性奈米線之發熱機制 28
2-6-1 渦電流損耗 28
2-6-2 磁滯損耗 30
2-7 比吸收率 31
2-8 奈米線之特性量測 33
2-8-1 X光繞射分析 33
2-8-2 超導量子干涉儀 34
2-8-3 掃描式電子顯微鏡 36
2-8-4 光纖溫度計 37
2-8-5射頻磁場產生儀 38
第三章 實驗結果與討論 39
3-1 奈米線之製備 39
3-1-1製備鎳奈米線之化學試藥 39
3-1-2 鎳奈米線之製備裝置 41
3-1-3鎳奈米線之製備 41
3-1-4鎳金奈米線之製備 43
3-2 鎳與鎳金奈米線之尺寸 44
3-3 鎳奈米線之磁性 49
3-4鎳奈米線之成份分析 51
3-5 鎳奈米線與鎳金奈米線之發熱特性 53
3-5-1 鎳奈米線之發熱特性與比較 53
3-5-2 鎳金奈米線之發熱特性與比較 60
3-5-3 重量相同下鎳奈米線與鎳金奈米線之發熱特性與比較 67
3-5-4 鎳段長度相同下鎳奈米線與鎳金奈米線之發熱特性與比較 70
3-6 鎳與鎳金奈米線之發熱特性分析 71
第四章 結論 74
參考文獻 76
dc.language.isozh-TW
dc.subject熱炙治療zh_TW
dc.subject磁滯損耗zh_TW
dc.subject鎳金奈米線zh_TW
dc.subject鎳奈米線zh_TW
dc.subjectnickel nanowireen
dc.subjectnickel-gold nanowireen
dc.subjecthysteresis lossen
dc.subjecthyperthermiaen
dc.title鎳金奈米線製作及其交變磁場引致發熱特性探討zh_TW
dc.titleStudy on the Fabrication and Magneto-Induction Heating Properties of Nickel-Gold Nanowiresen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周傳心,陳世銘
dc.subject.keyword鎳奈米線,鎳金奈米線,磁滯損耗,熱炙治療,zh_TW
dc.subject.keywordnickel nanowire,nickel-gold nanowire,hysteresis loss,hyperthermia,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2014-08-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved