Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56995
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林彥蓉(Yann-rong Lin) | |
dc.contributor.author | Yee Ching Choong | en |
dc.contributor.author | 鍾雨晴 | zh_TW |
dc.date.accessioned | 2021-06-16T06:32:36Z | - |
dc.date.available | 2025-07-27 | |
dc.date.copyright | 2020-09-02 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-27 | |
dc.identifier.citation | Araki, T. 2001. Transition from vegetative to reproductive phase. Curr Opin Plant Biol 4 (1):63-68. doi: 10.1016/S1369-5266(00)00137-0. Awika, J. M. 2011. Major Cereal Grains Production and Use around the World. In Advances in Cereal Science: Implications to Food Processing and Health Promotion, 1-13. American Chemical Society. Bailey, T. L., M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren, W. W. Li, and W. S. Noble. 2009. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res 37 (suppl_2):W202-W208. doi: 10.1093/nar/gkp335. Balasubramanian, S., S. Sureshkumar, J. Lempe, and D. Weigel. 2006. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2 (7):e106. doi: 10.1371/journal.pgen.0020106. Bandyopadhyay, T., M. Muthamilarasan, and M. Prasad. 2017. Millets for next generation climate-smart agriculture. Front Plant Sci 8:1266. doi: 10.3389/fpls.2017.01266. Baurle, I., and C. Dean. 2006. The timing of developmental transitions in plants. Cell 125 (4):655-64. doi: 10.1016/j.cell.2006.05.005. Benabdelmouna, A., M. Abirached-Darmency, and H. Darmency. 2001. Phylogenetic and genomic relationships in Setaria italica and its close relatives based on the molecular diversity and chromosomal organization of 5S and 18S-5.8S-25S rDNA genes. Theor Appl Genet 103 (5):668-677. doi: 10.1007/s001220100596. Bennetzen, J. L., J. Schmutz, H. Wang, R. Percifield, J. Hawkins, A. C. Pontaroli, M. Estep, L. Feng, J. N. Vaughn, J. Grimwood, J. Jenkins, K. Barry, E. Lindquist, U. Hellsten, S. Deshpande, X. Wang, X. Wu, T. Mitros, J. Triplett, X. Yang, C. Y. Ye, M. Mauro-Herrera, L. Wang, P. Li, M. Sharma, R. Sharma, P. C. Ronald, O. Panaud, E. A. Kellogg, T. P. Brutnell, A. N. Doust, G. A. Tuskan, D. Rokhsar, and K. M. Devos. 2012. Reference genome sequence of the model plant Setaria. Nat Biotechnol 30 (6):555-61. doi: 10.1038/nbt.2196. Blaise, M., P. Girardin, and B. Millet. 1992. Developmental stages and floral ontogenesis of foxtail millet Setaria italica (L) P Beauv. Agronomie 12 (2):141-156. Brambilla, V., J. Gomez-Ariza, M. Cerise, and F. Fornara. 2017. The importance of being on time: regulatory networks controlling photoperiodic flowering in cereals. Front Plant Sci 8:665. doi: 10.3389/fpls.2017.00665. Chen, Y. C. 2020. Genetic diversity analysis and genome-wide association study of heading date in the foxtail millet (Setaria italica) diversity panel.Master Thesis, Department of Agronomy, National Taiwan University. Chen, Y. R., S. Y. Yin, S. M. Kuo, Y. C. Tsai, W. H. Hsieh, and Y. R. Lin. 2017. Investigation of important agronomic traits and grain quality of taiwanese foxtail millet (Setaria italica (L.) P. Beauv.). Crop, Environment Bioinformatics 14 (4):187-201. doi: 10.30061/CEB.201712_14(4).0001. Cho, L. H., J. Yoon, and G. An. 2017. The control of flowering time by environmental factors. Plant J 90 (4):708-719. doi: 10.1111/tpj.13461. Colasanti, J., and V. Coneva. 2009. Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiol 149 (1):56-62. doi: 10.1104/pp.108.130500. Crawford, G. W. 2017. Plant Domestication in East Asia. In Handbook of East and Southeast Asian Archaeology, edited by Habu, Junko, Peter V. Lape and John W. Olsen, 421-435. New York, NY: Springer New York. Darmency, H., G. R. Zangre, and J. Pernes. 1987. The wild-weed-crop complex in Setaria: a hybridization study. Genetica 75 (2):103-107. doi: 10.1007/BF00055253. de Wet, J. M. J., L. L. Oestry-Stidd, and J. I. Cubero. 1979. Origins and evolution of foxtail millets (Setaria italica). Journal d'agriculture traditionnelle et de botanique appliquée 26 (1):53-64. doi: 10.3406/jatba.1979.3783. Dekker, J. 2003. The Foxtail (Setaria) Species-Group. Weed Sci 51 (5):641-656. Diao, X., and G. Jia. 2017. Origin and Domestication of Foxtail Millet. In Genetics and Genomics of Setaria, edited by Doust, Andrew and Xianmin Diao, 61-72. Cham: Springer International Publishing. Doi, K., T. Izawa, T. Fuse, U. Yamanouchi, T. Kubo, Z. Shimatani, M. Yano, and A. Yoshimura. 2004. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18 (8):926-36. doi: 10.1101/gad.1189604. Doust, A. N., M. Mauro-Herrera, J. G. Hodge, and J. Stromski. 2017. The C4 model grass Setaria is a short day plant with secondary long day genetic regulation. Front Plant Sci 8:1062. doi: 10.3389/fpls.2017.01062. Dwivedi, S., Upadhyaya, H., Senthilvel, S., Hash, C., Fukunaga, K., Diao, X., Santra, D., Baltensperger, D. and Prasad, M. 2011. Millets: Genetic and Genomic Resources. In Plant Breeding Reviews, 247-375. FAO. 2020. FAOSTAT Statistical Database. accessed 26 April 2020. http://www.fao.org/statistics/en/. Fukunaga, K., N. Izuka, T. Hachiken, S. Mizuguchi, H. Ito, and K. Ichitani. 2015. A nucleotide substitution at the 5′ splice site of intron 1 of rice HEADING DATE 1 (HD1) gene homolog in foxtail millet, broadly found in landraces from Europe and Asia. The Crop Journal 3 (6):481-488. doi: https://doi.org/10.1016/j.cj.2015.07.003. Fuller, D. Q. 2006. Agricultural origins and frontiers in South Asia: a working synthesis. J World Prehist 20 (1):1-86. doi: 10.1007/s10963-006-9006-8. Goodstein, D. M., S. Shu, R. Howson, R. Neupane, R. D. Hayes, J. Fazo, T. Mitros, W. Dirks, U. Hellsten, N. Putnam, and D. S. Rokhsar. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40 (Database issue):D1178-86. doi: 10.1093/nar/gkr944. Griffiths, S., R. P. Dunford, G. Coupland, and D. A. Laurie. 2003. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131 (4):1855-67. doi: 10.1104/pp.102.016188. Gupta, A., S. Sood, P. K. Agrawal, and J. C. Bhatt. 2012. Floral biology and pollination system in small millets. The European Journal of Plant Science and Biotechnology 6:80-86. Gupta, S., K. Kumari, M. Muthamilarasan, S. K. Parida, and M. Prasad. 2014. Population structure and association mapping of yield contributing agronomic traits in foxtail millet. Plant Cell Rep 33 (6):881-93. doi: 10.1007/s00299-014-1564-0. Heh, C. M., T. F. Mei, and S. S. Yang. 1937. Anthesis of millet, Setaria italica (L.) Beauv. Agron J 29 (10):845-853. doi: 10.2134/agronj1937.00021962002900100007x. Hosoda, K., A. Imamura, E. Katoh, T. Hatta, M. Tachiki, H. Yamada, T. Mizuno, and T. Yamazaki. 2002. Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. Plant Cell 14 (9):2015-29. doi: 10.1105/tpc.002733. Hu, B., J. Jin, A.-Y. Guo, H. Zhang, J. Luo, and G. Gao. 2014. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31 (8):1296-1297. doi: 10.1093/bioinformatics/btu817. Hu, H., M. Mauro-Herrera, and A. N. Doust. 2018. Domestication and improvement in the model C4 grass, Setaria. Front Plant Sci 9:719. doi: 10.3389/fpls.2018.00719. Huang, J., H. Yu, X. Guan, G. Wang, and R. Guo. 2015. Accelerated dryland expansion under climate change. Nat Clim Change 6 (2):166-171. doi: 10.1038/nclimate2837. Ishikawa, R., M. Aoki, K. Kurotani, S. Yokoi, T. Shinomura, M. Takano, and K. Shimamoto. 2011. Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Mol Genet Genomics 285 (6):461-70. doi: 10.1007/s00438-011-0621-4. Itoh, H., Y. Nonoue, M. Yano, and T. Izawa. 2010. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 42 (7):635-8. doi: 10.1038/ng.606. Jaiswal, V., S. Gupta, V. Gahlaut, M. Muthamilarasan, T. Bandyopadhyay, N. Ramchiary, and M. Prasad. 2019. Genome-wide association study of major agronomic traits in foxtail millet (Setaria italica L.) using ddRAD sequencing. Sci Rep 9 (1):5020. doi: 10.1038/s41598-019-41602-6. Jia, G., X. Huang, H. Zhi, Y. Zhao, Q. Zhao, W. Li, Y. Chai, L. Yang, K. Liu, H. Lu, C. Zhu, Y. Lu, C. Zhou, D. Fan, Q. Weng, Y. Guo, T. Huang, L. Zhang, T. Lu, Q. Feng, H. Hao, H. Liu, P. Lu, N. Zhang, Y. Li, E. Guo, S. Wang, S. Wang, J. Liu, W. Zhang, G. Chen, B. Zhang, W. Li, Y. Wang, H. Li, B. Zhao, J. Li, X. Diao, and B. Han. 2013. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45 (8):957-61. doi: 10.1038/ng.2673. Jia, X., L. Dai, J. Quan, Z. Li, B. Fan, H. Zhang, F. Yu, D. Hou, and G. a. Shi. 2018. Cloning and mutation sites anaysis of a putative Hd3a-like gene in eleven of foxtail millet cultivars. Pak J Agric Sci 55 (1):29-32. doi: 10.21162/PAKJAS/18.5429. Kaneko-Suzuki, M., R. Kurihara-Ishikawa, C. Okushita-Terakawa, C. Kojima, M. Nagano-Fujiwara, I. Ohki, H. Tsuji, K. Shimamoto, and K. I. Taoka. 2018. TFL1-like proteins in rice antagonize rice FT-like protein in inflorescence development by competition for complex formation with 14-3-3 and FD. Plant Cell Physiol 59 (3):458-468. doi: 10.1093/pcp/pcy021. Kellogg, E. A., S. S. Aliscioni, O. Morrone, J. Pensiero, and F. Zuloaga. 2009. A Phylogeny of Setaria (Poaceae, Panicoideae, Paniceae) and Related Genera Based on the Chloroplast Gene ndhF. Int J of Plant Sci 170 (1):117-131. doi: 10.1086/593043. Khanna, R., B. Kronmiller, D. R. Maszle, G. Coupland, M. Holm, T. Mizuno, and S. H. Wu. 2009. The Arabidopsis B-box zinc finger family. Plant Cell 21 (11):3416-20. doi: 10.1105/tpc.109.069088. Kobayashi, Y., H. Kaya, K. Goto, M. Iwabuchi, and T. Araki. 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286 (5446):1960. doi: 10.1126/science.286.5446.1960. Kojima, S., Y. Takahashi, Y. Kobayashi, L. Monna, T. Sasaki, T. Araki, and M. Yano. 2002. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43 (10):1096-1105. doi: 10.1093/pcp/pcf156. Kole, C., M. Muthamilarasan, R. Henry, D. Edwards, R. Sharma, M. Abberton, J. Batley, A. Bentley, M. Blakeney, J. Bryant, H. Cai, M. Cakir, L. J. Cseke, J. Cockram, A. C. de Oliveira, C. De Pace, H. Dempewolf, S. Ellison, P. Gepts, A. Greenland, A. Hall, K. Hori, S. Hughes, M. W. Humphreys, M. Iorizzo, A. M. Ismail, A. Marshall, S. Mayes, H. T. Nguyen, F. C. Ogbonnaya, R. Ortiz, A. H. Paterson, P. W. Simon, J. Tohme, R. Tuberosa, B. Valliyodan, R. K. Varshney, S. D. Wullschleger, M. Yano, and M. Prasad. 2015. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:563. doi: 10.3389/fpls.2015.00563. Komiya, R., A. Ikegami, S. Tamaki, S. Yokoi, and K. Shimamoto. 2008. Hd3a and RFT1 are essential for flowering in rice. Development 135 (4):767-74. doi: 10.1242/dev.008631. Koornneef, M., C. J. Hanhart, and J. H. van der Veen. 1991. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229 (1):57-66. doi: 10.1007/BF00264213. Kumar, A., V. Tomer, A. Kaur, V. Kumar, and K. Gupta. 2018. Millets: a solution to agrarian and nutritional challenges. Agric Food Secur 7 (1). doi: 10.1186/s40066-018-0183-3. Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33 (7):1870-4. doi: 10.1093/molbev/msw054. Kuo, S. M., Y. R. Chen, S. Y. Yin, Q. X. Ba, Y. C. Tsai, W. H. J. Kuo, and Y. R. Lin. 2018. Waxy allele diversification in foxtail millet (Setaria italica) landraces of Taiwan. PLoS One 13 (12):e0210025. doi: 10.1371/journal.pone.0210025. Lata, C., S. Gupta, and M. Prasad. 2013. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33 (3):328-43. doi: 10.3109/07388551.2012.716809. Lazakis, C. M., V. Coneva, and J. Colasanti. 2011. ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize. J Exp Bot 62 (14):4833-42. doi: 10.1093/jxb/err129. Li, C. H., W. K. Pao, and H. W. Li. 1942. Interspecific crosses in Setaria: II. cytological studies of interspecific hybrids involving: 1, S. faberii and S. italica, and 2, a three way cross, F2 of S. italica × S. viridis and S. faberii. J Hered 33 (10):351-355. doi: 10.1093/oxfordjournals.jhered.a105092. Li, H. W., C. J. Meng, and T. N. Liu. 1935. Problems in the breeding of millet (Setaria italica (L.) Beauv.). Agron J 27 (12):963-970. doi: 10.2134/agronj1935.00021962002700120002x. Lin, H. S., C. Y. Chiang, S. B. Chang, G. I. Liao, and C. C. Kuoh. 2012. Genetic diversity in the foxtail millet (Setaria italica) germplasm as determined by agronomic traits and microsatellite markers. Aust J Crop Sci 6 (2):342-349. Liu, H., S. Song, and Y. Xing. 2019. Beyond heading time: FT-like genes and spike development in cereals. J Exp Bot 70 (1):1-3. doi: 10.1093/jxb/ery408. Lu, H., J. Zhang, K. B. Liu, N. Wu, Y. Li, K. Zhou, M. Ye, T. Zhang, H. Zhang, X. Yang, L. Shen, D. Xu, and Q. Li. 2009. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci U S A 106 (18):7367-72. doi: 10.1073/pnas.0900158106. Mauro-Herrera, M., X. Wang, H. Barbier, T. P. Brutnell, K. M. Devos, and A. N. Doust. 2013. Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae). G3 (Bethesda) 3 (2):283-95. doi: 10.1534/g3.112.005207. Meng, X., M. G. Muszynski, and O. N. Danilevskaya. 2011. The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell 23 (3):942-60. doi: 10.1105/tpc.110.081406. Mimida, N., K. Goto, Y. Kobayashi, T. Araki, J. H. Ahn, D. Weigel, M. Murata, F. Motoyoshi, and W. Sakamoto. 2001. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes Cells 6 (4):327-336. doi: 10.1046/j.1365-2443.2001.00425. Monna, L., X. Lin, S. Kojima, T. Sasaki, and M. Yano. 2002. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet 104 (5):772-778. doi: 10.1007/s00122-001-0813-0. Mouradov, A., F. Cremer, and G. Coupland. 2002. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14 Suppl:S111-130. doi: 10.1105/tpc.001362. Murphy, R. L., R. R. Klein, D. T. Morishige, J. A. Brady, W. L. Rooney, F. R. Miller, D. V. Dugas, P. E. Klein, and J. E. Mullet. 2011. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA 108 (39):16469-74. doi: 10.1073/pnas.1106212108. Murphy, R. L., D. T. Morishige, J. A. Brady, W. L. Rooney, S. Yang, P. E. Klein, and J. E. Mullet. 2014. Ghd7 (Ma6) represses sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain production. Plant Genome 7 (2). doi: 10.3835/plantgenome2013.11.0040. Murray, M. G., and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8 (19):4321-4325. doi: 10.1093/nar/8.19.4321. Nakagawa, M., K. Shimamoto, and J. Kyozuka. 2002. Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29 (6):743-750. doi: 10.1046/j.1365-313X.2002.01255.x. National Center for Biotechnology Information. 1988. accessed 2019 Nov 29. https://www.ncbi.nlm.nih.gov/. Ni, X., Q. Xia, H. Zhang, S. Cheng, H. Li, G. Fan, T. Guo, P. Huang, H. Xiang, Q. Chen, N. Li, H. Zou, X. Cai, X. Lei, X. Wang, C. Zhou, Z. Zhao, G. Zhang, G. Du, W. Cai, and Z. Quan. 2017. Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population. Gigascience 6 (2):1-8. doi: 10.1093/gigascience/giw005. Putterill, J., F. Robson, K. Lee, R. Simon, and G. Coupland. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80 (6):847-857. doi: 10.1016/0092-8674(95)90288-0. Rachie, K. O. 1975. The Millets. Importance, Utilization and Outlook: International Crops Research Institute for the Semi-Arid Tropics. Robson, F., M. M. R. Costa, S. R. Hepworth, I. Vizir, M. Pin˜eiro, P. H. Reeves, J. Putterill, and G. Coupland. 2001. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28 (6):619-631. doi: 10.1046/j.1365-313x.2001.01163.x. Sakai, H., S. S. Lee, T. Tanaka, H. Numa, J. Kim, Y. Kawahara, H. Wakimoto, C. C. Yang, M. Iwamoto, T. Abe, Y. Yamada, A. Muto, H. Inokuchi, T. Ikemura, T. Matsumoto, T. Sasaki, and T. Itoh. 2013. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol 54 (2):e6. doi: 10.1093/pcp/pcs183. Saleh, A. S. M., Q. Zhang, J. Chen, and Q. Shen. 2013. Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci F 12 (3):281-295. doi: 10.1111/1541-4337.12012. Santra, M., S. Das, R. Khound, and D. Santra. 2019. Beyond bird seed: proso millet for human health and environment. Agriculture 9 (64). doi: 10.3390/agriculture9030064. Sasaki, E., P. Zhang, S. Atwell, D. Meng, and M. Nordborg. 2015. 'Missing' G x E variation controls flowering time in Arabidopsis thaliana. PLoS Genet 11 (10):e1005597. doi: 10.1371/journal.pgen.1005597. Shannon, S., and D. R. Meeks-Wagner. 1991. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3 (9):877. doi: 10.1105/tpc.3.9.877. Sievers, F., A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Söding, J. D. Thompson, and D. G. Higgins. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7 (1):539. doi: 10.1038/msb.2011.75. Siles, M. M., D. D. Baltensperger, and L. A. Nelson. 2001. Technique for artificial hybridization of foxtail millet [Setaria italica (L.) Beauv.]. Crop Sci 41 (5):1408-1412. doi: 10.2135/cropsci2001.4151408x. Song, Y., Z. Gao, and W. Luan. 2012. Interaction between temperature and photoperiod in regulation of flowering time in rice. Sci China Life Sci 55 (3):241-249. doi: 10.1007/s11427-012-4300-4. Song, Y. H., S. Ito, and T. Imaizumi. 2013. Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18 (10):575-83. doi: 10.1016/j.tplants.2013.05.003. Song, Y. H., J. S. Shim, H. A. Kinmonth-Schultz, and T. Imaizumi. 2015. Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66 (1):441-464. doi: 10.1146/annurev-arplant-043014-115555. Sood, P., R. K. Singh, and M. Prasad. 2020. An efficient Agrobacterium-mediated genetic transformation method for foxtail millet (Setaria italica L.). Plant Cell Rep 39 (4):511-525. doi: 10.1007/s00299-019-02507-w. Stothard, P. 2000. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28 (6):1102-1104. doi: 10.2144/00286ir01. Suárez-López, P., K. Wheatley, F. Robson, H. Onouchi, F. Valverde, and G. Coupland. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410 (6832):1116-1120. doi: 10.1038/35074138. Tamaki, S., S. Matsuo, H. L. Wong, S. Yokoi, and K. Shimamoto. 2007. Hd3a protein is a mobile flowering signal in rice. Science 316 (5827):1033-1036. doi: 10.1126/science.1141753. The Arabidopsis Information Resource (TAIR). https://www.arabidopsis.org/servlets/Search?action=new_search type=gene. accessed Nov 26, 2019. www.arabidopsis.org. Till-Bottraud, I., X. Reboud, P. Brabant, M. Lefranc, B. Rherissi, F. Vedel, and H. Darmency. 1992. Outcrossing and hybridization in wild and cultivated foxtail millets: consequences for the release of transgenic crops. Theor Appl Genet 83 (8):940-946. doi: 10.1007/BF00232954. Tsai, K. J., M. J. Lu, K. J. Yang, M. Li, Y. Teng, S. Chen, M. S. Ku, and W. H. Li. 2016. Assembling the Setaria italica L. Beauv. genome into nine chromosomes and insights into regions affecting growth and drought tolerance. Sci Rep 6:35076. doi: 10.1038/srep35076. Turck, F., F. Fornara, and G. Coupland. 2008. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573-94. doi: 10.1146/annurev.arplant.59.032607.092755. United Nations. 2020. World Economic Situation and Prospects 2020. accessed 28 April 2020. https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/WESP2020_FullReport.pdf. Upadhyaya, H. D., R. P. S. Pundir, C. L. L. Gowda, V. Gopal Reddy, and S. Singh. 2008. Establishing a core collection of foxtail millet to enhance the utilization of germplasm of an underutilized crop. Plant Genet Resour 7 (02):177-184. doi: 10.1017/s1479262108178042. Upadhyaya, H. D., M. Vetriventhan, S. P. Deshpande, S. Sivasubramani, J. G. Wallace, E. S. Buckler, C. T. Hash, and P. Ramu. 2015. Population genetics and structure of a global foxtail millet germplasm collection. Plant Genome 8 (3). doi: 10.3835/plantgenome2015.07.0054. Weber, S. A., and D. Fuller. 2008. Millets and their role in early agriculture. Pragdhara 18:69-90. Weiss, E., D. Zohary, and M. Hopf. 2012. Domestication of Plants in the Old World - The Origin and Spread of Domesticated Plants in South-west Asia, Europe, and the Mediterranean Basin: Oxford University Press. Wolabu, T. W., F. Zhang, L. Niu, S. Kalve, P. Bhatnagar-Mathur, M. G. Muszynski, and M. Tadege. 2016. Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum. New Phytol 210 (3):946-59. doi: 10.1111/nph.13834. Worthen, J. M., M. V. Yamburenko, J. Lim, Z. L. Nimchuk, J. J. Kieber, and G. E. Schaller. 2019. Type-B response regulators of rice play key roles in growth, development and cytokinin signaling. Development 146 (13). doi: 10.1242/dev.174870. Xue, W., Y. Xing, X. Weng, Y. Zhao, W. Tang, L. Wang, H. Zhou, S. Yu, C. Xu, X. Li, and Q. Zhang. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40 (6):761-7. doi: 10.1038/ng.143. Yang, S., R. L. Murphy, D. T. Morishige, P. E. Klein, W. L. Rooney, and J. E. Mullet. 2014. Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. PLoS One 9 (8):e105352. doi: 10.1371/journal.pone.0105352. Yang, X., Z. Wan, L. Perry, H. Lu, Q. Wang, C. Zhao, J. Li, F. Xie, J. Yu, T. Cui, T. Wang, M. Li, and Q. Ge. 2012. Early millet use in northern China. Proc Natl Acad Sci USA 109 (10):3726-30. doi: 10.1073/pnas.1115430109. Yano, M., Y. Katayose, M. Ashikari, U. Yamanouchi, L. Monna, T. Fuse, T. Baba, K. Yamamoto, Y. Umehara, Y. Nagamura, and T. Sasaki. 2000. Hd1, major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12 (12):2473. doi: 10.1105/tpc.12.12.2473. Yano, M., and T. Sasaki. 1997. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35 (1):145-153. doi: 10.1023/A:1005764209331. Yin, S. Y. 2018. The agronomic traits and grain physicochemical properties of foxtail millet (Setaria italica) germplasm in Taiwan.Master Thesis, Department of Agronomy, National Taiwan University. Yoo, S., I. Kardailsky, J. S. Lee, D. Weigel, and J. H. Ahn. 2004. Acceleration of flowering by overexpression of MFT (Mother of FT and TFL1). Mol Cells 17:95-101. Yoo, S. J., K. S. Chung, S. H. Jung, S. Y. Yoo, J. S. Lee, and J. H. Ahn. 2010. BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J 63 (2):241-53. doi: 10.1111/j.1365-313X.2010.04234.x. Yoshitsu, Y., M. Takakusagi, A. Abe, H. Takagi, A. Uemura, H. Yaegashi, R. Terauchi, Y. Takahata, K. Hatakeyama, and S. Yokoi. 2017. QTL-seq analysis identifies two genomic regions determining the heading date of foxtail millet, Setaria italica (L.) P.Beauv. Breed Sci 67 (5):518-527. doi: 10.1270/jsbbs.17061. Zhang, G., X. Liu, Z. Quan, S. Cheng, X. Xu, S. Pan, M. Xie, P. Zeng, Z. Yue, W. Wang, Y. Tao, C. Bian, C. Han, Q. Xia, X. Peng, R. Cao, X. Yang, D. Zhan, J. Hu, Y. Zhang, H. Li, H. Li, N. Li, J. Wang, C. Wang, R. Wang, T. Guo, Y. Cai, C. Liu, H. Xiang, Q. Shi, P. Huang, Q. Chen, Y. Li, J. Wang, Z. Zhao, and J. Wang. 2012. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30 (6):549-54. doi: 10.1038/nbt.2195. Zhang, K., G. Fan, X. Zhang, F. Zhao, W. Wei, G. Du, X. Feng, X. Wang, F. Wang, G. Song, H. Zou, X. Zhang, S. Li, X. Ni, G. Zhang, and Z. Zhao. 2017. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. G3 (Bethesda) 7 (5):1587-1594. doi: 10.1534/g3.117.041517. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56995 | - |
dc.description.abstract | 小米 (Setaria italica (L.) P. Beauv.) 具有高度的適應性,能在溫帶和熱帶地區種植,其抗旱及耐其他逆境的特性也使小米可在極端的環境下存活。然而,小米的開花時間研究仍處於基因定位階段,其遺傳調控機制仍有待了解。開花時間反映了作物對環境的適應性和調節能力,是影響作物產量的關鍵性狀之一。在作物馴化的過程中,開花時間也是人為選拔的目標性狀。研究人員可以透過比較基因體從演化角度探討開花調控機制在不同物種間的關係。本研究透過比較小米 (Yugu1) 品系和開花研究成果相對豐富的模式植物阿拉伯芥 (Arabidopsis thalian) 和水稻 (Oryza sativa) 的基因體,探究小米在開花過程中可能參與的基因及調控機制。本實驗首先評估九個蒐集系在三個不同環境的抽穗時間,並分析造成抽穗期差異的環境因素。另外,利用四個主要開花基因包括開花激素 (florigen), Flowering Locus T (FT) / Heading date 3a (Hd3a) 和反應環境變化的光週期基因,包括CONSTANS (CO) / Heading date 1 (Hd1)、Early heading date 1 (Ehd1) 和 Grain number, plant height, and heading date 7 (Ghd7),分別於高粱(Sorghum bicolor)、狗尾草 (Setaria viridis) 和小米基因體中鑑定同源基因。實驗結果顯示抽穗期受到遺傳、環境及遺傳與環境間交感作用共同影響,並發現溫度與抽穗期顯著相關。小米在上述四個開花基因中共鑑定出39個同源基因,說明這些開花基因在小米具有高度的保守性。從鑑定的同源基因中選擇在物種之間具有高相似度的基因進行多型性的分析,比較臺灣和印度種原中的全基因序列變異。其中,SiFT11 (Seita.5G317600) 在178個臺灣和印度種原中的序列多型性和抽穗期具有相關性。綜合分析結果,本實驗利用候選基因關聯性分析結果顯示SiGhd7-2 (Seita.9G020100),SiGhd7-3 (Seita.7G007800) 和 SiFT11 (Seita.5G317600) 的序列變異和抽穗期顯著相關,可能為小米抽穗之候選基因。雖然仍不清楚種原間影響開花時間差異的分子機制,未來仍然可以經由對開花候選基因的驗證,將其納入小米的分子標誌輔助育種。 | zh_TW |
dc.description.abstract | Foxtail millet (Setaria italica (L.) P. Beauv.) is a highly adaptable crop, and the ability of drought and stress tolerance allows foxtail millet to survive even in an extreme environment. However, the research on the flowering of foxtail millet is at the initial stage of gene mapping, and its genetic regulatory mechanism is still unclear. Flowering time reflects the adaptation and regulation of crops against the environment; it is one of the key traits for yield potential. Comparing the foxtail millet genome (accession Yugu1) with the dicot model plant Arabidopsis (Arabidopsis thaliana) and the monocot model plant rice (Oryza sativa) whose flowering pathways are well studied would assist gene prediction and sequence annotation of flowering-related genes in foxtail millet. Besides, we examined the heading date of nine accessions of foxtail millet in three locations and evaluated the effect of environmental factors on heading date variation. Also, we selected four genes including the florigen gene, Flowering Locus T (FT) / Heading date 3a (Hd3a) and the photoperiod gene, CONSTANS (CO) / Heading date 1 (Hd1), Grain number, plant height, and heading date 7 (Ghd7) and Early heading date 1 (Ehd1) from Arabidopsis or rice, and identifying their homologs in sorghum (Sorghum bicolor), green foxtail (Setaria viridis) and foxtail millet. Selected homologs in foxtail millet were used to investigate the genetic variation in nine accessions. The heading date variations were observed across three locations. Heading dates varied via accessions (gene, G), locations (environment, E), and accessions × locations (G × E). The temperature was the major factor contributing to the heading date variation in three locations. A total of 39 putative orthologs were identified in foxtail millet suggested the well-conserved of these four flowering genes. Interestingly, the natural variation that discovered in SiFT11 (Seita.5G317600), and 178 accessions were found to be correlated to the heading date. Out of 39 homologs, SiGhd7-2 (Seita.9G020100), SiGhd7-3 (Seita.7G007800), and SiFT11 (Seita.5G317600) were identified as a potential candidate of the flowering-related gene in multiple approaches. Although the differences of flowering time between accessions and the underlying molecular mechanism were unclear, the predicted candidate flowering genes can be further verified and incorporated into molecular breeding of foxtail millet. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:32:36Z (GMT). No. of bitstreams: 1 U0001-2307202011245600.pdf: 9472780 bytes, checksum: cd03d8e31c004d61f30813a4d68f7d85 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | Content 摘要 I Abstract III Content IV Table Content VI Figure Content VIII Preface 1 Abbreviation 3 Chapter 1. Literature Review 5 1.1. Foxtail millet (Setaria italica (L.) P. Beauv.) 5 1.2. Genetic control of flowering time 14 1.3. The aims of this study 22 Chapter 2. Materials and Methods 23 2.1. Plant materials and cultivation environments 23 2.2. Identification of flowering-time related homologs 25 2.3. Genetic analysis of selected homologs in foxtail millet 29 2.4. Transcript analysis of selected flowering-time homologs 30 Chapter 3. Results 31 3.1. Heading date assessment 31 3.2. Identification of flowering-time related homologs 37 3.3. Genetic analysis of flowering-time genes 39 3.4. Transcript identification of selected homologs 58 Chapter 4. Discussion 60 4.1. The effects of environmental factors on flowering 60 4.2. Genetic variation of the flowering-related genes homologs 62 4.3. Relationships of foxtail millet to other crops based on flowering genes 68 4.4. Perspective 69 Chapter 5. References 71 Chapter 6. Supplementary data 81 Chapter 7. Appendix 108 Appendix 1. Optimum agrarian conditions for major cereals and millets. 108 Appendix 2. Nutrient composition of millets and other cereals. 109 Appendix 3. Phylogenetic position of foxtail millet and green foxtail 110 Appendix 4. Flowering pathway in Arabidopsis, rice, and sorghum. 111 | |
dc.language.iso | en | |
dc.title | 以候選基因關聯性分析探究小米抽穗期變異 | zh_TW |
dc.title | Study of Heading Date Variation Associated with Candidate Genes in Foxtail Millet (Setaria italica) | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 巴清雄(Qing-xiong Ba),張孟基(Men-chi Chang),蔡元卿(Yuan-ching Tsai) | |
dc.subject.keyword | 小米,開花時間,抽穗期,同源基因,候選基因, | zh_TW |
dc.subject.keyword | foxtail millet,flowering time,heading date,homolog,candidate gene, | en |
dc.relation.page | 111 | |
dc.identifier.doi | 10.6342/NTU202001766 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-07-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
Appears in Collections: | 農藝學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
U0001-2307202011245600.pdf Restricted Access | 9.25 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.