Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56988
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳進庭(Chin-Tin Chen)
dc.contributor.authorTing-Wei Laien
dc.contributor.author賴亭薇zh_TW
dc.date.accessioned2021-06-16T06:32:28Z-
dc.date.available2017-08-11
dc.date.copyright2014-08-11
dc.date.issued2014
dc.date.submitted2014-08-05
dc.identifier.citation1. Steeg, P.S., Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer, 2003. 3(1): p. 55-63.
2. Fidler, I.J., The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer, 2003. 3(6): p. 453-8.
3. Cavallaro, U. and G. Christofori, Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer, 2004. 4(2): p. 118-32.
4. Guo, W. and F.G. Giancotti, Integrin signalling during tumour progression. Nat Rev Mol Cell Biol, 2004. 5(10): p. 816-26.
5. Huber, M.A., N. Kraut, and H. Beug, Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol, 2005. 17(5): p. 548-58.
6. Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54.
7. Nguyen, D.X. and J. Massague, Genetic determinants of cancer metastasis. Nat Rev Genet, 2007. 8(5): p. 341-52.
8. Weiss, L., et al., Haematogenous metastatic patterns in colonic carcinoma: an analysis of 1541 necropsies. J Pathol, 1986. 150(3): p. 195-203.
9. Kohler, S., et al., E-/P-selectins and colon carcinoma metastasis: first in vivo evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung. Br J Cancer, 2010. 102(3): p. 602-9.
10. Kim, Y.J., et al., P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci U S A, 1998. 95(16): p. 9325-30.
11. Al-Mehdi, A.B., et al., Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med, 2000. 6(1): p. 100-2.
12. Mannori, G., et al., Inhibition of colon carcinoma cell lung colony formation by a soluble form of E-selectin. Am J Pathol, 1997. 151(1): p. 233-43.
13. Wong, C.W., et al., Apoptosis: an early event in metastatic inefficiency. Cancer Res, 2001. 61(1): p. 333-8.
14. Hicklin, D.J. and L.M. Ellis, Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol, 2005. 23(5): p. 1011-27.
15. Rak, J. and J.L. Yu, Oncogenes and tumor angiogenesis: the question of vascular 'supply' and vascular 'demand'. Semin Cancer Biol, 2004. 14(2): p. 93-104.
16. Stupack, D.G., et al., Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature, 2006. 439(7072): p. 95-9.
17. Weis, S., et al., Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol, 2004. 167(2): p. 223-9.
18. Bhowmick, N.A., E.G. Neilson, and H.L. Moses, Stromal fibroblasts in cancer initiation and progression. Nature, 2004. 432(7015): p. 332-7.
19. Stetler-Stevenson, W.G., S. Aznavoorian, and L.A. Liotta, Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol, 1993. 9: p. 541-73.
20. Hua, H., et al., Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci, 2011. 68(23): p. 3853-68.
21. Lubbe, W.J., et al., Tumor epithelial cell matrix metalloproteinase 9 is a target for antimetastatic therapy in colorectal cancer. Clin Cancer Res, 2006. 12(6): p. 1876-82.
22. Sadowski, T., et al., Matrix metalloproteinase 19 processes the laminin 5 gamma 2 chain and induces epithelial cell migration. Cell Mol Life Sci, 2005. 62(7-8): p. 870-80.
23. Manes, S., et al., The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J Biol Chem, 1999. 274(11): p. 6935-45.
24. Rorive, S., et al., Matrix metalloproteinase-9 interplays with the IGFBP2-IGFII complex to promote cell growth and motility in astrocytomas. Glia, 2008. 56(15): p. 1679-90.
25. Bergers, G., et al., Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol, 2000. 2(10): p. 737-44.
26. Ito, T.K., et al., Degradation of soluble VEGF receptor-1 by MMP-7 allows VEGF access to endothelial cells. Blood, 2009. 113(10): p. 2363-9.
27. Duong, T.D. and C.A. Erickson, MMP-2 plays an essential role in producing epithelial-mesenchymal transformations in the avian embryo. Dev Dyn, 2004. 229(1): p. 42-53.
28. Taki, M., et al., Involvement of Ets-1 transcription factor in inducing matrix metalloproteinase-2 expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Int J Oncol, 2006. 28(2): p. 487-96.
29. Kessenbrock, K., V. Plaks, and Z. Werb, Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010. 141(1): p. 52-67.
30. Chetty, C., et al., MMP-2 siRNA induced Fas/CD95-mediated extrinsic II apoptotic pathway in the A549 lung adenocarcinoma cell line. Oncogene, 2007. 26(55): p. 7675-83.
31. Westermarck, J. and V.M. Kahari, Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J, 1999. 13(8): p. 781-92.
32. Sternlicht, M.D. and Z. Werb, How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 2001. 17: p. 463-516.
33. Parks, W.C., C.L. Wilson, and Y.S. Lopez-Boado, Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol, 2004. 4(8): p. 617-29.
34. Nagase, H., R. Visse, and G. Murphy, Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res, 2006. 69(3): p. 562-73.
35. Kim, E.M., et al., Matrix metalloproteinase-3 is increased and participates in neuronal apoptotic signaling downstream of caspase-12 during endoplasmic reticulum stress. J Biol Chem, 2010. 285(22): p. 16444-52.
36. Patterson, B.C. and Q.A. Sang, Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem, 1997. 272(46): p. 28823-5.
37. Coussens, L.M., et al., Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev, 1999. 13(11): p. 1382-97.
38. Jorda, M., et al., Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci, 2005. 118(Pt 15): p. 3371-85.
39. Redhead, C., et al., Subcellular distribution and targeting of the intracellular chloride channel p64. Mol Biol Cell, 1997. 8(4): p. 691-704.
40. Suh, K.S., et al., CLIC4, an intracellular chloride channel protein, is a novel molecular target for cancer therapy. J Investig Dermatol Symp Proc, 2005. 10(2): p. 105-9.
41. Fernandez-Salas, E., et al., p53 and tumor necrosis factor alpha regulate the expression of a mitochondrial chloride channel protein. J Biol Chem, 1999. 274(51): p. 36488-97.
42. Fernandez-Salas, E., et al., mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol Cell Biol, 2002. 22(11): p. 3610-20.
43. Shukla, A., et al., TGF-beta signalling is regulated by Schnurri-2-dependent nuclear translocation of CLIC4 and consequent stabilization of phospho-Smad2 and 3. Nat Cell Biol, 2009. 11(6): p. 777-84.
44. Suh, K.S., et al., Antisense suppression of the chloride intracellular channel family induces apoptosis, enhances tumor necrosis factor {alpha}-induced apoptosis, and inhibits tumor growth. Cancer Res, 2005. 65(2): p. 562-71.
45. Jentsch, T.J., et al., Molecular structure and physiological function of chloride channels. Physiol Rev, 2002. 82(2): p. 503-68.
46. Berryman, M.A. and J.R. Goldenring, CLIC4 is enriched at cell-cell junctions and colocalizes with AKAP350 at the centrosome and midbody of cultured mammalian cells. Cell Motil Cytoskeleton, 2003. 56(3): p. 159-72.
47. Suh, K.S., et al., The organellular chloride channel protein CLIC4/mtCLIC translocates to the nucleus in response to cellular stress and accelerates apoptosis. J Biol Chem, 2004. 279(6): p. 4632-41.
48. Zhong, J., et al., Inhibition of CLIC4 enhances autophagy and triggers mitochondrial and ER stress-induced apoptosis in human glioma U251 cells under starvation. PLoS One, 2012. 7(6): p. e39378.
49. Tung, J.J., et al., Chloride intracellular channel 4 is involved in endothelial proliferation and morphogenesis in vitro. Angiogenesis, 2009. 12(3): p. 209-20.
50. Chalothorn, D., et al., Chloride intracellular channel-4 is a determinant of native collateral formation in skeletal muscle and brain. Circ Res, 2009. 105(1): p. 89-98.
51. Suh, K.S., et al., Reciprocal modifications of CLIC4 in tumor epithelium and stroma mark malignant progression of multiple human cancers. Clin Cancer Res, 2007. 13(1): p. 121-31.
52. Shukla, A., et al., CLIC4 regulates TGF-beta-dependent myofibroblast differentiation to produce a cancer stroma. Oncogene, 2014. 33(7): p. 842-50.
53. Chiang, P.C., et al., Chloride intracellular channel 4 involves in the reduced invasiveness of cancer cells treated by photodynamic therapy. Lasers Surg Med, 2013. 45(1): p. 38-47.
54. Rao, D.D., et al., siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev, 2009. 61(9): p. 746-59.
55. Bass, B.L., RNA interference. The short answer. Nature, 2001. 411(6836): p. 428-9.
56. Fire, A., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998. 391(6669): p. 806-11.
57. Leuschner, P.J., et al., Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep, 2006. 7(3): p. 314-20.
58. Matranga, C., et al., Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 2005. 123(4): p. 607-20.
59. Grunweller, A., et al., Cellular uptake and localization of a Cy3-labeled siRNA specific for the serine/threonine kinase Pim-1. Oligonucleotides, 2003. 13(5): p. 345-52.
60. Cullen, B.R., Transcription and processing of human microRNA precursors. Mol Cell, 2004. 16(6): p. 861-5.
61. Cullen, B.R., RNAi the natural way. Nat Genet, 2005. 37(11): p. 1163-5.
62. Rand, T.A., et al., Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell, 2005. 123(4): p. 621-629.
63. Leuschner, P.J.F., et al., Cleavage of the siRNA passenger strand during RISC assembly in human cells. Embo Reports, 2006. 7(3): p. 314-320.
64. Zhang, H.D., et al., Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. Embo Journal, 2002. 21(21): p. 5875-5885.
65. Lund, E., et al., Nuclear export of microRNA precursors. Science, 2004. 303(5654): p. 95-98.
66. Lee, Y.S., et al., Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell, 2004. 117(1): p. 69-81.
67. Shao, Y., et al., Effect of target secondary structure on RNAi efficiency. RNA, 2007. 13(10): p. 1631-40.
68. Cheung, V.G., et al., Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature, 2001. 409(6822): p. 953-8.
69. Eisenberg, D., et al., Protein function in the post-genomic era. Nature, 2000. 405(6788): p. 823-6.
70. Huang, M., et al., Mining physical protein-protein interactions from the literature. Genome Biol, 2008. 9 Suppl 2: p. S12.
71. Balmain, A., J. Gray, and B. Ponder, The genetics and genomics of cancer. Nat Genet, 2003. 33 Suppl: p. 238-44.
72. Lewis-Tuffin, L.J. and J.A. Cidlowski, The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance. Ann N Y Acad Sci, 2006. 1069: p. 1-9.
73. Zhang, C., et al., Clinical and mechanistic aspects of glucocorticoid-induced chemotherapy resistance in the majority of solid tumors. Cancer Biol Ther, 2007. 6(2): p. 278-87.
74. Kersten, S., et al., Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest, 1999. 103(11): p. 1489-98.
75. Rakhshandehroo, M., et al., Peroxisome proliferator-activated receptor alpha target genes. PPAR Res, 2010. 2010.
76. Zahnow, C.A., CCAAT/enhancer-binding protein beta: its role in breast cancer and associations with receptor tyrosine kinases. Expert Rev Mol Med, 2009. 11: p. e12.
77. Zhang, L., et al., AP-2alpha-dependent regulation of Bcl-2/Bax expression affects apoptosis in the trophoblast. J Mol Histol, 2012. 43(6): p. 681-9.
78. Qu, J., et al., Hepatitis B virus regulation of Raf1 promoter activity through activation of transcription factor AP-2alpha. Arch Virol, 2013. 158(4): p. 887-94.
79. Zhang, Z., et al., AP-2alpha suppresses invasion in BeWo cells by repression of matrix metalloproteinase-2 and -9 and up-regulation of E-cadherin. Mol Cell Biochem, 2013. 381(1-2): p. 31-9.
80. de Nigris, F., et al., Deletion of Yin Yang 1 protein in osteosarcoma cells on cell invasion and CXCR4/angiogenesis and metastasis. Cancer Res, 2008. 68(6): p. 1797-808.
81. Siletz, A., et al., Transcription factor networks in invasion-promoting breast carcinoma-associated fibroblasts. Cancer Microenviron, 2013. 6(1): p. 91-107.
82. Zhang, J.J., et al., Yin Yang-1 suppresses invasion and metastasis of pancreatic ductal adenocarcinoma by downregulating MMP10 in a MUC4/ErbB2/p38/MEF2C-dependent mechanism. Mol Cancer, 2014. 13(1): p. 130.
83. Collazo, J., et al., Cofilin drives cell-invasive and metastatic responses to TGF-beta in prostate cancer. Cancer Res, 2014. 74(8): p. 2362-73.
84. Ha, B., et al., Human peroxiredoxin 1 modulates TGF-beta1-induced epithelial-mesenchymal transition through its peroxidase activity. Biochem Biophys Res Commun, 2012. 421(1): p. 33-7.
85. He, B., et al., Overexpression of LASP1 is associated with proliferation, migration and invasion in esophageal squamous cell carcinoma. Oncol Rep, 2013. 29(3): p. 1115-23.
86. Chung, I.C., et al., Matrix metalloproteinase 12 is induced by heterogeneous nuclear ribonucleoprotein K and promotes migration and invasion in nasopharyngeal carcinoma. BMC Cancer, 2014. 14: p. 348.
87. Zhang, J., et al., Ezrin promotes invasion and migration of the MG63 osteosarcoma cell. Chin Med J (Engl), 2014. 127(10): p. 1954-9.
88. Boudreau, A., et al., 14-3-3sigma stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion. Proc Natl Acad Sci U S A, 2013. 110(41): p. E3937-44.
89. Zhao, G.Y., et al., The overexpression of 14-3-3zeta and Hsp27 promotes non-small cell lung cancer progression. Cancer, 2014. 120(5): p. 652-63.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56988-
dc.description.abstract癌症為人類疾病的三大死因之一,癌症為由不正常增生的細胞所形成的腫瘤 (tumor),而其中惡性腫瘤會隨著淋巴或血液系統轉移到其他正常器官。現今癌症不論在診斷或治療上都已有非常大的改善,雖然癌症初期的治療可透過手術切除、物理治療搭配化療藥物達到良好的治療效果,但造成癌症無法根治、復發及高死亡率的最大原因則是癌症的轉移。過去研究已知基質金屬蛋白酶matrix metalloproteinases 9 (MMP9) 在腫瘤的發展與轉移中扮演非常重要的角色,其可分解細胞外間質,促使癌細胞的轉移。除此之外,過去研究亦顯示一氯離子通道蛋白chloride intracellular channel 4 (CLCI4)會經由調控MMP9進而影響癌細胞的侵襲能力。此氯離子通道CLIC4不論在細胞凋亡、血管新生、腫瘤發展與訊息傳導路徑皆扮演相當重要的角色,因此本研究之目的即為找出CLIC4為透過何訊息傳導路徑或分子影響MMP9表現量。本論文使用了不同的乳癌細胞株MDA-MB-231及 MCF7,並欲利用siCLIC4以及自行建構的CLIC4 overexpression plasmid調控細胞內CLIC4表現量,利用抑制以及過量表現CLIC4觀察其對MMP9之影響,發現只有當CLIC4被抑制時,MMP9 mRNA表現量會跟著下降。同樣的現象也能在MMP9的活性分析中觀察到,當CLIC4被抑制時,MMP9 活性會隨之下降。因此,為了進一步分析CLIC4的下降是如何影響MMP9表現量與活性,便於MDA-MB-231細胞中轉染了帶有不同長度MMP9 promoter的luciferase reporter plasmid,發現當CLIC4表現量被抑制時,可能是影響MMP9 promoter位置-545~ -578的區域上的轉錄因子而改變MMP9的轉錄活性。更利用了免疫共沈澱法分析了與CLIC4共同結合的蛋白質找出可能與CLIC4結合並共同調控MMP9的分子。zh_TW
dc.description.abstractCancer is caused by abnormal growth or division of cell and it can mainly be divided into two types: benign neoplasms and malignant neoplasms. The characteristics of malignant neoplasms are tumor cells with metastatic ability. It has been shown that matrix metalloproteinases 9 (MMP9) plays an important role in tumor progression and metastasis. MMP9 can help the digestion of extracellular matrix and is an important marker of invasion and metastasis. Chloride intracellular channel 4 (CLIC4) is a chloride intracellular channel protein, which involved in many cellular functions like apoptosis, angiogenesis, tumor progression and invasion. Previously, we have found that CLIC4 will affect the invasion ability through the regulation of MMP9 expression. The purpose of this study is to investigate how CLIC4 regulate MMP9 expression. We first use CLIC4 siRNA to knockdown the expression level of CLIC4 in MDA-MB 231 cells. The mRNA expression level and the activity of MMP9 decrease when the expression level of CLIC4 was knockdowned. These results indicated that CLIC4 might play a role in regulating the MMP9 expression. Furthermore, luciferase reporter with different MMP9 promoter region was used to examine the possible transcriptional factor involved in CLIC4-mediated MMP9 expression. Finally, immunocomplex pull-downed by antibody against CLIC4 was analyzed by LC-MS/MS. Some candidates of possible transcriptional factors and signal transduction pathways have been found.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:32:28Z (GMT). No. of bitstreams: 1
ntu-103-R01b22003-1.pdf: 12856298 bytes, checksum: 7190aa31735f146712be718d565d1a08 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要................................................................................................................................. I
Abstract ......................................................................................................................... II
目錄............................................................................................................................... III
圖目錄........................................................................................................................... VI
表目錄......................................................................................................................... VII
第一章 緒論 .................................................................................................................. 1
1.1 癌細胞的轉移 (METASTASIS) ................................................................................ 1
1.1.1 癌細胞轉移的進程 ......................................................................................... 1
1.1.2 癌轉移的基因表現 ......................................................................................... 2
1.2 基質金屬蛋白酶 (MATRIX METALLOPROTEINASES, MMPS)。 .............................. 4
1.2.1 基質金屬蛋白酶之調控 ................................................................................. 4
1.2.2MMP9 ............................................................................................................... 5
1.3 胞內氯離子通道蛋白 (CHLORIDE INTRACELLULAR CHANNEL 4, CLIC4) ............. 6
1.4 研究動機與目的 .................................................................................................... 8
1.5 研究架構 ................................................................................................................ 9
第二章 材料方法 ........................................................................................................ 10
2.1 藥品與儀器 .......................................................................................................... 10
2.1.1 藥品 .............................................................................................................. 10
2.1.2 抗體 ............................................................................................................... 12
2.1.3 儀器 .............................................................................................................. 12
2.2 細胞株與培養液 .................................................................................................. 14
2.3 細胞培養與繼代 .................................................................................................. 14
2.4 細胞解凍與冷凍 .................................................................................................. 14
2.5 細胞計數 .............................................................................................................. 15
IV
2.6 質體建構 .............................................................................................................. 15
2.6.1 目標基因序列的PCR 放大 ......................................................................... 16
2.6.2 TA cloning ..................................................................................................... 17
2.6.3 質體建構 ...................................................................................................... 17
2.7 細胞轉染 .............................................................................................................. 17
2.8 MRNA 定量分析 .................................................................................................. 18
2.8.1 RNA 萃取 (RNA extraction) ....................................................................... 18
2.8.2 反轉錄 (Reverse Transcription, RT) ........................................................... 19
2.8.3 聚合酶鏈鎖反應 (Polymerase Chain Reaction, PCR) ................................ 19
2.8.4 洋菜膠體電泳 (Agarose electrophoresis) ................................................... 20
2.9 西方點墨法 (WESTERN BLOT) ............................................................................. 20
2.9.1 蛋白質萃取 (Protein extraction) ................................................................. 20
2.9.2 蛋白質定量 (Protein quantification) ........................................................... 21
2.9.3 膠體電泳與轉印 (SDS-PAGE electrophoresis and Transfer) .................... 22
2.9.4 化學冷光免疫分析法 (Chemiluminescence Immunoassay, CLIA) ........... 22
2.10 明膠蛋白酶活性電泳分析法 (ZYMOGRAPHY) ................................................ 22
2.11 細胞之免疫染色 (IMMUNOCYTOCHEMISTRY, ICC) .......................................... 23
2.12 螢光素酶報導分析 (LUCIFERASE REPORTER ASSAY) ........................................ 24
2.13 免疫共沈澱 (IMMUNOPRECIPITATION) ............................................................... 24
2.14 蛋白質體學分析 (PROTEOMICS ANALYSIS) ....................................................... 25
2.15 統計分析 ............................................................................................................ 25
第三章 結果 ................................................................................................................ 27
3.1 改變細胞中CLIC4 之表現量對細胞型態之影響 ............................................ 27
3.2 增加細胞中CLIC4 之表現量後,CLIC4 之MRNA 表現量、蛋白質表現量與
細胞內的分佈位置 .................................................................................................... 27
V
3.3 改變細胞內CLIC4 表現量對MMP9 MRNA 表現量與轉錄活性之影響 ....... 29
3.4 改變細胞中CLIC4 表現量對MMP9 活性之影響 ........................................... 30
3.5 改變細胞中CLIC4 表現量對NF-ΚB 之入核現象之影響 ............................... 31
3.6 抑制細胞中CLIC4 表現量,不同長度MMP9 PROMOTER 之活性改變 ......... 32
3.7 蛋白質體學分析 ............................................................................................... 33
第四章 討論 ................................................................................................................ 34
4.1 SHCLIC4 與SICLIC4 ........................................................................................... 34
4.3 OVEREXPRESS CLIC4 對細胞的影響 ................................................................... 36
4.4 細胞MMP9 表現量之改變 ................................................................................ 38
第五章 結論 ................................................................................................................ 42
第六章 附錄 ................................................................................................................ 43
第七章、參考資料 ...................................................................................................... 74
dc.language.isozh-TW
dc.title探討氯離子通道蛋白CLIC4 對於基質金屬蛋白酶MMP9 之調控機制zh_TW
dc.titleMolecular mechanisms involved in CLIC4 mediated MMP9 expressionen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張麗冠(Li-Kwan Chang),林晉玄(Ching-Hsuan Lin),李銘仁(Ming-Jen Lee)
dc.subject.keyword氯離子通道蛋白,基質金屬蛋白?,訊息傳導路徑,zh_TW
dc.subject.keywordMMP9,CLIC4,signal transduction pathway,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2014-08-06
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
12.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved