Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57021
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林?輝(Feng-Huei Lin)
dc.contributor.authorEDYY CHAVEZ SIFUENTESen
dc.contributor.author楊藝zh_TW
dc.date.accessioned2021-06-16T06:33:06Z-
dc.date.available2019-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-05
dc.identifier.citation[1] Waese EYL, Stanford WL. One-step generation of murine embryonic stem cell-derived mesoderm progenitors and chondrocytes in a serum-free monolayer differentiation system. Stem Cell Res. 2011; 6:34–49.
[2] Chen, Y. F.,Wu, C. Y., Kirby, R., Kao, C. H., and Tsai, T. F.A role for the CISD2 gene in lifespan control and human disease. Ann. N.Y. Acad. Sci.2010; 1201: 58–64.
[3] Chen YF, Kao CH, Chen YT, Wang CH, Wu CY, Tsai CY, Liu FC, Yang CW, Wei YH, Hsu MT, Tsai SF and Tsai TF. Cisd2 deficiency drives premature aging and causes mitochondria‐mediated defects in mice. Genes Dev. 2009; 23:1183‐1194.
[4] Gadue, P., et al. Wnt and TGF-b signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc. Natl. Acad. Sci. USA 2006; 103:16806–16811.
[5] Lewis, Sharon Mantik. Medical-Surgical Nursing (Single Volume): Assessment and Management of Clinical Problems 2007, 7:298-300.
[6] Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet 2011; 377:2115-2126.
[7] Cdc.gov (2010). CDC - Arthritis - Osteoarthritis. [online] Retrieved from: http://www.cdc.gov/arthritis/osteoarthritis.htm [Accessed: 25 Apr 2013].
[8] Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol. 2011; 7:161–169.
[9] Ebben J. D., Zorniak M., Clark P. A. & Kuo J. S. Introduction to Induced Pluripotent Stem Cells: Advancing the Potential for Personalized Medicine. World Neurosurg.2011; 76: 270–275.
[10] Yudoh K, Nguyen T, Nakamura H, Hongo-Masuko K, and Kato T, Nishioka K. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and down-regulation of chondrocyte function. Arthritis Res Ther.2005; 7:380–391.
[11] Thomas, C.M.; Murray, R.; Sharif, M. Chondrocyte apoptosis determined by caspase-3 expression varies with fibronectin distribution in equine articular cartilage. Int. J. Rheum. Dis. 2011, 14, 290–297.
[12] Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health 2009; 1: 461–468
[13] Hardingham T, Bayliss M. Proteoglycans of articular cartilage: changes in aging and in joint disease. Semin Arthritis Rheum. 1990; 20:12-33.
[14] Linn FC, Sokoloff L. Movement and composition of interstitial fluid of cartilage. Arthritis Rheum. 1965; 8:481-494.
[15] Gold GE, Beaulieu CF. Future of MR imaging of articular cartilage. Semin Musculoskeletal Radiologic 2001; 5:313-327.
[16] Garcia-Carvajal et al. Cartilage Tissue Engineering: The Role of Extracellular Matrix (ECM) and Novel Strategies. Regenerative Medicine and Tissue Engineering 2013; 15:365-397.
[17] Guilak F, Mow VC. The mechanical environment of the chondrocyte: a biphasic finite element model of cell—matrix interactions in articular cartilage. J Biomech. 2000; 33:1663-1673.
[18] Linn FC, Sokoloff L. Movement and composition of interstitial fluid of cartilage. Arthritis Rheum. 1965; 8:481-494.
[19] Johnson K, Zhu S, Tremblay MS, Payette JN, Wang J, Bouchez LC, Meeusen S, Althage A, Cho CY, Wu X, et al. A stem cell-based approach to cartilage repair. Science 2012; 336:717–721.
[20] Geoghegan E, Byrnes L. Mouse induced pluripotent stem cells. Int J Dev Biol. 2008; 52: 1015–1022.
[21] Pearle D. et al. Basic Science of Articular Cartilage and Osteoarthritis. Clinical Sports Medicine 2005;24:1 – 12
[22] Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2008; 2:525–528.
[23] Nakamura Y, Inloes JB, Katagiri T, Kobayashi T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Molecular Cell Biologic 2011; 31:3019–3028.
[24] Mann M, Barad O, Agami R, Geiger B, Hornstein E. miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate. Proc Natl Acad Sci USA. 2010; 107:15804–15809.
[25] Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E, Merkenschlager M, Kronenberg HM. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci USA 2008; 105:1949–1954.
[26] Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev.2010; 24:1173–1185.
[27] Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development. J Biological Chemistry 2005; 280:9330–9335.
[28] Amr S, Heisey C, Zhang M, Xia XJ, Shows KH, Ajlouni K, Pandya A, Satin LS, El-Shanti H, Shiang R. A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2. Am J Hum Genet. 2007; 81:673-83.
[29] Chen YF, Wu CY, Kirby R, Kao CH, Tsai TF. A role for the CISD2 gene in lifespan control and human disease. Ann N Y Academic Science 2010; 1201:58-64.
[30] Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 2007; 1:39–49.
[31] Rubin LL. Stem cells and drug discovery: the beginning of a new era? Cell 2008; 132(4):549–552.
[32] Kanki T, Klionsky DJ. Mitochondrial abnormalities drive cell death in Wolfram syndrome 2. Cell Res. 2009; 19:922-3.
[33] Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008; 322:945–949.
[34] Olee T, Grogan SP, Lotz M, Colwell CW, Jr, Snyder E, D’Lima D. Repair of cartilage defects in arthritic tissue with differentiated human embryonic stem cells. 2013; Part A.
[35] H. A. Wieland, M. Michaelis, B. J. Kirshbaum, and K. A. Rudolphi, “Osteoarthritis: an untreatable disease?” Nature Reviews Drug Discovery 2005; 4:331–334.
[36] Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl. Acad. Sci.2008; 105:5856–5861.
[37] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861–872.
[38] Zaehres H, Scholer HR. Induction of pluripotency: from mouse to human. Cell 2007;131:834-5
[39] Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008; 321:1218–1221.
[40] Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med. 2009; 15:59–68.
[41] Erickson, I. E., Kestle, S. R., Zellars, K. H., Dodge, G. R., Burdick, J. A., & Mauck, R. L. Improved cartilage repair via in vitro prematuration of MSC-seeded hyaluronic acid hydrogels. Biomedical Materials 2012; 7:024110.
[42] Hanna J, Wernig M, Markoulaki S, Sun C, Meissner A, Cassady JP, Beard C, Brambrink T, Wu L, and Townes TM, Jaenisch R: Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007, 318:1920-3.
[43] Barbosa, I., S. Garcia, V. Barbier-Chassefi, J. P. Caruelle, I. Martelly, and D. Papy-Garcoa. Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology.2003; 13:647–653.
[44] Hwang NS, Kim MS, Sampattavanich S, Baek JH, Zhang Z, Elisseeff J. Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells 2006;24:284-291
[45] Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell 2008;134:877-886
[46] Soman P, Tobe BTD, Lee JW, Winquist AA, Singec I, et al. Three-dimensional scaffolding to investigate neuronal derivatives of human embryonic stem cells. Biomed. Micro devices 2012; 14: 829–838.
[47] Liu H, Roy K. Biomimetic three-dimensional cultures significantly increase hematopoietic differentiation efficacy of embryonic stem cells. Tissue Eng. 2005; 11:319-30.
[48] Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. Garland Science 2002; 4: 19-35
[49] Loeser R.F. et al. Age-Related Changes in the Musculoskeletal System and the Development of Osteoarthritis. Clinical Geriatric Medicine 2010; 26: 371–386.
[50] Mitchell J.R., Jollow D.J., Potter W.Z., Gillette J.R., Brodie B.B. Acetaminophen-induced hepatic necrosis. Protective role of glutathione. Journal of Pharmacology.1973; 187:211–217.
[51] R. Masella et al. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzyme. Journal of Nutritional Biochemistry. 2005; 16:577–586.
[52] N.H.P. Cnubben et al. The interplay of glutathione-related processes in antioxidant defense. Environmental Toxicology and Pharmacology 2001;10:141–152
[53] J Biosci Bioeng et al. Methods for inducing embryoid body formation. In vitro differentiation system of embryonic stem cells. Journal of Bioscience and Bioengineering 2007; 103:389-98.
[54] Stockwell, R. A., and Meachim, G. The chondrocytes. In Adult Articular Cartilage. Pitman Medical, London 1973, 5:51-99.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57021-
dc.description.abstract骨關節炎(OA)是一種和老化相關的疾病,全世界的病患數約有影響數百萬之多,而在美國,骨關節炎也是造成失能的主因之一。此外,它不是一個單一的疾病,而是多種疾病,導致整個關節及其周圍組織的破壞的最終結果。關節的結構和功能衰竭是伴隨著慢性疼痛導致人們無力進行他們的日常活動。
具體而言,骨關節炎是由特定類型的軟骨的關節(關節軟骨)內的故障引起的。它是已知的關節軟骨僅由滑液包圍;因此,它被認為是無血管組織。這股骨頭缺血性自然有助於其無法承受的毒性和自我修復。因此,為了防止OA devolvement就必須停止關節軟骨的破壞以及細胞外基質(ECM)的降解。
事實上,醫學界中一個共同的信念是,骨性關節炎是衰老的副產品。然而,新的研究指出了有毒的活性氧的干預(ROS)作為該疾病的發展的根本原因。此外,CDGSH鐵硫域2(CISD2)基因的突變似乎是負責在ROS產生的釋放。因此,我們利用小鼠誘導具有CISD2缺陷基因通過細胞分化過程中獲得軟骨細胞樣細胞的OA多能幹細胞(的mIPSC)。
因此,我們的主要目標是成功地分化的mIPSC CISD2 - / - ,+ / +成軟骨細胞樣細胞的OA不影響其基因型和表型。同樣重要的是獲得一種抗氧化劑具有軟骨保護作用,能抑制或過氧化氫曝光(H2O2)降低升高的stress-induced/apoptosis。因此,我們採用了熱敏殼聚醣/明膠/甘油(C / G / GP)水凝膠,並用它作為藥物(穀胱甘肽,穀胱甘肽)攜帶者治療軟骨細胞樣細胞的OA。
本研究的第一部分是誘導的mIPSC CISD2的分化 - / - + / +成軟骨細胞樣細胞的OA。在適當的條件下才會產生子代細胞的上調的三個主要軟骨細胞標記一致:SRY(性別決定區Y) - 盒9(SOX-9),聚集蛋白聚醣和Ⅱ型膠原。我們的結果表明,當的mIPSC CISD2 - / - + / +的誘導生長因子骨形態發生蛋白4(BMP4),它引起了細胞中顯示的軟骨細胞樣細胞的特徵。
本研究的第二部分是把氧化應激下的細胞中設置野生型和突變型的細胞之間的基線條件。用於誘導的氧化應激的化合物是過氧化氫(250μM)。因此,GHS(100μM)是用來降低抑制誘導的ROS的氧化損傷。實時聚合酶鍊式反應(RT-PCR)表明:像白細胞介素-1(IL-1),白細胞介素-6(IL-6),基質金屬蛋白酶-3(MMP-3)和腫瘤壞死因子α(TNF-α)的炎性基因的表達被下調治療GHS(100微米)之後。
本研究的第三部分是要找到一個合適的水凝膠(C / G / GP)與合適的物理特性,允許GHS的加載(100微米)到凝膠基質,並隨後發布到終端脫氧核苷酸轉移酶缺口末端標記(TUNEL)分析表明,實際上,細胞凋亡水平時,細胞與GHS(100微米)+(C / G / GP)水凝膠治療顯著下降。
從本研究中進行的分析所獲得的結果強烈地表明,BMP-4(25μM)生長因子成功誘導的mIPSC CISD2的分化 - / - + / +成軟骨細胞樣細胞的OA。同樣,我們可以自信地說,GHS(100μM)對來自的mIPSC CISD2軟骨細胞樣細胞的OA抗氧化作用 - / - ,+ / +。此外,很明顯的TUNEL結果(C / G / GP)水凝膠似乎是穀胱甘肽有效的控制釋放系統。
zh_TW
dc.description.abstractOsteoarthritis (OA) is a disease that affects millions of people around the world and it is catalogued as one of the major disabilities in the US. In addition, it’s not a single disease but rather the end result of a variety of disorders that lead to the destruction of the entire joint and its nearby tissues. As the disease progresses, the joint’s structure and functionality became limited and chronic pain ensued, which results on people’s inability to perform their daily activities.
Specifically, osteoarthritis is caused by the breakdown of a particular type of cartilage inside the joint (articular cartilage). It is known that articular cartilage is only surrounded by synovial fluid; therefore, it is considered an avascular tissue. This avascular nature contributes to its inability to withstand toxicity and self-repair. Thus, to prevent OA devolvement it is imperative to stop the destruction of articular cartilage along with extracellular matrix (ECM) degradation.
Indeed, a common belief among the medical community was that osteoarthritis was a byproduct of aging. Nevertheless, new studies pointed to the intervention of toxic reactive oxygen species (ROS) as the underlying cause for the development of this disease. Furthermore, the mutation of the CDGSH Iron Sulfur Domain 2 (Cisd2) gene appears to be responsible in the release of ROS production. Therefore, we utilized mouse induce pluripotent cells (miPSCs) that have a Cisd2 deficiency gene to obtain a disease model that can provided chondrocyte-like OA cells through a cell differentiation process.
Hence our main goal was to successfully differentiate miPSCs Cisd2 -/-, +/+ into chondrocyte-like OA cells without compromising its genotype and phenotype. Equally important was attaining an antioxidant with chondroprotective effects that can inhibit or reduce elevated stress-induced/apoptosis by hydrogen peroxide exposure (H2O2 250μM). Consequently, we used a thermosensitive chitosan/gelatin/glycerol (C/G/GP) hydrogel and used it as a drug (glutathione, GSH 100 μM) carriers to treat chondrocyte-like OA cells.
The first part of this study was to induce the differentiation of miPSCs Cisd2 -/-, +/+ into chondrocyte-like OA cells. Under the appropriate conditions it will generate progeny cells consistent with the up-regulation of the main three chondrocyte markers: SRY (sex determining region Y)-box 9 (SOX-9), Aggrecan and Collagen II. Our results indicated that when miPSCs Cisd2 -/-, +/+ are induced with growth factor bone morphogenetic protein 4 (BMP-4 25 ng/ml) it gave rise to cells that display characteristics of a chondrocyte-like cells.
The second part of this study was to put the cells under oxidative stress to set a baseline condition between wild type and mutant type cells (miPSCs Cisd2 -/-, +/+). The compound used to induce oxidative stress was hydrogen peroxide H2O2 (250μM). Consequently, glutathione (GHS) 100μM is used to reduce or inhibit the oxidative damage cause by ROS. Real-time polymerase chain reaction (RT-PCR) indicated that inflammatory gene expression like Interleukin 1s (IL-1s), Interleukin-6 (IL-6), Metalloproteinase 3 (MMP-3) and Tumor Necrosis Factor alpha (TNF-α) were down regulated after treated with GHS (100 μM).
The third part of this study was to find a suitable hydrogel (C/G/GP) with the right physical properties that permit the loading of GHS (100 μM) into the gel matrix and subsequent release of GHS (100 μM) into chondrocyte-like cells. Analysis with Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) revealed that in effect, apoptosis level decreased significantly when cells were treated with GHS (100 μM) + (C/G/GP) hydrogel.
The results obtained from the analysis performed in this study strongly indicated that BMP-4 (25 μg/ml) growth factor successfully induce the differentiation of miPSCs Cisd2 -/-, +/+ into chondrocyte-like OA cells. Likewise, we confidently can state that GHS (100μM) have antioxidant effects on chondrocyte-like OA cells derived from miPSCs Cisd2 -/-, +/+. Furthermore, TUNEL results clearly indicated that (C/G/GP) hydrogel appears to be an effective control-released system for GSH loading.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:33:06Z (GMT). No. of bitstreams: 1
ntu-103-R01548054-1.pdf: 4903315 bytes, checksum: a71e4ca609c1bc1e104dd985f43e47ad (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsTABLE OF CONTENTS
誌謝 ii
中文摘要 iii
Abstract v
Table of Contents ix
List of figures xii
Chapter 1 Introduction 1
1-1 Preface: Osteoarthritis 1
1-1-2 Statistics 3
1-1-3 Etiology 3
1-1-4 Osteoarthritis Treatment 4
1-1-5 Purpose of Study 5
1-1-6 Hypothesis 6
Chapter 2 Theoretical Basis 7
2-1 Extracellular Matrix 7
2-1-1 Articular Cartilage 8
2-1-2 Anatomy: Articular Cartilage 9
2-1-3 Pathophysiology of Osteoarthritis 11
2-1-4 Mouse Induce Pluripotent Stem Cell 13
2-1-5 CDGSH Iron Sulfur Domain 2 (Cisd2) 14
2-1-6 Glutathione 16
Chapter 3 Materials & Methods 19
3-1 Experimental set up 19
3-1-2 Primary Culture 19
3-1-3 Embryoid Body 20
3-1-4 Chondrogenic Media 21
3-1-5 Research Design 23
3-1-6 Evaluation of Cytotoxicity: Determination of Safety Concentration 23
3-1-7 Gene Expression Evaluation: RT-PCR 24
3-1-8 Characterization of Cisd2 -/-, +/+ miPSCs-derived chondrocyte-like cells 25
3-1-9 Alcian Blue 25
3-2-0 Chemiluminance Assay 26
Chapter 4 Results and Discussion 27
4-1 Embryoid Body Proliferation 27
4-1-1 Characterization of Cisd2 -/-,+/+ 28
4-1-2 Immuno-fluorescence (IF) Cisd2 -/-,+/+ 29
4-1-3 Morphology of Cisd2 -/-, +/+ Cells 30
4-1-4 Mitosox Red 31
4-1-5 (1, 9) Dimethylmethylene Blue Assay (DMMB) 32
4-1-6 RT-PCR Inflammation genes after H2O2 exposure 33
4-1-7 Cell Viability Cisd2 -/-: Crystal Violet Stain Assay 35
4-1-8 Chemiluminescence assay: 36
4-1-9 RT-PCR Inflammation related genes post GSH treatment 36
4-2-0 Caspase-3-Pathway 38
4-2-1 Thermosesitive Chitosan/Gelatin/glycerol (C/G/GP) 39
4-2-2 Terminal deoxynucleotidyl transferase dUTP nick TUNEL 40
Chapter 5 Conclusions 42
References 44
dc.language.isoen
dc.subjectpro-inflammatory cytokines and (C/G/GP) hydrogelzh_TW
dc.subjectOsteoarthritiszh_TW
dc.subjectreactive oxygen specieszh_TW
dc.subjecthydrogen peroxidezh_TW
dc.subjectchondrocytezh_TW
dc.subjectmiPSCszh_TW
dc.subjectCisd2 -/-zh_TW
dc.subject+/+zh_TW
dc.subjectglutathionezh_TW
dc.subjectantioxidantzh_TW
dc.title穀胱甘肽對CISD2基因缺陷之誘導式多能性幹細胞分化之類軟骨細胞於氧化壓力下的影響zh_TW
dc.titleEffects of glutathione on CISD2 deficient mouse induced pluripotent stem cells-derived chondrocyte-like cells under oxidative stressen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊禎明(Jen-Ming Yang),徐善慧
dc.subject.keywordOsteoarthritis,reactive oxygen species,hydrogen peroxide,chondrocyte,miPSCs,Cisd2 -/-,+/+,glutathione,antioxidant,pro-inflammatory cytokines and (C/G/GP) hydrogel,zh_TW
dc.relation.page51
dc.rights.note有償授權
dc.date.accepted2014-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved