Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56984
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華(Ruey-Hwa Chen)
dc.contributor.authorYu-Tung Linen
dc.contributor.author林禹彤zh_TW
dc.date.accessioned2021-06-16T06:32:23Z-
dc.date.available2020-07-27
dc.date.copyright2020-07-27
dc.date.issued2020
dc.date.submitted2020-07-23
dc.identifier.citation1 Hershko, A. Ciechanover, A. The ubiquitin system. Annu Rev Biochem 67, 425-479, doi:10.1146/annurev.biochem.67.1.425 (1998).
2 Ikeda, F. Dikic, I. Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep 9, 536-542, doi:10.1038/embor.2008.93 (2008).
3 Popovic, D., Vucic, D. Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat Med 20, 1242-1253, doi:10.1038/nm.3739 (2014).
4 Ardley, H. C. Robinson, P. A. E3 ubiquitin ligases. Essays Biochem 41, 15-30, doi:10.1042/eb0410015 (2005).
5 Zeng, L. R., Park, C. H., Venu, R. C., Gough, J. Wang, G. L. Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Mol Plant 1, 800-815, doi:10.1093/mp/ssn044 (2008).
6 Komander, D. Rape, M. The ubiquitin code. Annu Rev Biochem 81, 203-229, doi:10.1146/annurev-biochem-060310-170328 (2012).
7 Meyer, H. J. Rape, M. Enhanced protein degradation by branched ubiquitin chains. Cell 157, 910-921, doi:10.1016/j.cell.2014.03.037 (2014).
8 Yau, R. Rape, M. The increasing complexity of the ubiquitin code. Nat Cell Biol 18, 579-586, doi:10.1038/ncb3358 (2016).
9 Akutsu, M., Dikic, I. Bremm, A. Ubiquitin chain diversity at a glance. J Cell Sci 129, 875-880, doi:10.1242/jcs.183954 (2016).
10 Swatek, K. N. Komander, D. Ubiquitin modifications. Cell Res 26, 399-422, doi:10.1038/cr.2016.39 (2016).
11 Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576-1583, doi:10.1126/science.2538923 (1989).
12 Chen, Z. J. Sun, L. J. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33, 275-286, doi:10.1016/j.molcel.2009.01.014 (2009).
13 Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-351, doi:10.1038/35085597 (2001).
14 Sebban, H., Yamaoka, S. Courtois, G. Posttranslational modifications of NEMO and its partners in NF-kappaB signaling. Trends Cell Biol 16, 569-577, doi:10.1016/j.tcb.2006.09.004 (2006).
15 Deng, L. et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-361, doi:10.1016/s0092-8674(00)00126-4 (2000).
16 Zhao, G. Y. et al. A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol Cell 25, 663-675, doi:10.1016/j.molcel.2007.01.029 (2007).
17 Ni, X. et al. TRAF6 directs FOXP3 localization and facilitates regulatory T-cell function through K63-linked ubiquitination. Embo j 38, doi:10.15252/embj.201899766 (2019).
18 Michel, M. A., Swatek, K. N., Hospenthal, M. K. Komander, D. Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling. Mol Cell 68, 233-246.e235, doi:10.1016/j.molcel.2017.08.020 (2017).
19 Matsumoto, M. L. et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 39, 477-484, doi:10.1016/j.molcel.2010.07.001 (2010).
20 Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. Embo j 25, 4877-4887, doi:10.1038/sj.emboj.7601360 (2006).
21 Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591-596, doi:10.1038/nature09816 (2011).
22 Damgaard, R. B. et al. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol Cell 46, 746-758, doi:10.1016/j.molcel.2012.04.014 (2012).
23 Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11, 123-132, doi:10.1038/ncb1821 (2009).
24 Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637-641, doi:10.1038/nature09814 (2011).
25 Noad, J. et al. LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB. Nat Microbiol 2, 17063, doi:10.1038/nmicrobiol.2017.63 (2017).
26 Wan, M. et al. A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling. Nat Microbiol 4, 1282-1293, doi:10.1038/s41564-019-0454-1 (2019).
27 Kanayama, A. et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 15, 535-548, doi:10.1016/j.molcel.2004.08.008 (2004).
28 Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136, 1098-1109, doi:10.1016/j.cell.2009.03.007 (2009).
29 Emmerich, C. H. et al. Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochem Biophys Res Commun 474, 452-461, doi:10.1016/j.bbrc.2016.04.141 (2016).
30 Elia, A. E. et al. Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the DNA Damage Response. Mol Cell 59, 867-881, doi:10.1016/j.molcel.2015.05.006 (2015).
31 Morris, J. R. Solomon, E. BRCA1 : BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet 13, 807-817, doi:10.1093/hmg/ddh095 (2004).
32 Cunningham, C. N. et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol 17, 160-169, doi:10.1038/ncb3097 (2015).
33 Di Rita, A. et al. HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα. Nat Commun 9, 3755, doi:10.1038/s41467-018-05722-3 (2018).
34 Zhao, X. et al. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol 10, 643-653, doi:10.1038/ncb1727 (2008).
35 Jin, S. et al. USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1. Embo j 35, 866-880, doi:10.15252/embj.201593596 (2016).
36 Wickliffe, K. E., Williamson, A., Meyer, H. J., Kelly, A. Rape, M. K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 21, 656-663, doi:10.1016/j.tcb.2011.08.008 (2011).
37 Jin, L., Williamson, A., Banerjee, S., Philipp, I. Rape, M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653-665, doi:10.1016/j.cell.2008.04.012 (2008).
38 Gatti, M. et al. RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep 10, 226-238, doi:10.1016/j.celrep.2014.12.021 (2015).
39 Wang, Q. et al. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 41, 919-933, doi:10.1016/j.immuni.2014.11.011 (2014).
40 Fei, C. et al. Smurf1-mediated Lys29-linked nonproteolytic polyubiquitination of axin negatively regulates Wnt/β-catenin signaling. Mol Cell Biol 33, 4095-4105, doi:10.1128/mcb.00418-13 (2013).
41 Liu, C., Liu, W., Ye, Y. Li, W. Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Nat Commun 8, 14274, doi:10.1038/ncomms14274 (2017).
42 You, J. Pickart, C. M. A HECT domain E3 enzyme assembles novel polyubiquitin chains. J Biol Chem 276, 19871-19878, doi:10.1074/jbc.M100034200 (2001).
43 Besche, H. C. et al. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. Embo j 33, 1159-1176, doi:10.1002/embj.201386906 (2014).
44 Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44, 325-340, doi:10.1016/j.molcel.2011.08.025 (2011).
45 Yuan, W. C. et al. K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20 Ubiquitin E3 Ligase Regulates Protein Trafficking. Mol Cell 54, 586-600, doi:10.1016/j.molcel.2014.03.035 (2014).
46 Al-Hakim, A. K. et al. Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J 411, 249-260, doi:10.1042/bj20080067 (2008).
47 Huang, H. et al. K33-linked polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell signaling. Immunity 33, 60-70, doi:10.1016/j.immuni.2010.07.002 (2010).
48 Liu, S. et al. Nuclear RNF2 inhibits interferon function by promoting K33-linked STAT1 disassociation from DNA. Nat Immunol 19, 41-52, doi:10.1038/s41590-017-0003-0 (2018).
49 Haakonsen, D. L. Rape, M. Branching Out: Improved Signaling by Heterotypic Ubiquitin Chains. Trends Cell Biol 29, 704-716, doi:10.1016/j.tcb.2019.06.003 (2019).
50 Kim, H. T. et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J Biol Chem 282, 17375-17386, doi:10.1074/jbc.M609659200 (2007).
51 Merchant, A. M. et al. An efficient route to human bispecific IgG. Nat Biotechnol 16, 677-681, doi:10.1038/nbt0798-677 (1998).
52 Yau, R. G. et al. Assembly and Function of Heterotypic Ubiquitin Chains in Cell-Cycle and Protein Quality Control. Cell 171, 918-933.e920, doi:10.1016/j.cell.2017.09.040 (2017).
53 Samant, R. S., Livingston, C. M., Sontag, E. M. Frydman, J. Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control. Nature 563, 407-411, doi:10.1038/s41586-018-0678-x (2018).
54 Valkevich, E. M., Sanchez, N. A., Ge, Y. Strieter, E. R. Middle-down mass spectrometry enables characterization of branched ubiquitin chains. Biochemistry 53, 4979-4989, doi:10.1021/bi5006305 (2014).
55 Rana, A., Ge, Y. Strieter, E. R. Ubiquitin Chain Enrichment Middle-Down Mass Spectrometry (UbiChEM-MS) Reveals Cell-Cycle Dependent Formation of Lys11/Lys48 Branched Ubiquitin Chains. J Proteome Res 16, 3363-3369, doi:10.1021/acs.jproteome.7b00381 (2017).
56 Swatek, K. N. et al. Insights into ubiquitin chain architecture using Ub-clipping. Nature 572, 533-537, doi:10.1038/s41586-019-1482-y (2019).
57 Swatek, K. N. et al. Irreversible inactivation of ISG15 by a viral leader protease enables alternative infection detection strategies. Proc Natl Acad Sci U S A 115, 2371-2376, doi:10.1073/pnas.1710617115 (2018).
58 Isaacson, M. K. Ploegh, H. L. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe 5, 559-570, doi:10.1016/j.chom.2009.05.012 (2009).
59 Wang, Y., Argiles-Castillo, D., Kane, E. I., Zhou, A. Spratt, D. E. HECT E3 ubiquitin ligases - emerging insights into their biological roles and disease relevance. J Cell Sci 133, doi:10.1242/jcs.228072 (2020).
60 Singh, S. Sivaraman, J. Crystal structure of HECT domain of UBE3C E3 ligase and its ubiquitination activity. Biochem J 477, 905-923, doi:10.1042/bcj20200027 (2020).
61 Salvat, C., Wang, G., Dastur, A., Lyon, N. Huibregtse, J. M. The -4 phenylalanine is required for substrate ubiquitination catalyzed by HECT ubiquitin ligases. J Biol Chem 279, 18935-18943, doi:10.1074/jbc.M312201200 (2004).
62 Maspero, E. et al. Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nat Struct Mol Biol 20, 696-701, doi:10.1038/nsmb.2566 (2013).
63 Kim, H. C. Huibregtse, J. M. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol Cell Biol 29, 3307-3318, doi:10.1128/mcb.00240-09 (2009).
64 Wang, M. Pickart, C. M. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. Embo j 24, 4324-4333, doi:10.1038/sj.emboj.7600895 (2005).
65 You, J., Wang, M., Aoki, T., Tamura, T. A. Pickart, C. M. Proteolytic targeting of transcriptional regulator TIP120B by a HECT domain E3 ligase. J Biol Chem 278, 23369-23375, doi:10.1074/jbc.M212887200 (2003).
66 Mastrandrea, L. D., You, J., Niles, E. G. Pickart, C. M. E2/E3-mediated assembly of lysine 29-linked polyubiquitin chains. J Biol Chem 274, 27299-27306, doi:10.1074/jbc.274.38.27299 (1999).
67 Chu, B. W. et al. The E3 ubiquitin ligase UBE3C enhances proteasome processivity by ubiquitinating partially proteolyzed substrates. J Biol Chem 288, 34575-34587, doi:10.1074/jbc.M113.499350 (2013).
68 Crosas, B. et al. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127, 1401-1413, doi:10.1016/j.cell.2006.09.051 (2006).
69 Kuo, C. L. Goldberg, A. L. Ubiquitinated proteins promote the association of proteasomes with the deubiquitinating enzyme Usp14 and the ubiquitin ligase Ube3c. Proc Natl Acad Sci U S A 114, E3404-e3413, doi:10.1073/pnas.1701734114 (2017).
70 Jiang, J. H. et al. Clinical significance of the ubiquitin ligase UBE3C in hepatocellular carcinoma revealed by exome sequencing. Hepatology 59, 2216-2227, doi:10.1002/hep.27012 (2014).
71 Wen, J. L. et al. UBE3C promotes growth and metastasis of renal cell carcinoma via activating Wnt/β-catenin pathway. PLoS One 10, e0115622, doi:10.1371/journal.pone.0115622 (2015).
72 Pan, S. J. et al. Ubiquitin-protein ligase E3C promotes glioma progression by mediating the ubiquitination and degrading of Annexin A7. Sci Rep 5, 11066, doi:10.1038/srep11066 (2015).
73 Xiong, J., Wei, B., Ye, Q. Liu, W. MiR-30a-5p/UBE3C axis regulates breast cancer cell proliferation and migration. Biochem Biophys Res Commun 516, 1013-1018, doi:10.1016/j.bbrc.2016.03.069 (2019).
74 Tang, L. et al. Ubiquitin ligase UBE3C promotes melanoma progression by increasing epithelial-mesenchymal transition in melanoma cells. Oncotarget 7, 15738-15746, doi:10.18632/oncotarget.7393 (2016).
75 Gu, J. et al. Ubiquitin-protein ligase E3C maintains non-small-cell lung cancer stemness by targeting AHNAK-p53 complex. Cancer Lett 443, 125-134, doi:10.1016/j.canlet.2018.11.029 (2019).
76 Mizushima, N. Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728-741, doi:10.1016/j.cell.2011.10.026 (2011).
77 Oku, M. Sakai, Y. Three Distinct Types of Microautophagy Based on Membrane Dynamics and Molecular Machineries. Bioessays 40, e1800008, doi:10.1002/bies.201800008 (2018).
78 Kaushik, S. Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19, 365-381, doi:10.1038/s41580-018-0001-6 (2018).
79 Anding, A. L. Baehrecke, E. H. Cleaning House: Selective Autophagy of Organelles. Dev Cell 41, 10-22, doi:10.1016/j.devcel.2017.02.016 (2017).
80 Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182, 685-701, doi:10.1083/jcb.200803137 (2008).
81 Ge, L., Melville, D., Zhang, M. Schekman, R. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife 2, e00947, doi:10.7554/eLife.00947 (2013).
82 Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12, 747-757, doi:10.1038/ncb2078 (2010).
83 Itakura, E., Kishi, C., Inoue, K. Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19, 5360-5372, doi:10.1091/mbc.e08-01-0080 (2008).
84 Herman, P. K. Emr, S. D. Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol Cell Biol 10, 6742-6754, doi:10.1128/mcb.10.12.6742 (1990).
85 Obara, K., Sekito, T., Niimi, K. Ohsumi, Y. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem 283, 23972-23980, doi:10.1074/jbc.M803180200 (2008).
86 Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395-398, doi:10.1038/26506 (1998).
87 He, C. Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43, 67-93, doi:10.1146/annurev-genet-102808-114910 (2009).
88 Noda, T., Fujita, N. Yoshimori, T. The late stages of autophagy: how does the end begin? Cell Death Differ 16, 984-990, doi:10.1038/cdd.2009.54 (2009).
89 Nguyen, T. N. et al. Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J Cell Biol 215, 857-874, doi:10.1083/jcb.201607039 (2016).
90 Stack, J. H., Herman, P. K., Schu, P. V. Emr, S. D. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. Embo j 12, 2195-2204 (1993).
91 Matsunaga, K. et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11, 385-396, doi:10.1038/ncb1846 (2009).
92 Liang, C. et al. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10, 776-787, doi:10.1038/ncb1740 (2008).
93 Su, H. et al. VPS34 Acetylation Controls Its Lipid Kinase Activity and the Initiation of Canonical and Non-canonical Autophagy. Mol Cell 67, 907-921.e907, doi:10.1016/j.molcel.2017.07.024 (2017).
94 Furuya, T. et al. Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell 38, 500-511, doi:10.1016/j.molcel.2010.05.009 (2010).
95 Li, X. et al. CaMKII-mediated Beclin 1 phosphorylation regulates autophagy that promotes degradation of Id and neuroblastoma cell differentiation. Nat Commun 8, 1159, doi:10.1038/s41467-017-01272-2 (2017).
96 Qian, X. et al. Phosphoglycerate Kinase 1 Phosphorylates Beclin1 to Induce Autophagy. Mol Cell 65, 917-931.e916, doi:10.1016/j.molcel.2017.01.027 (2017).
97 Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290-303, doi:10.1016/j.cell.2012.12.016 (2013).
98 Nazio, F. et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15, 406-416, doi:10.1038/ncb2708 (2013).
99 Shi, C. S. Kehrl, J. H. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal 3, ra42, doi:10.1126/scisignal.2000751 (2010).
100 Wan, W. et al. mTORC1-Regulated and HUWE1-Mediated WIPI2 Degradation Controls Autophagy Flux. Mol Cell 72, 303-315.e306, doi:10.1016/j.molcel.2018.09.017 (2018).
101 Feng, X. et al. Ubiquitination of UVRAG by SMURF1 promotes autophagosome maturation and inhibits hepatocellular carcinoma growth. Autophagy 15, 1130-1149, doi:10.1080/15548627.2019.1570063 (2019).
102 Liu, C. C. et al. Cul3-KLHL20 Ubiquitin Ligase Governs the Turnover of ULK1 and VPS34 Complexes to Control Autophagy Termination. Mol Cell 61, 84-97, doi:10.1016/j.molcel.2015.11.001 (2016).
103 Licchesi, J. D. et al. An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Nat Struct Mol Biol 19, 62-71, doi:10.1038/nsmb.2169 (2011).
104 Mauvezin, C. Neufeld, T. P. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11, 1437-1438, doi:10.1080/15548627.2015.1066957 (2015).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56984-
dc.description.abstract蛋白質泛素化是一個複雜的轉譯後修飾,透過一些重要酵素的參與,在轉譯出的蛋白質上生成變化多端的泛素鏈而影響其命運,進而影響細胞的多個層面。泛素是一個由76個胺基酸所組成的小蛋白,其存在於絕大部分的真核生物中。泛素的胺基酸序列中含有七個離胺酸 (Lysine),在這八個位點包含七個離胺酸以及泛素的第一個胺基酸甲硫氨酸 (Methionine) 上可以被另一個泛素修飾,以此類推,因此可以產生眾多不同組合的泛素鏈,依其不同形式可分為同型與異型鏈,其中異型鏈又可分為混鏈型以及支鏈型。在些許能夠分析泛素體的方法中,最新發展出的Ub-clipping方法利用病毒前導蛋白酶-Lbpro*結合質譜儀分析,可以更快速且容易地區分混鏈型以及支鏈型,也可以了解泛素鏈之間的連鎖。細胞自噬是一個細胞將受損老舊的胞器、錯誤摺疊的蛋白質及其他大分子等等物質送到溶酶體後進行降解,將小分子物質回收再利用的機制,其在細胞中是不可或缺的。UBE3C是一個E3泛素連接酶,它屬於HECT家族的其中一員,其已被報導會合成由Lys29以及Lys48所連接的異型泛素鏈。VPS34是第三類磷脂肌醇-3-激酶複合體中重要的一個次單元,負責產生磷脂肌醇-3-磷並幫助細胞自噬小體的生合成。先前我們實驗室已在細胞內證實UBE3C會對VPS34進行泛素化,促使它經由蛋白酶體降解。在本篇研究中,我們發現UBE3C在試管中能有效地加長VPS34上的泛素鏈,並藉由Ub-clipping的方法,證實此延長的泛素鏈是由Lys29以及Lys48所連接,更重要的是,我們發現UBE3C合成的泛素鏈屬於異型鏈中的支鏈型。而當在細胞中完全移除UBE3C的表現時,會顯著的提升VPS34及脂質化LC3。有趣的是,一個專門切除Lys29以及Lys33泛素鏈的去泛素酶-TRABID可以移除UBE3C在VPS34上合成的泛素鏈。然而,我們意外發現從細菌純化的全長UBE3C完全失去其活性,其現象同樣發生在他人的研究中,我們推測是因為蛋白質在不正常的折疊下,導致其喪失活性。我們也發現在UBE3C的HECT結構域尾端標籤上小片段胜肽會大幅地減弱其泛素化活性,說明HECT結構域的尾端在其活性上扮演重要的角色。本篇研究的最後,我們對於Lbpro*做了酵素動力的分析,發現它移除泛素鏈的方式是類似內切酶的作用。綜觀上述,我們證明UBE3C會對VPS34進行Lys29/Lys48的支鏈泛素化,使VPS34表現量下降,進而調控細胞自噬。zh_TW
dc.description.abstractProtein ubiquitination is a complicated post-translational modification that creates a versatile connection system in cells and affects the cells in several aspects. Ubiquitin chains can be conjugated to another ubiquitin through seven lysine residues or the first methionine residue, and thus generates architecturally different types of chain including homotypic, mixed and branched chains. UBE3C, a HECT family E3 ubiquitin ligase, was reported to assembly K29- and K48-linked free ubiquitin chains. In this study, we demonstrate that UBE3C purified from baculovirus robustly elongate the polyubiquitin chain on VPS34 in vitro. However, UBE3C purified from bacteria completely lose this activity presumably due to improper folding or autoinhibition. Furthermore, the C-terminal tag conjugated UBE3C HECT domain shows a dramatic impairment in autoubiquitination activity, implying a significant role of the C-terminal residues of HECT domain in the ubiquitination activity. Importantly, using a recently developed Ub-clipping method which employs an engineered viral leader protease Lbpro* and mass spectrometry analysis to distinguish mixed from branched chain, we identify that the polyubiquitin chain on VPS34 mediated by UBE3C is a K29/K48-branched ubiquitin chain. Interestingly, a K29- and K33-specific DUB, TRABID, can potently remove the total polyubiquitin chain as well as the K48-linked ubiquitin chain on VPS34 synthesized by UBE3C in vitro. We further show that UBE3C knockout significantly upregulates VPS34 level and LC3 lipidation. Finally, our kinetic analyses revealed that Lbpro* is an endoprotease in the assembly of polyubiquitin chain. Collectively, this study demonstrates that UBE3C negatively regulates autophagy by mediating K29/K48-branched ubiquitination on VPS34, thus leading to VPS34 downregulation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:32:23Z (GMT). No. of bitstreams: 1
U0001-2307202011475100.pdf: 3613752 bytes, checksum: 4a90c13d44d698753fa9f154ffb1e468 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContents
謝辭 ………………………………………………………………………………………………………………..……..…. i
摘要 …………………………………………………………………………………………………………………….…… ii
Abstract ……………………………………………………………………………………………………………….……. iv
Contents .......................................................................................................................... vi
List of figures ................................................................................................................ viii
I. Introduction ................................................................................................................... 1
1. Ubiquitination ............................................................................................................... 1
1.1. Overview ............................................................................................................. 1
1.2. Topology and biology of ubiquitin codes ............................................................ 2
1.3. Dissection of heterotypic ubiquitin chains .......................................................... 6
2. Ubiquitin protein ligase E3C (UBE3C) ....................................................................... 10
2.1. Characterization ................................................................................................. 10
2.2. Physiological and pathological function of UBE3C .......................................... 12
3. Autophagy .................................................................................................................. 14
3.1. Overview ........................................................................................................... 14
3.2. Molecular mechanism ........................................................................................ 15
3.3. VPS34 complex in autophagy ............................................................................ 16
3.4. Ubiquitination in autophagy .............................................................................. 18
II. Material and Methods ................................................................................................ 20
Plasmids ......................................................................................................................... 20
Antibodies and Reagents ................................................................................................ 20
Baculovirus expression system and purification............................................................. 21
Protein expression and purification ................................................................................ 21
In vitro ubiquitination and deubiquitination assays......................................................... 23
Lbpro* treatment of in vitro assembly reactions ............................................................... 24
Intact mass spectrometry for molecular weight determination ....................................... 24
LC-MS/MS for chain linkage analysis ............................................................................ 25
Cell culture, transient transfection, and treatment ........................................................... 27
Generation of CRISPR KO cell line ................................................................................ 27
Immunofluorescence ...................................................................................................... 28
Kinetics measurement of Lbpro* cleavage ....................................................................... 29
Western blot analysis ...................................................................................................... 29
Statistical analysis .......................................................................................................... 30
III. Results ...................................................................................................................... 31
UBE3C purified from E. coli fails to ubiquitinate VPS34 in vitro .......................... 31
UBE3C functions to elongate the polyubiquitin chain on VPS34 in vitro .............. 32
UBE3C synthesizes K29/K48-branched chains on VPS34 in vitro ......................... 33
TRABID disassembles K29/K48-linked polyubiquitin chains on VPS34 generated by UBE3C in vitro ....................................................................................................... 35
UBE3C functions as a negative regulator of autophagy via VPS34 downregulation ...................................................................................................... 35
Lbpro* acts as an “endoprotease” to execute the trimming of ubiquitin chain ........ 36
IV. Discussion ................................................................................................................ 39
V. References ................................................................................................................. 44
VI. Figures ...................................................................................................................... 52
dc.language.isoen
dc.subjectVPS34zh_TW
dc.subject細胞自噬zh_TW
dc.subject前導蛋白酶zh_TW
dc.subject泛素化zh_TW
dc.subjectUBE3Czh_TW
dc.subjectUBE3Cen
dc.subjectVPS34en
dc.subjectleader proteaseen
dc.subjectubiquitinationen
dc.subjectautophagyen
dc.titleUBE3C透過對VPS34進行K29/48支鏈型泛素化進而調控細胞自噬zh_TW
dc.titleUBE3C drives VPS34 K29/48 branched ubiquitination to modulate autophagyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor吳昆峯(Kuen-Phon Wu)
dc.contributor.oralexamcommittee王彥士(Yane-Shih Wang)
dc.subject.keywordUBE3C,VPS34,前導蛋白酶,泛素化,細胞自噬,zh_TW
dc.subject.keywordUBE3C,VPS34,leader protease,ubiquitination,autophagy,en
dc.relation.page78
dc.identifier.doi10.6342/NTU202001767
dc.rights.note有償授權
dc.date.accepted2020-07-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2307202011475100.pdf
  未授權公開取用
3.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved