Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57018
標題: 利用修正有限配點法產生複連通區域之符合邊界正交網格
2D Orthogonal Grid Generation of Multi-connected Regions Using Modified Finite Point Method
作者: Cheng-Yen Tsai
蔡政諺
指導教授: 蔡丁貴
關鍵字: 修正有線配點法,拉普拉斯方程式,柯西里曼條件式,複連通區域,區域連結,無網格數值方法,正交網格,
MFPM,multi-connected region,Cauchy-Riemann conditions,mesh-less,regional connectivity,Laplace equation,orthogonal grid,
出版年 : 2014
學位: 碩士
摘要: 本文利用修正有限配點法(MFPM),求解任意幾何形狀內二維正交網格的產生,其控制方程式為拉普拉斯方程式。
修正有限配點法(MFPM)是利用多項式為基底函數,搭配移動最小二乘法的無網格數值計算方法。比較配點法(FPM),在局部邊界端配點時加入控制方程式還有邊界條件的因子,有助於改善邊界端還有角落端的不穩定;有別於傳統之網格數值方法,數值點跟數值點之間是沒有直接的關係式,所以在邊界上要如何給定也是相對自由的。
利用無網格數值方法高度自由的特性,傳統數值方法邊界條件容易受到分支切割的限制只能求解特定型態網格;傳統數值方法在不規則的計算區域在邊界上或角落上直接求解容易出現不穩定的現象,導致必須先在簡單的區域求解在利用各種數學方法轉換成想要的區域,過程相當繁雜,本模式可直接求解出穩定的正交網格。
本文利用圓型、橢圓、機翼做為複連通的挖空區域,來求解正交網格,由於控制方程式為拉普拉斯方程式,所以全區域都符合柯西里曼條件式;在流線場邊界條件上我們借助勢能場的偏導數解,搭配柯西里曼條件式,利用數值積分的方式來確認上邊界跟內邊界的狄氏邊界條件值。
挖空區域的邊界是平滑且變化不劇烈,如圓型、橢圓,可以得到相當穩定的未知函數解、跟偏導數解,但當我們把把橢圓調整的很扁的時候,我們發現開始有不穩定的現象,尤其在頭尾的兩端我們認為在進行數值模擬時,存在距離很近可是卻相關性很低的點,所以加入區域連結的概念,把區域做切割,進行配點時,篩選排除掉相關性低區域中的點,利用此一觀念,我們在很扁的橢圓案例上,獲得良好的結果,甚至在有尖點的機翼案例上,也都表現出色。
In this study, the Modified Finite Point Method (MFPM) is used to solve the governing equations which are Laplace equations and to obtain multi-connected region 2-dimensional orthogonal grid.
Modified Finite Point Method (MFPM) is a mesh-less (mesh-free) numerical method. MFPM’s base functions are polynomials and collocate with moving least square(MLS). Compared with Finite Point Method (FPM), collocation of MFPM at boundary takes into account of both governing equations and boundary conditions. It helps to improve the unstable numerical phenomena at boundaries and corners.
Unlike traditional grid-base numerical methods, there is no direct relationship between a point and another nearby point so the boundary conditions are relatively free to be applied. Previously, boundary conditions in traditional numerical methods were restricted to the branch cut so we can only solve certain specific-type grids. Also, it has been found that traditional numerical methods become unstable when solving governing equations directly at the boundary or corners. The MFPM model has been found that with regional connectivity approach it can directly solve the problem stably and obtain orthogonal grids.
In this study, examples using circle, Rankine oval and NACA airfoil as hollowed-out domain are used to generate orthogonal grids. Based on Cauchy-Riemann conditions, Dirichlet’s boundary condition of the internal boundary of hollowed geometry has been derived to improve the accuracy of orthogonal computations.
When hollowed area's boundary is smooth and no dramatic changes, such as circle, Rankine oval, very stable solutions can be obtained, with very accurate partial derivatives of the solutions. For a very flat Rankine oval, phenomena of numerical instability occurred, especially, near the head and tail of geometry, due to inappropriately including low-related points in different regions into collocation processes. By applying the concept of regional connectivity and dividing the whole domain into sub-domains, accurate collocation only allowed by including grids in appropriate regions. Using this concept, in the case of flat Rankine ovals and NACA airfoils with sharp points, present MFPM performed very well.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57018
全文授權: 有償授權
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
8.91 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved