Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57020
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴爾?(Erh-Min Lai)
dc.contributor.authorHung-Yi Wuen
dc.contributor.author吳竑毅zh_TW
dc.date.accessioned2021-06-16T06:33:05Z-
dc.date.available2014-08-08
dc.date.copyright2014-08-08
dc.date.issued2014
dc.date.submitted2014-08-05
dc.identifier.citationChapter 1
Abdallah, A.M., N.C. Gey van Pittius, P.A. Champion, J. Cox, J. Luirink, C.M. Vandenbroucke-Grauls, B.J. Appelmelk & W. Bitter, (2007) Type VII secretion--mycobacteria show the way. Nat Rev Microbiol 5: 883-891.
Agrios, G.N., (2005) Plant Pathology , Fifth edition, Elsevier, Academic Press, New York.
Alvarez-Martinez, C.E. & P.J. Christie, (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73: 775-808.
Aly, K.A. & C. Baron, (2007) The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153: 3766-3775.
Anand, A., A. Krichevsky, S. Schornack, T. Lahaye, T. Tzfira, Y. Tang, V. Citovsky & K.S. Mysore, (2007) Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant cell 19: 1695-1708.
Anderson, L.B., A.V. Hertzel & A. Das, (1996) Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proc Natl Acad Sci U S A 93: 8889-8894.
Ashby, A.M., M.D. Watson, G.J. Loake & C.H. Shaw, (1988) Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J Bacteriol 170: 4181-4187.
Atmakuri, K., E. Cascales, O.T. Burton, L.M. Banta & P.J. Christie, (2007) Agrobacterium ParA/MinD-like VirC1 spatially coordinates early conjugative DNA transfer reactions. EMBO J 26: 2540-2551.
Ausubel, F.M., (2005) Are innate immune signaling pathways in plants and animals conserved? Nat immunol 6: 973-979.
Backert, S., R. Fronzes & G. Waksman, (2008) VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol 16: 409-413.
Bailey, S., D. Ward, R. Middleton, J.G. Grossmann & P.C. Zambryski, (2006) Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc Natl Acad Sci U S A 103: 2582-2587.
Banta, L.M., J.E. Kerr, E. Cascales, M.E. Giuliano, M.E. Bailey, C. McKay, V. Chandran, G. Waksman & P.J. Christie, (2011) An Agrobacterium VirB10 mutation conferring a type IV secretion system gating defect. J Bacteriol 193: 2566-2574.
Baron, C., (2006) VirB8: a conserved type IV secretion system assembly factor and drug target. Biochem Cell Biol 84: 890-899.
Baron, C., M. Llosa, S. Zhou & P.C. Zambryski, (1997) VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1. J Bacteriol 179: 1203-1210.
Batchelor, R.A., B.M. Pearson, L.M. Friis, P. Guerry & J.M. Wells, (2004) Nucleotide sequences and comparison of two large conjugative plasmids from different Campylobacter species. Microbiology 150: 3507-3517.
Bauer, Z., L. Gomez-Gomez, T. Boller & G. Felix, (2001) Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites. J Biol Chem 276: 45669-45676.
Baureithel, K., G. Felix & T. Boller, (1994) Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitooligosaccharides and a Nod factor of Rhizobium. J Biol Chem 269: 17931-17938.
Bayliss, R., R. Harris, L. Coutte, A. Monier, R. Fronzes, P.J. Christie, P.C. Driscoll & G. Waksman, (2007) NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. Proc Natl Acad Sci U S A 104: 1673-1678.
Beijersbergen, A., A.D. Dulk-Ras, R.A. Schilperoort & P.J. Hooykaas, (1992) Conjugative Transfer by the Virulence System of Agrobacterium tumefaciens. Science 256: 1324-1327.
Berger, B.R. & P.J. Christie, (1994) Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol 176: 3646-3660.
Bishop, P.D., D.J. Makus, G. Pearce & C.A. Ryan, (1981) Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proc Natl Acad Sci U S A 78: 3536-3540.
Bradley, D.E., (1980) Morphological and serological relationships of conjugative pili. Plasmid 4: 155-169.
Braun, A.C., (1947) Thermal studies on the factors responsible for tumor initiation in crown gall. Am J Bot 34: 234-240.
Braun, A.C. & R.J. Mandle, (1948) Studies on the inactivation of the tumor-inducing principle in crown gall. Growth 12: 255-269.
Boller, T. & G. Felix, (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60: 379-406.
Boudsocq, M. & J. Sheen, (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18: 30-40.
Buchanan-Wollaston, V., J.E. Passiatore & F. Cannon, (1987) The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants. Nature 328: 172-175.
Burrows, L.L., (2005) Weapons of mass retraction. Mol Microbiol 57: 878-888.
Buttner, D., (2012) Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 76: 262-310.
Buttner, D. & S.Y. He, (2009) Type III protein secretion in plant pathogenic bacteria. Plant Physiol 150: 1656-1664.
Cangelosi, G.A., G. Martinetti, J.A. Leigh, C.C. Lee, C. Thienes & E.W. Nester, (1989) Role for Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan. J Bacteriol 171: 1609-1615.
Cascales, E., K. Atmakuri, M.K. Sarkar & P.J. Christie, (2013) DNA substrate-induced activation of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 195: 2691-2704.
Cascales, E. & P.J. Christie, (2003) The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1: 137-149.
Cascales, E. & P.J. Christie, (2004a) Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A 101: 17228-17233.
Cascales, E. & P.J. Christie, (2004b) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304: 1170-1173.
Chain, P.S., E. Carniel, F.W. Larimer, J. Lamerdin, P.O. Stoutland, W.M. Regala, A.M. Georgescu, L.M. Vergez, M.L. Land, V.L. Motin, R.R. Brubaker, J. Fowler, J. Hinnebusch, M. Marceau, C. Medigue, M. Simonet, V. Chenal-Francisque, B. Souza, D. Dacheux, J.M. Elliott, A. Derbise, L.J. Hauser & E. Garcia, (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101: 13826-13831.
Chandran, V., R. Fronzes, S. Duquerroy, N. Cronin, J. Navaza & G. Waksman, (2009) Structure of the outer membrane complex of a type IV secretion system. Nature 462: 1011-1015.
Chatterjee, S., S. Chaudhury, A.C. McShan, K. Kaur & R.N. De Guzman, (2013) Structure and biophysics of type III secretion in bacteria. Biochemistry 52: 2508-2517.
Chen, L., Y. Chen, D.W. Wood & E.W. Nester, (2002) A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens. J Bacteriol 184: 4838-4845.
Chesnokova, O., J.B. Coutinho, I.H. Khan, M.S. Mikhail & C.I. Kado, (1997) Characterization of flagella genes of Agrobacterium tumefaciens, and the effect of a bald strain on virulence. Mol Microbiol 23: 579-590.
Chilton, M.D., M.H. Drummond, D.J. Merio, D. Sciaky, A.L. Montoya, M.P. Gordon & E.W. Nester, (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263-271.
Chilton, M.D., R.K. Saiki, N. Yadav, M.P. Gordon & F. Quetier, (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci U S A 77: 4060-4064.
Chilton, M.-D., D.A. Tepfer, A. Petit, C. David, F. Casse-Delbart & J. Tempe, (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295: 432-434.
Christie, P.J., (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179: 3085-3094.
Christie, P.J., K. Atmakuri, V. Krishnamoorthy, S. Jakubowski & E. Cascales, (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59: 451-485.
Christie, P.J., N. Whitaker & C. Gonzalez-Rivera, (2014) Mechanism and structure of the bacterial type IV secretion systems. Biochimica et biophysica acta 1843: 1578-1591.
Citovsky, V., A. Kapelnikov, S. Oliel, N. Zakai, M.R. Rojas, R.L. Gilbertson, T. Tzfira & A. Loyter, (2004) Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J Biol Chem 279: 29528-29533.
Citovsky, V., J. Zupan, D. Warnick & P. Zambryski, (1992) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256: 1802-1805.
Clarke, M., L. Maddera, R.L. Harris & P.M. Silverman, (2008) F-pili dynamics by live-cell imaging. Proc Natl Acad Sci U S A 105: 17978-17981.
Close, T.J., R.C. Tait, H.C. Rempel, T. Hirooka, L. Kim & C.I. Kado, (1987) Molecular characterization of the virC genes of the Ti plasmid. J Bacteriol 169: 2336-2344.
Cordes, F.S., K. Komoriya, E. Larquet, S. Yang, E.H. Egelman, A. Blocker & S.M. Lea, (2003) Helical structure of the needle of the type III secretion system of Shigella flexneri. J Biol Chem 278: 17103-17107.
Cornelis, G.R., (2006) The type III secretion injectisome. Nat Rev Microbiol 4: 811-825.
Craig, L. & J. Li, (2008) Type IV pili: paradoxes in form and function. Curr Opin Struct Biol 18: 267-277.
Dang, T.A. & P.J. Christie, (1997) The VirB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface. J Bacteriol 179: 453-462.
Das, A. & Y.H. Xie, (1998) Construction of transposon Tn3phoA: its application in defining the membrane topology of the Agrobacterium tumefaciens DNA transfer proteins. Mol Microbiol 27: 405-414.
de Iannino, N.I. & R.A. Ugalde, (1989) Biochemical characterization of avirulent Agrobacterium tumefaciens chvA mutants: synthesis and excretion of beta-(1-2)glucan. J Bacteriol 171: 2842-2849.
Dijkstra, A.J. & W. Keck, (1996) Peptidoglycan as a barrier to transenvelope transport. J Bacteriol 178: 5555-5562.
Ding, Z. & P.J. Christie, (2003) Agrobacterium tumefaciens twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion. J Bact 185: 760-771.
Djamei, A., A. Pitzschke, H. Nakagami, I. Rajh & H. Hirt, (2007) Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318: 453-456.
Duckely, M., C. Oomen, F. Axthelm, P. Van Gelder, G. Waksman & A. Engel, (2005) The VirE1VirE2 complex of Agrobacterium tumefaciens interacts with single-stranded DNA and forms channels. Mol Microbiol 58: 1130-1142.
Dumas, F., M. Duckely, P. Pelczar, P. Van Gelder & B. Hohn, (2001) An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci U S A 98: 485-490.
Durand, E., G. Waksman & V. Receveur-Brechot, (2011) Structural insights into the membrane-extracted dimeric form of the ATPase TraB from the Escherichia coli pKM101 conjugation system. BMC Struct Biol 11: 4.
Eisenbrandt, R., M. Kalkum, E.M. Lai, R. Lurz, C.I. Kado & E. Lanka, (1999) Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 274: 22548-22555.
Elmore, J.M., Z.J. Lin & G. Coaker, (2011) Plant NB-LRR signaling: upstreams and downstreams. Curr Opin Plant Biol 14: 365-371.
Erbs, G., A. Silipo, S. Aslam, C. De Castro, V. Liparoti, A. Flagiello, P. Pucci, R. Lanzetta, M. Parrilli, A. Molinaro, M.A. Newman & R.M. Cooper, (2008) Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chem Biol 15: 438-448.
Felix, G. & T. Boller, (2003) Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem 278: 6201-6208.
Felix, G., J.D. Duran, S. Volko & T. Boller, (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18: 265-276.
Fernandez, D., T.A. Dang, G.M. Spudich, X.R. Zhou, B.R. Berger & P.J. Christie, (1996a) The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. J Bacteriol 178: 3156-3167.
Fernandez, D., G.M. Spudich, X.R. Zhou & P.J. Christie, (1996b) The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol 178: 3168-3176.
Ferrari, S., D.V. Savatin, F. Sicilia, G. Gramegna, F. Cervone & G.D. Lorenzo, (2013) Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci 4: 49.
Fronzes, R., P.J. Christie & G. Waksman, (2009) The structural biology of type IV secretion systems. Nat Rev Microbiol 7: 703-714.
Fronzes, R., H. Remaut & G. Waksman, (2008) Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J 27: 2271-2280.
Fujii, T., M. Cheung, A. Blanco, T. Kato, A.J. Blocker & K. Namba, (2012) Structure of a type III secretion needle at 7-A resolution provides insights into its assembly and signaling mechanisms. Proc Natl Acad Sci U S A 109: 4461-4466.
Fullner, K.J., (1998) Role of Agrobacterium virB genes in transfer of T complexes and RSF1010. J Bacteriol 180: 430-434.
Galle, M., I. Carpentier & R. Beyaert, (2012) Structure and function of the Type III secretion system of Pseudomonas aeruginosa. Curr Protein Pept Sci 13: 831-842.
Galli, D.M., J. Chen, K.F. Novak & D.J. Leblanc, (2001) Nucleotide sequence and analysis of conjugative plasmid pVT745. J Bacteriol 183: 1585-1594.
Gao, R. & D.G. Lynn, (2005) Environmental pH sensing: resolving the VirA/VirG two-component system inputs for Agrobacterium pathogenesis. J Bacteriol 187: 2182-2189.
Garza, I. & P.J. Christie, (2013) A putative transmembrane leucine zipper of Agrobacterium VirB10 is essential for t-pilus biogenesis but not type IV secretion. J Bacteriol 195: 3022-3034.
Gelvin, S.B., (2000) Agrobacterium and Plant Genes Involved in T-DNA Transfer and Integration. Annu Rev Plant Physiol Plant Mol Biol 51: 223-256.
Gelvin, S.B., (2010) Finding a way to the nucleus. Curr Opin Microbiol 13: 53-58.
Gomis-Ruth, F.X. & M. Coll, (2001) Structure of TrwB, a gatekeeper in bacterial conjugation. Int J Biochem Cell Biol 33: 839-843.
Gomis-Ruth, F.X., F. de la Cruz & M. Coll, (2002) Structure and role of coupling proteins in conjugal DNA transfer. Res Microbiol 153: 199-204.
Gomis-Ruth, F.X., G. Moncalian, R. Perez-Luque, A. Gonzalez, E. Cabezon, F. de la Cruz & M. Coll, (2001) The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409: 637-641.
Gomez-Gomez, L. & T. Boller, (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5: 1003-1011.
Goodner, B., G. Hinkle, S. Gattung, N. Miller, M. Blanchard, B. Qurollo, B.S. Goldman, Y. Cao, M. Askenazi, C. Halling, L. Mullin, K. Houmiel, J. Gordon, M. Vaudin, O. Iartchouk, A. Epp, F. Liu, C. Wollam, M. Allinger, D. Doughty, C. Scott, C. Lappas, B. Markelz, C. Flanagan, C. Crowell, J. Gurson, C. Lomo, C. Sear, G. Strub, C. Cielo & S. Slater, (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323-2328.
Grant, M.R., L. Godiard, E. Straube, T. Ashfield, J. Lewald, A. Sattler, R.W. Innes & J.L. Dangl, (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269: 843-846.
Gust, A.A., R. Biswas, H.D. Lenz, T. Rauhut, S. Ranf, B. Kemmerling, F. Gotz, E. Glawischnig, J. Lee, G. Felix & T. Nurnberger, (2007) Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 282: 32338-32348.
Hanania, U. & A. Avni, (1997) High-affinity binding site for ethylene-inducing xylanase elicitor on Nicotiana tabacum membranes. Plant J 12: 113-120.
Hansen, J.K. & K.T. Forest, (2006) Type IV pilin structures: insights on shared architecture, fiber assembly, receptor binding and type II secretion. J Mol Microbiol Biotechnol 11: 192-207.
Haraga, A., M.B. Ohlson & S.I. Miller, (2008) Salmonellae interplay with host cells. Nat Rev Microbiol 6: 53-66.
Harrington, L.C. & A.C. Rogerson, (1990) The F pilus of Escherichia coli appears to support stable DNA transfer in the absence of wall-to-wall contact between cells. J Bacteriol 172: 7263-7264.
Hawes, M.C. & L.Y. Smith, (1989) Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. J Bacteriol 171: 5668-5671.
Hawes, M.C. & S.G. Pueppke, (1987) Correlation between binding of Agrobacterium tumefaciens by root cap cells and susceptibility of plants to crown gall. Plant cell reports 6: 287-290.
Hayes, C.S., S.K. Aoki & D.A. Low, (2010) Bacterial contact-dependent delivery systems. Annu Rev Genet 44: 71-90.
He, F., G.R. Nair, C.S. Soto, Y. Chang, L. Hsu, E. Ronzone, W.F. DeGrado & A.N. Binns, (2009) Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens. J Bacteriol 191: 5802-5813.
Heckel, B.C., A.D. Tomlinson, E.R. Morton, J.H. Choi & C. Fuqua, (2014) Agrobacterium tumefaciens ExoR Controls Acid Response Genes and Impacts Exopolysaccharide Synthesis, Horizontal Gene Transfer and Virulence Gene Expression. J Bacteriol (In Press).
Henry, E., K.A. Yadeta & G. Coaker, (2013) Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity. New phytologist 199: 908-915.
Hu, X., J. Zhao, W.F. DeGrado & A.N. Binns, (2013) Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals. Proc Natl Acad Sci U S A 110: 678-683.
Huang, M.L., G.A. Cangelosi, W. Halperin & E.W. Nester, (1990a) A chromosomal Agrobacterium tumefaciens gene required for effective plant signal transduction. J Bacteriol 172: 1814-1822.
Huang, Y., P. Morel, B. Powell & C.I. Kado, (1990b) VirA, a coregulator of Ti-specified virulence genes, is phosphorylated in vitro. J Bacteriol 172: 1142-1144.
Huffaker, A., G. Pearce & C.A. Ryan, (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 103: 10098-10103.
Hwang, H.H. & S.B. Gelvin, (2004) Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16: 3148-3167.
Jakubowski, S.J., E. Cascales, V. Krishnamoorthy & P.J. Christie, (2005) Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol 187: 3486-3495.
Jakubowski, S.J., J.E. Kerr, I. Garza, V. Krishnamoorthy, R. Bayliss, G. Waksman & P.J. Christie, (2009) Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. Mol Microbiol 71: 779-794.
Jakubowski, S.J., V. Krishnamoorthy, E. Cascales & P.J. Christie, (2004) Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion System. J Mol Biol 341: 961-977.
Jin, Q. & S.Y. He, (2001) Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science 294: 2556-2558.
Jin, S., T. Roitsch, R.G. Ankenbauer, M.P. Gordon & E.W. Nester, (1990a) The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J Bacteriol 172: 525-530.
Jin, S.G., R.K. Prusti, T. Roitsch, R.G. Ankenbauer & E.W. Nester, (1990b) Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. J Bacteriol 172: 4945-4950.
Jones, J.D. & J.L. Dangl, (2006) The plant immune system. Nature 444: 323-329.
Kaku, H., Y. Nishizawa, N. Ishii-Minami, C. Akimoto-Tomiyama, N. Dohmae, K. Takio, E. Minami & N. Shibuya, (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103: 11086-11091.
Karnholz, A., C. Hoefler, S. Odenbreit, W. Fischer, D. Hofreuter & R. Haas, (2006) Functional and topological characterization of novel components of the comB DNA transformation competence system in Helicobacter pylori. J Bacteriol 188: 882-893.
Keane, P.J., A. Kerr & P.B. New, (1970) Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust. J. Biol. Sci. 23: 585-595.
Kerr, J.E. & P.J. Christie, (2010) Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 192: 4923-4934.
Kim, M.G., L. da Cunha, A.J. McFall, Y. Belkhadir, S. DebRoy, J.L. Dangl & D. Mackey, (2005) Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121: 749-759.
Klee, H.J., M.P. Gordon & E.W. Nester, (1982) Complementation analysis of Agrobacterium tumefaciens Ti plasmid mutations affecting oncogenicity. J Bacteriol 150: 327-331.
Koonin, E.V. & K.E. Rudd, (1994) A conserved domain in putative bacterial and bacteriophage transglycosylases. Trends Biochem Sci 19: 106-107.
Krall, L., U. Wiedemann, G. Unsin, S. Weiss, N. Domke & C. Baron, (2002) Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 99: 11405-11410.
Kubori, T., Y. Matsushima, D. Nakamura, J. Uralil, M. Lara-Tejero, A. Sukhan, J.E. Galan & S.I. Aizawa, (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280: 602-605.
Kubori, T., A. Sukhan, S.I. Aizawa & J.E. Galan, (2000) Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci U S A 97: 10225-10230.
Kunze, G., C. Zipfel, S. Robatzek, K. Niehaus, T. Boller & G. Felix, (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16: 3496-3507.
Kwok, T., D. Zabler, S. Urman, M. Rohde, R. Hartig, S. Wessler, R. Misselwitz, J. Berger, N. Sewald, W. Konig & S. Backert, (2007) Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449: 862-866.
Lacroix, B. & V. Citovsky, (2011) Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant. PLoS One 6: e25578.
Lacroix, B., A. Loyter & V. Citovsky, (2008) Association of the Agrobacterium T-DNA-protein complex with plant nucleosomes. Proc Natl Acad Sci U S A 105: 15429-15434.
Lacroix, B., M. Vaidya, T. Tzfira & V. Citovsky, (2005) The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 24: 428-437.
Lai, E.M., O. Chesnokova, L.M. Banta & C.I. Kado, (2000) Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. J Bacteriol 182: 3705-3716.
Lai, E.M., R. Eisenbrandt, M. Kalkum, E. Lanka & C.I. Kado, (2002) Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. J Bacteriol 184: 327-330.
Lai, E.M. & C.I. Kado, (1998) Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180: 2711-2717.
Lai, E.M. & C.I. Kado, (2002) The Agrobacterium tumefaciens T pilus composed of cyclic T pilin is highly resilient to extreme environments. FEMS Microbiol Lett 210: 111-114.
Lawley, T.D., W.A. Klimke, M.J. Gubbins & L.S. Frost, (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224: 1-15.
Li, G., P.J. Brown, J.X. Tang, J. Xu, E.M. Quardokus, C. Fuqua & Y.V. Brun, (2012) Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol Microbiol 83: 41-51.
Li, J., A. Krichevsky, M. Vaidya, T. Tzfira & V. Citovsky, (2005) Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci U S A 102: 5733-5738.
Li, L., Y. Jia, Q. Hou, T.C. Charles, E.W. Nester & S.Q. Pan, (2002) A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci U S A 99: 12369-12374.
Li, X., Q. Yang, H. Tu, Z. Lim & S.Q. Pan, (2014) Direct visualization of Agrobacterium-delivered VirE2 in recipient cells. Plant J 77: 487-495.
Liu, Y., X. Kong, J. Pan & D. Li, (2010) VIP1: linking Agrobacterium-mediated transformation to plant immunity? Plant Cell Rep 29: 805-812.
Llosa, M., J. Zupan, C. Baron & P. Zambryski, (2000) The N- and C-terminal portions of the Agrobacterium VirB1 protein independently enhance tumorigenesis. J Bacteriol 182: 3437-3445.
Low, H.H., F. Gubellini, A. Rivera-Calzada, N. Braun, S. Connery, A. Dujeancourt, F. Lu, A. Redzej, R. Fronzes, E.V. Orlova & G. Waksman, (2014) Structure of a type IV secretion system. Nature 508: 550-553.
Lu, J., A. den Dulk-Ras, P.J. Hooykaas & J.N. Glover, (2009) Agrobacterium tumefaciens VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon-helix-helix DNA-binding fold. Proc Natl Acad Sci U S A 106: 9643-9648.
Ma, L.S., A. Hachani, J.S. Lin, A. Filloux & E.M. Lai, (2014) Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta. Cell Host Microbe 16: 94-104.
Mackey, D., B.F. Holt, 3rd, A. Wiig & J.L. Dangl, (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108: 743-754.
Magori, S. & V. Citovsky, (2011) Agrobacterium counteracts host-induced degradation of its effector F-box protein. Sci Signal 4: ra69.
McCullen, C.A. & A.N. Binns, (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22: 101-127.
Michielse, C.B., A.F. Ram, P.J. Hooykaas & C.A. van den Hondel, (2004) Agrobacterium-mediated transformation of Aspergillus awamori in the absence of full-length VirD2, VirC2, or VirE2 leads to insertion of aberrant T-DNA structures. J Bacteriol 186: 2038-2045.
Moncalian, G., E. Cabezon, I. Alkorta, M. Valle, F. Moro, J.M. Valpuesta, F.M. Goni & F. de La Cruz, (1999) Characterization of ATP and DNA binding activities of TrwB, the coupling protein essential in plasmid R388 conjugation. J Biol Chem 274: 36117-36124.
Moore, L.W. & G. Warren, (1979) Agrobacterium Radiobacter Strain 84 and Biological Control of Crown Gall. Annu Rev Phytopathol 17: 163-179.
Mossey, P., A. Hudacek & A. Das, (2010) Agrobacterium tumefaciens type IV secretion protein VirB3 is an inner membrane protein and requires VirB4, VirB7, and VirB8 for stabilization. J Bacteriol 192: 2830-2838.
Mushegian, A.R., K.J. Fullner, E.V. Koonin & E.W. Nester, (1996) A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc Natl Acad Sci U S A 93: 7321-7326.
Ooms, G., P.M. Klapwijk, J.A. Poulis & R.A. Schilperoort, (1980) Characterization of Tn904 insertions in octopine Ti plasmid mutants of Agrobacterium tumefaciens. J Bacteriol 144: 82-91.
Ophel, K. & A. Kerr, (1990) Agrobacterium vitis sp. nov. for Strains of Agrobacterium biovar 3 from Grapevines. Int J Syst Bacteriol 40: 236-241.
Otten, L., H. Degreve, J. Leemans, R. Hain, P. Hooykaas & J. Schell, (1984) Restoration of virulence of Vir region mutants of Agrobacterium tumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains. Mol. Gen Genet 195: 159-163.
Palmer, A.G., R. Gao, J. Maresh, W.K. Erbil & D.G. Lynn, (2004) Chemical biology of multi-host/pathogen interactions: chemical perception and metabolic complementation. Annu Rev Phytopathol 42: 439-464.
Pansegrau, W., F. Schoumacher, B. Hohn & E. Lanka, (1993) Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation. Proc Natl Acad Sci U S A 90: 11538-11542.
Parke, D., L.N. Ornston & E.W. Nester, (1987) Chemotaxis to plant phenolic inducers of virulence genes is constitutively expressed in the absence of the Ti plasmid in Agrobacterium tumefaciens. J Bacteriol 169: 5336-5338.
Paschos, A., G. Patey, D. Sivanesan, C. Gao, R. Bayliss, G. Waksman, D. O'Callaghan & C. Baron, (2006) Dimerization and interactions of Brucella suis VirB8 with VirB4 and VirB10 are required for its biological activity. Proc Natl Acad Sci U S A 103: 7252-7257.
Patel, R., S.M. Smith & C. Robinson, (2014) Protein transport by the bacterial Tat pathway. Biochim Biophys Acta 1843: 1620-1628.
Pearce, G., D. Strydom, S. Johnson & C.A. Ryan, (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253: 895-897.
Pelicic, V., (2008) Type IV pili: e pluribus unum? Mol Microbiol 68: 827-837.
Peralta, E.G., R. Hellmiss & W. Ream, (1986) Overdrive, a T-DNA transmission enhancer on the A. tumefaciens tumour-inducing plasmid. EMBO J 5: 1137-1142.
Planet, P.J., S.C. Kachlany, R. DeSalle & D.H. Figurski, (2001) Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A 98: 2503-2508.
Preston, G.M., D.J. Studholme & I. Caldelari, (2005) Profiling the secretomes of plant pathogenic Proteobacteria. FEMS Microbiol Rev 29: 331-360.
Rigel, N.W. & M. Braunstein, (2008) A new twist on an old pathway--accessory Sec systems. Mol Microbiol 69: 291-302.
Ripoll-Rozada, J., A. Pena, S. Rivas, F. Moro, F. de la Cruz, E. Cabezon & I. Arechaga, (2012) Regulation of the type IV secretion ATPase TrwD by magnesium: implications for catalytic mechanism of the secretion ATPase superfamily. J Biol Chem 287: 17408-17414.
Ripoll-Rozada, J., S. Zunzunegui, F. de la Cruz, I. Arechaga & E. Cabezon, (2013) Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems. J Bacteriol 195: 4195-4201.
Ritter, C. & J.L. Dangl, (1995) The avrRpm1 gene of Pseudomonas syringae pv. maculicola is required for virulence on Arabidopsis. Mol Plant Microbe Interact 8: 444-453.
Roine, E., W. Wei, J. Yuan, E.L. Nurmiaho-Lassila, N. Kalkkinen, M. Romantschuk & S.Y. He, (1997) Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 94: 3459-3464.
Ron, M. & A. Avni, (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16: 1604-1615.
Ryan, C.A. & G. Pearce, (2003) Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci U S A 100: 14577-14580.
Sagulenko, E., V. Sagulenko, J. Chen & P.J. Christie, (2001a) Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol 183: 5813-5825.
Sagulenk
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57020-
dc.description.abstract農桿菌為一種革蘭氏陰性的植物病原細菌,其能藉由演化上具保守性的細菌第四型蛋白質分泌系統(type IV secretion system, T4SS)將T-DNA傳送並嵌入植物基因體中。T4SS主要由VirD4與11個VirB蛋白質(VirB1至VirB11)所組成。T線毛(T-pilus)主要由VirB2與次要之VirB5蛋白質所組成,所有的VirB 蛋白質都為產生T線毛所必需。VirB2為一具保守性之T4SS必需組成元件,但是VirB2蛋白質及其所組成的T線毛對於農桿菌的毒性與T-DNA傳送的過程中所扮演的角色仍然未知。因此在此篇論文當中,我們利用產生34個VirB2胺基酸替換的突變株,來研究VirB2蛋白質對於VirB2的穩定度,細胞外VirB2/T線毛的產生以及農桿菌的毒力所扮演的功能。藉由分析細胞外VirB2的產生(ExB2+ 或 ExB2-)與在蕃茄的莖上產生腫瘤的能力(Vir+ 或Vir-),所有的突變株可以分為三種:ExB2-/Vir-,ExB2-/Vir+與ExB2+/Vir+。並且我們也藉由電子顯微鏡確認了五種ExB2-/Vir+的突變株為具有野生株程度的毒力但失去產生T線毛的能力,因此稱其為T-pilus-/Vir+突變株。雖然這些T-pilus-/Vir+的突變株在蕃茄莖上或馬鈴薯塊莖上仍保有野生株程度的毒力,但是在阿拉伯芥的小苗上,報導基因的短暫表現效率卻大幅下降。因此,我們提供了T線毛在農桿菌轉型過程上扮演的一個角色,並且鑑定出對於VirB2蛋白質的穩定度、T線毛的產生、腫瘤產生的能力與短暫表現效率有嚴重影響的區域或胺基酸。有鑑於在阿拉伯芥上使用短暫基因表現的方法來進行植物功能性研究的潛力,因此我們更進一步在阿拉伯芥的小苗上分析不同生物因子與生長條件,並確定一種組合可以得到最佳短暫轉型效率與短暫基因表現的方法。在使用β-glucuronidase (GUS)作為報導基因下,我們發現使用一種特定的農桿菌菌株並且配合毒性基因的預先誘導表現,能於所有被感染的阿拉伯芥小苗中達到高效率的基因短暫表現。我們也發現在感染的培養液中添加AB 鹽類與pH 5.5的緩衝液能明顯地提高短暫表現效率,並且較目前已發表的兩種方法更佳。更重要地,這樣高效率的短暫表現並不僅限於阿拉伯芥免疫受器突變株efr-1,在阿拉伯芥野生株Col-0也能達到。最後,這種高效率的基因表達方法也證實得以應用在不同的研究當中,如檢視轉錄因子的動態表現情形、觀察生物時鐘基因的調控情形、蛋白質於細胞內的分佈位置與蛋白質與蛋白質之間的交互作用等等。因此我們命名此方法為AGROBEST (Agrobacterium-mediated enhanced seedling transformation)。這種簡單、快速又可靠的短暫基因表達方法在阿拉伯芥小苗上達到了可以進行功能性分析的層級,並且也提供了一個新的系統來剖析農桿菌傳送DNA的分子機制。zh_TW
dc.description.abstractAgrobacterium tumefaciens is a Gram-negative plant pathogenic bacterium with the unique ability to transfer DNA into plant genomes. This transfer is mediated by an evolutionarily conserved type IV secretion system (T4SS) comprising VirD4 coupling protein and 11 VirB proteins (VirB1 to VirB11). All VirB proteins are required for the production of T-pilus, which consists of processed VirB2 (T-pilin) and VirB5 as major and minor subunits, respectively. VirB2 is an essential component of T4SS, but the roles of VirB2 and the assembled T-pilus in Agrobacterium virulence and the T-DNA transfer process remain unknown. In this study, we generated 34 VirB2 amino acid substitution variants to study the functions of VirB2 involved in VirB2 stability, extracellular VirB2/T-pilus production and virulence of A. tumefaciens. From the capacity for extracellular VirB2 production (ExB2+ or ExB2-) and tumorigenesis on tomato stems (Vir+ or Vir-), the mutants could be classified into three groups: ExB2-/Vir-, ExB2-/Vir+, and ExB2+/Vir+. We also confirmed by electron microscopy that five ExB2-/Vir+ mutants exhibited a wild-type level of virulence with their deficiency in T-pilus formation and therefore renamed as T-pilus-/Vir+ mutants. Interestingly, although the five T-pilus-/Vir+ uncoupling mutants retained a wild-type level of tumorigenesis efficiency on tomato stems and/or potato tuber discs, their transient transformation efficiency in Arabidopsis seedlings was highly attenuated. In conclusion, we have provided evidence for a role of T-pilus in Agrobacterium transformation process and have identified the domains and amino acid residues critical for VirB2 stability, T-pilus biogenesis, tumorigenesis, and transient transformation efficiency. In view of the potential applications of the transient transformation assay using the Arabidopsis seedlings in gene functional studies, further systematic investigations of various biological factors and growth variances were performed to define a combination of key factors that maximize the high transient transformation and reporter gene expression efficiency in Arabidopsis seedlings. Using β-glucuronidase (GUS) as a reporter for Agrobacterium transient transformation assay, we found that the use of a specific disarmed Agrobacterium strain with vir gene pre-induction resulted in high transient expression levels in all infected young Arabidopsis seedlings. The presence of AB salts in plant culture medium buffered with acidic pH 5.5 during Agrobacterium infection greatly enhanced transient expression levels, which are significantly higher than two existing methods. Importantly, the highly increased transient expression efficiency is not only achieved in the immune receptor mutant efr-1 but also in wild type Col-0 seedlings. Finally, this high transformation efficiency enabled the versatile applicability of the method for examining transcription factor actions and circadian reporter-gene regulation, as well as protein subcellular localization and protein–protein interactions in physiological contexts. This simple, fast, reliable, and robust transient expression system is named as AGROBEST (Agrobacterium-mediated enhanced seedling transformation), which elevates the transient expression technology to the level of functional studies in Arabidopsis seedlings and offers a new system to dissect the molecular mechanisms involved in Agrobacterium-mediated DNA transfer.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:33:05Z (GMT). No. of bitstreams: 1
ntu-103-D96633001-1.pdf: 5224529 bytes, checksum: af086768bc259d1413074f98a8bdc899 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 I
中文摘要 II
ABSTRACT IV
TABLE OF CONTENTS VI
LIST OF FIGURES XII
LIST OF TABLES XVI
LIST OF ABBREVIATIONS XVIII
CHAPTER 1 GENERAL INTRODUCTION - 1 -
1.1 GENERAL INTRODUCTION OF AGROBACTERIUM TUMEFACIENS 2
1.1.1 Taxonomy and pathogenesis 2
1.1.2 Brief historical review of Agrobacterium 3
1.1.3 Agrobacterium virulence genes 3
1.2 MOLECULAR MECHANISMS OF AGROBACTERIUM-PLANT INTERACTIONS 4
1.2.1 Signals sensing, virulence genes activation and attachment to the plant cell 4
1.2.2 Production of substrates and formation of VirB-complex 7
1.2.3 Substrate transport through T4SS and into the plant cell 9
1.2.4 T-complex assembly and trafficking, nuclear import and T-DNA integration inside the plant cell 10
1.3 PLANT IMMUNITY AND HOST RESPONSES 13
1.3.1 Pattern-triggered immunity (PTI) 13
1.3.2 Effector-triggered immunity (ETI) 14
1.4 AGROBACTERIUM PROTEIN SECRETION SYSTEMS 15
1.4.1 General introduction of bacterial protein secretion systems 15
1.4.2 General introduction of bacterial T4SS 17
1.4.3 Energetic components - VirD4, VirB4 and VirB11 18
1.4.4 Core subcomplex components - VirB6, VirB7, VirB8, VirB9 and VirB10 19
1.4.5 T-pilus components - VirB2 and VirB5 22
1.4.6 VirB1 and VirB3 23
1.5 BACTERIAL PILI 24
1.5.1 General introduction of bacterial pili 24
1.5.2 Type III secretion pili/needle 25
1.5.3 Type IV secretion pili 26
1.5.4 Agrobacterium T-pilus 27
1.6 FIGURES 29
1.7 REFERENCE 35
CHAPTER 2 EXPRESSION AND FUNCTIONAL CHARACTERIZATION OF THE AGROBACTERIUM VIRB2 AMINO ACID SUBSTITUTION VARIANTS IN T-PILUS BIOGENESIS, VIRULENCE, AND TRANSIENT TRANSFORMATION EFFICIENCY 55
2.1 ABSTRACT - 56 -
2.2 INTRODUCTION - 57 -
2.3 MATERIALS AND METHODS - 60 -
2.3.1 Bacterial strains, growth and T-pilus induction conditions - 60 -
2.3.2 Construction of mutant strains and complementing plasmids - 61 -
2.3.3 Isolation of intracellular and extracellular fractions - 62 -
2.3.5 SDS-PAGE and western blot analysis - 64 -
2.3.6 Electron microscopy - 64 -
2.3.7 Transient transformation assay in Arabidopsis seedlings - 65 -
2.3.8 Potato tumor assay - 66 -
2.3.9 RNA extraction and quantitative PCR - 67 -
2.4 RESULTS - 68 -
2.4.1 VirB2 family proteins comprise variable N-terminal signal peptides and conserved C-terminal processing products - 68 -
2.4.2 Identification of domains and amino acid residues critical for VirB2 stability, processing, and extracellular VirB2 production - 68 -
2.4.3 Identification of VirB2 variants uncoupling virulence and T-pilus biogenesis phenotypes - 70 -
2.4.4 T-pilus-/Vir+ uncoupling mutants show highly attenuated transient transformation efficiency in Arabidopsis seedlings - 72 -
2.4.5 Transient transformation assays of Arabidopsis seedlings with wounded cotyledons - 73 -
2.4.5 Phenotypes comparison of pTiC58 G119A and G119C - 73 -
2.4.7 Measuring plant defense marker gene FRK1 expression infected with uncoupling mutants - 75 -
2.5 DISCUSSION - 76 -
2.6 FIGURES - 81 -
2.7 TABLES - 99 -
2.8 REFERENCE 113
CHAPTER 3 AGROBEST: AN EFFICIENT AGROBACTERIUM-MEDIATED TRANSIENT EXPRESSION METHOD FOR VERSATILE GENE FUNCTION ANALYSES IN ARABIDOPSIS SEEDLINGS 119
3.1 ABSTRACT 120
3.2 INTRODUCTION 121
3.3 MATERIALS AND METHODS 124
3.3.1 Bacterial growth conditions and constructions 124
3.3.2 Plant material and growth conditions 126
3.3.3 Agrobacterium infection in Arabidopsis seedlings 127
3.3.4 Infection procedures by Li et al. (FAST method) 128
3.3.5 Infection procedures by Marion et al. 128
3.3.6 Plant RNA extraction and quantitative RT-PCR 129
3.3.7 GUS staining and activity assays 130
3.3.8 Confocal microscopy 130
3.3.9 Transient expression of MYB75 and anthocyanin content assay 130
3.3.10 Transient expression of GI::LUC2 and bioluminescence measurement 131
3.3.11 Luciferase activity assay 132
3.4 RESULTS 133
3.4.1 Cotyledons of young Arabidopsis EF-TU receptor mutant is highly susceptible to Agrobacterium-mediated transient transformation 133
3.4.2 Buffered medium at pH 5.5 with AB salts is critical for high transient expression efficiency 134
3.4.3 Disarmed Agrobacterium strain C58C1(pTiB6S3ΔT)H enables highly efficient AGROBEST-mediated transient expression in Col-0 seedlings 135
3.4.4 AGROBEST achieves higher transient expression efficiency than existing methods in both efr-1 and Col-0 seedlings 137
3.4.5 Impact of seedling age and infection time on transient expression efficiency of AGROBEST in efr-1 seedlings 138
3.4.6 Widespread transient transformation events in different organs and cell types 139
3.4.7 Studies of protein subcellular localization and protein–protein interactions 140
3.4.8 AGROBEST for the expression analysis of a circadian clock reporter gene 141
3.4.9 AGROBEST for functional assays of transcription factor MYB75 142
3.4.10 Measuring plant defense marker gene FRK1 expression with ABM200 and AGROBEST methods 143
3.4.10 Analysis of VirB2 protein levels of A. tumefaciens cells cultured in ABM200 and AGROBEST methods 144
3.5 DISCUSSION 145
3.5.1 AGROBEST enables high transient transformation and expression efficiency in intact Arabidopsis young seedlings 145
3.5.2 Widespread and differential transient transformation events in different organs and cell types 147
3.5.3 Key factors for high transient transformation/expression efficiency 148
3.6 FIGURES 153
3.7 TABLES 171
3.8 REFERENCE 181
CHAPTER 4 CONCLUSION REMARKS AND FUTURE PROSPECTS 187
dc.language.isoen
dc.subject阿拉伯芥zh_TW
dc.subjectT線毛zh_TW
dc.subject毒性zh_TW
dc.subjectVirB2zh_TW
dc.subject農桿菌zh_TW
dc.subject基因表現zh_TW
dc.subject短暫表現zh_TW
dc.subject功能性分析zh_TW
dc.subjectgene expressionen
dc.subjectVirB2en
dc.subjectvirulenceen
dc.subjectT-pilusen
dc.subjectArabidopsisen
dc.subjecttransient transformationen
dc.subjectAgrobacteriumen
dc.subjectinnate immunityen
dc.subjectgain-of-functionen
dc.title農桿菌 VirB2 蛋白質之功能鑑定與發展一種用於基因功能性分析之高效率轉型方法zh_TW
dc.titleFunctional Characterizations of the Agrobacterium VirB2 and Development of an Efficient Transient Expression System for Gene Functional Studiesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.coadvisor陳昭瑩(Chao-Ying-Chen)
dc.contributor.oralexamcommittee葉信宏(Hsin-Hung Yeh),林乃君(Nai-Chun Lin),黃皓瑄(Hau-Hsuan Hwang)
dc.subject.keyword農桿菌,VirB2,毒性,T線毛,阿拉伯芥,短暫表現,基因表現,功能性分析,zh_TW
dc.subject.keywordAgrobacterium,VirB2,virulence,T-pilus,Arabidopsis,transient transformation,gene expression,innate immunity,gain-of-function,en
dc.relation.page194
dc.rights.note有償授權
dc.date.accepted2014-08-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved