Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57034
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐陽明(Ming Ouhyoung)
dc.contributor.authorHsin-wei Wangen
dc.contributor.author汪心威zh_TW
dc.date.accessioned2021-06-16T06:33:22Z-
dc.date.available2014-08-12
dc.date.copyright2014-08-12
dc.date.issued2014
dc.date.submitted2014-08-04
dc.identifier.citation[1] D. Scharstein, R. Szeliski, and R. Zabih. “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.” International Journal of Computer Vision 47, 2002, 7–42
[2] Michael Bleyer, Carsten Rother, Pushmeet Kohli, Daniel Scharstein, and Sudipta Sinha. “Object stereo: joint stereo matching and object segmentation.” In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 3081–3088. IEEE, 2011.
[3] Oliver Woodford, Philip Torr, Ian Reid, and Andrew Fitzgibbon. “Global stereo reconstruction under second-order smoothness priors.” In Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(12):2115–2128, 2009.
[4] Michael Bleyer, Carsten Rother, and Pushmeet Kohli. “Surface stereo with soft segmentation.” In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 1570–1577. IEEE, 2010.
[5] A. Klaus, M. Sormann, and K. Karner. “Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure.” In Proceedings of International Conference on Pattern Recognition, 2006.
[6] Jian Sun, Yin Li, Sing Bing Kang, and Heung-Yeung Shum. “Symmetric stereo matching for occlusion handling.” In Computer Vision and Pattern Recognition (CVPR), 2005. IEEE Computer Society Conference on, volume 2, pages 399–406. IEEE, 2005.
[7] M. Lin and C. Tomasi .”Surfaces with occlusions from layered stereo.” In Computer Vision and Pattern Recognition (CVPR), 2003, pp. 710.717.
[8] Victor Lempitsky, Carsten Rother, “Fusion Moves for Markov Random Field Optimization” In Pattern Analysis and Machine Intelligence, IEEE Transactions on 32.8 (2010): 1392-1405.
[9] Vladimir, Kolmogorov, and Carsten Rother,” Minimizing non-submodular functions with graph cuts – a review” In Pattern Analysis and Machine Intelligence, IEEE Transactions on 29.7 (2007): 1274-1279.

[10] Hai Tao, Harpreet S Sawhney, and Rakesh Kumar. “A global matching framework for stereo computation.” In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, volume 1, pages 532–539. IEEE, 2001.
[11] Jian Sun, Yin Li, Sing-Bing Kang and Heung-Yeung Shum., “Symmetric Stereo Matching for Occlusion Handling”, In Computer Vision and Pattern Recognition (CVPR), 2005, Vol. 2, pp. 399-406, 2005.
[12] Y. Deng, Q. Yang, X. Lin, and X. Tang. “A symmetric patch-based correspondence model for occlusion handling”. In ICCV, pages 542–567, 2005.
[13] L. Hong and G. Chen. “Segment-based stereo matching using graph cuts.”. In Computer Vision and Pattern Recognition (CVPR), volume 1, pages 74–81, 2004.
[14] Z. Wang and Z. Zheng, “A region based stereo matching algorithm using cooperative optimization.” in Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition 2008, Anchorage, AK.
[15] Michael Bleyer and Margrit Gelautz 'A layered stereo algorithm using image segmentation and global visibility constraints.' Image Processing, 2004. ICIP'04. 2004 International Conference on. Vol. 5. IEEE, 2004.

[16] Michael Bleyer, Christoph Rhemann, and Carsten Rother. “Extracting 3d sceneconsistent object proposals and depth from stereo images.” In Computer Vision–ECCV 2012, pages 467–481. Springer, 2012..
[17] M Bjorkman and Danica Kragic. “Active 3d scene segmentation and detection of unknown objects.” In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages 3114–3120. IEEE, 2010.
[18] Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér. “Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling.” IEEE Trans. Pattern Anal. Mach. Intell., 31(3):492–504, 2009.
[19] C. Lawrence Zitnick and Sing Bing Kang. “Stereo for Image-Based Rendering using Image Over-Segmentation.” Microsoft Research
[20] Michael Bleyer, Christoph Rhemann.”PatchMatch Stereo - Stereo Matching with Slanted Support Windows” BMVC. Vol. 11. 2011.
[21] Comaniciu, Dorin, and Peter Meer. 'Mean shift: A robust approach toward feature space analysis.' In Pattern Analysis and Machine Intelligence, IEEE Transactions on 24.5 (2002): 603-619.

[22] Y. Boykov, O. Veksler, and R. Zabih. “Fast approximate energy minimization via graph cuts” Transactions on Pattern Analysis and Machine Intelligence 23(11), pp. 1222-1239, 2001.
[23] V. Kolmogorov and R. Zabih. “What energy functions can be minimized via graph cuts?” Transactions on Pattern Analysis and Machine Intelligence 26(2), pp. 147-159, 2004
[24] Wertheimer, M. “Laws of organization in perceptual forms.” In A Source Book of Gestalt Psychology, W.D. Ellis, ed. (London: Routledge and Kegan Paul), 1995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57034-
dc.description.abstract本論文根據人類心理學提出了一個基於圖片切割(segmentation-based)的創新技術。利用將各個切割區域分群的方式來幫助被因為被遮擋而分成好幾個不同區域的部分取得三維上屬於同一平面的深度估計。這樣一來就算在物體遮擋複雜的情況,我們也能得到精確的深度估算。立體視差估算(Stereo Matching)是透過模擬人類雙眼視覺來計算出圖片上物體深淺的方法。但由於一般做法上的限制使得實際上屬於同一物體或背景而在畫面上因為前景物體遮擋而被隔開的區域不容易在深度上是連續的。由於同一物體內的不同區塊通常有著類似的色彩分布,所以我們使用顏色做為各個區塊分群的基礎,使顏色相近的區域更容易被歸在同一個物體內而取得三維上的相連,透過格式塔(Gestalt)學派中的原則─接近 (proximity)的使用,和QPBO以及fusion-move等圖分割(graph-cut)技術來套用在能量最小化(energy minimization)上,以取得更好的深度估算。我們使用米德爾伯里線上立體評估(Middlebury stereo evaluation) 和它的測試資料來評估我們演算法的準確率。zh_TW
dc.description.abstractThis paper presents a novel method according to the human perception theory. We propose a segmentation-based stereo matching method to help the discontinuous segments that belongs to the same object to have 3D connectivity. Therefore, our method can get more discriminative disparity estimation for complex occlusion. Stereo matching is a correspondence method which uses two images for simulating human eyes to do depth reconstruction. But general stereo matching methods have limited capability to retrieve the geometric surface of the object or background that is occluded and divided into many regions by other objects in front of it. In our measurement, all segments are clustered into several groups based on color cue because the color segments in the same object usually have homogeneous color. Then those color segment regions within a same color group tend to be assigned to a same object. We use the proximity principle from Gestalt psychology to properly deal with the plane labeling in each segment group. The 3D connectivity term is encoded on the proximity formulation in our proposed energy function. We also use graph-cut technique, fusion move and Quadratic pseudo-boolean optimization (QPBO), to find approximate global solution for segment plane assignment. We use CVPR 2002 dataset as source images and evaluate our result by Middlebury.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:33:22Z (GMT). No. of bitstreams: 1
ntu-103-R01922058-1.pdf: 3307671 bytes, checksum: 700df05332298801d48c9fd4c0ab1de9 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
Chapter 1 Introduction 1
1.1 Segmentation-based 1
1.2 Our approach 3
Chapter 2 Related work 5
2.1 Low-level Segmentation-based 5
2.2 High-level (object-level) Segmentation-based 7
Chapter 3 Methods and initialization 9
3.1 System overview 9
3.2 Image segmentation and group 11
3.2.1 Mean-shift segmentation 11
3.2.2 Make groups based on color 13
3.3 Initial plane fitting 14
3.4 Plane assignment refine 17
Chapter 4 Global Optimization 18
4.1 Energy formulation 18
4.1.1 Color consistency term 18
4.1.2 Occlusion 19
4.1.3 Smooth 21
4.1.4 Proximity 23
4.2 Global Optimization 26
4.2.1 Iterative method 26
4.2.2 Graph-cut method 27
Chapter 5 Result 30
5.1 Result and comparison 30
5.2 Middlebury Stereo Evaluation 32
Chapter 6 Conclusion and future work 40
6.1 Conclusion 40
6.2 Future work 42
Bibliography 44
dc.language.isoen
dc.subject接近zh_TW
dc.subject立體視差估算zh_TW
dc.subject圖分割zh_TW
dc.subjectStereo Matchingen
dc.subjectproximityen
dc.subjectgraph-cuten
dc.title基於圖片切割色彩分群之立體視差圖估算zh_TW
dc.titleSegmentation-based Stereo Matching Using Color Groupingen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee傅楸善(Fuh Chiou-Shann),楊傳凱(chuan-kai yang)
dc.subject.keyword立體視差估算,接近,圖分割,zh_TW
dc.subject.keywordStereo Matching,proximity,graph-cut,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2014-08-05
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved