請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56976完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖泰慶(Albert Taiching Liao) | |
| dc.contributor.author | Rui-Hong Wu | en |
| dc.contributor.author | 吳瑞紘 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:32:15Z | - |
| dc.date.available | 2016-08-08 | |
| dc.date.copyright | 2014-08-08 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-05 | |
| dc.identifier.citation | Aalipour, A., Advani, R.H., 2013. Bruton tyrosine kinase inhibitors: a promising novel targeted treatment for B cell lymphomas. British journal of haematology 163, 436-443.
Adams, J., Palombella, V.J., Sausville, E.A., Johnson, J., Destree, A., Lazarus, D.D., Maas, J., Pien, C.S., Prakash, S., Elliott, P.J., 1999. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer research 59, 2615-2622. Altman, J.K., Platanias, L.C., 2008. Exploiting the mammalian target of rapamycin pathway in hematologic malignancies. Current opinion in hematology 15, 88-94. Amaral, M., Levy, C., Heyes, D.J., Lafite, P., Outeiro, T.F., Giorgini, F., Leys, D., Scrutton, N.S., 2013. Structural basis of kynurenine 3-monooxygenase inhibition. Nature 496, 382-+. Andre, F., Bachelot, T., Campone, M., Dalenc, F., Perez-Garcia, J.M., Hurvitz, S.A., Turner, N., Rugo, H., Smith, J.W., Deudon, S., Shi, M., Zhang, Y., Kay, A., Porta, D.G., Yovine, A., Baselga, J., 2013. Targeting FGFR with Dovitinib (TKI258): Preclinical and Clinical Data in Breast Cancer. Clinical Cancer Research 19, 3693-3702. Arora, A., Scholar, E.M., 2005. Role of tyrosine kinase inhibitors in cancer therapy. The Journal of pharmacology and experimental therapeutics 315, 971-979. Barrans, S.L., Carter, I., Owen, R.G., Davies, F.E., Patmore, R.D., Haynes, A.P., Morgan, G.J., Jack, A.S., 2002. Germinal center phenotype and bcl-2 expression combined with the International Prognostic Index improves patient risk stratification in diffuse large B-cell lymphoma. Blood 99, 1136-1143. Buckstein, R., Kuruvilla, J., Chua, N., Lee, C., Macdonald, D.A., Al-Tourah, A.J., Foo, A.H., Walsh, W., Ivy, S.P., Crump, M., Eisenhauer, E.A., 2011. Sunitinib in relapsed or refractory diffuse large B-cell lymphoma: a clinical and pharmacodynamic phase II multicenter study of the NCIC Clinical Trials Group. Leuk Lymphoma 52, 833-841. Burnett, R.C., Vernau, W., Modiano, J.F., Olver, C.S., Moore, P.F., Avery, A.C., 2003. Diagnosis of canine lymphoid neoplasia using clonal rearrangements of antigen receptor genes. Vet Pathol 40, 32-41. Cadwell, C., Zambetti, G.P., 2001. The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 277, 15-30. Chanan-Khan, A.A., Cheson, B.D., 2008. Lenalidomide for the treatment of B-cell malignancies. J Clin Oncol 26, 1544-1552. Chaniyara, R., Tala, S., Chen, C.W., Zang, X.G., Kakadiya, R., Lin, L.F., Chen, C.H., Chien, S.I., Chou, T.C., Tsai, T.H., Lee, T.C., Shah, A., Su, T.L., 2013. Novel Antitumor Indolizino[6,7-b]indoles with Multiple Modes of Action: DNA Cross-Linking and Topoisomerase I and II Inhibition. Journal of medicinal chemistry 56, 1544-1563. Chase, A., Grand, F.H., Cross, N.C., 2007. Activity of TKI258 against primary cells and cell lines with FGFR1 fusion genes associated with the 8p11 myeloproliferative syndrome. Blood 110, 3729-3734. Chien, S.I., Yen, J.C., Kakadiya, R., Chen, C.H., Lee, T.C., Su, T.L., Tsai, T.H., 2013. Determination of tissue distribution of potent antitumor agent ureidomustin (BO-1055) by HPLC and its pharmacokinetic application in rats. J Chromatogr B 917, 62-70. Choi, B.D., Fecci, P.E., Sampson, J.H., 2012. Regulatory T cells move in when gliomas say 'I Do'. Clinical cancer research : an official journal of the American Association for Cancer Research 18, 6086-6088. Chun, R., Garrett, L.D., Vail, D.M., 2000. Evaluation of a high-dose chemotherapy protocol with no maintenance therapy for dogs with lymphoma. Journal of veterinary internal medicine / American College of Veterinary Internal Medicine 14, 120-124. Chute, J.P., Himburg, H.A., 2013. Imatinib tackles lymphoma via the PDGFR beta(+) pericyte. Blood 121, 5107-5108. Della Chiesa, M., Carlomagno, S., Frumento, G., Balsamo, M., Cantoni, C., Conte, R., Moretta, L., Moretta, A., Vitale, M., 2006. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 108, 4118-4125. Deng, C., Pan, B., O'Connor, O.A., 2013. Brentuximab vedotin. Clinical cancer research : an official journal of the American Association for Cancer Research 19, 22-27. Dobson, J.M.a.J., 2001. Small Animal Oncology, Ames, Iowa. Drexler, H.G., 2001. The leukemia-lymphoma cell line facts book. Academic Press, San Diego, CA. Druker, B.J., Lydon, N.B., 2000. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. The Journal of clinical investigation 105, 3-7. Ettinger, S.J., Feldman, E.C., 2010. Textbook of veterinary internal medicine. , Elesevier, St. Louis. Ettinger, S.N., 2003. Principles of treatment for feline lymphoma. Clinical techniques in small animal practice 18, 98-102. Fournel-Fleury, C., Ponce, F., Felman, P., Blavier, A., Bonnefont, C., Chabanne, L., Marchal, T., Cadore, J.L., Goy-Thollot, I., Ledieu, D., Ghernati, I., Magnol, J.P., 2002. Canine T-cell lymphomas: A morphological, immunological, and clinical study of 46 new cases. Vet Pathol 39, 92-109. Frumento, G., Rotondo, R., Tonetti, M., Damonte, G., Benatti, U., Ferrara, G.B., 2002. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. The Journal of experimental medicine 196, 459-468. Garrett, L.D., Thamm, D.H., Chun, R., Dudley, R., Vail, D.M., 2002. Evaluation of a 6-month chemotherapy protocol with no maintenance therapy for dogs with lymphoma. Journal of veterinary internal medicine / American College of Veterinary Internal Medicine 16, 704-709. Gauthier, M.J., Aubert, I., Abrams-Ogg, A., Woods, J.P., Bienzle, D., 2005. The immunophenotype of peripheral blood lymphocytes in clinically healthy dogs and dogs with lymphoma in remission. Journal of Veterinary Internal Medicine 19, 193-199. Gibson, D., Aubert, I., Woods, J.P., Abrams-Ogg, A., Kruth, S., Wood, R.D., Bienzle, D., 2004. Flow cytometric immunophenotype of canine lymph node aspirates. Journal of Veterinary Internal Medicine 18, 710-717. Gilliland, D.G., Griffin, J.D., 2002. The roles of FLT3 in hematopoiesis and leukemia. Blood 100, 1532-1542. Ginn, P.E., Fox, L.E., Brower, J.C., Gaskin, A., Kurzman, I.D., Kubilis, P.S., 2000. Immunohistochemical detection of p53 tumor-suppressor protein is a poor indicator of prognosis for canine cutaneous mast cell tumors. Vet Pathol 37, 33-39. Giorgini, F., Moller, T., Kwan, W., Zwilling, D., Wacker, J.L., Hong, S., Tsai, L.C.L., Cheah, C.S., Schwarcz, R., Guidetti, P., Muchowski, P.J., 2008. Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia, and mice expressing a mutant huntingtin fragment. Journal of Biological Chemistry 283, 7390-7400. Greenlee, P.G., Filippa, D.A., Quimby, F.W., Patnaik, A.K., Calvano, S.E., Matus, R.E., Kimmel, M., Hurvitz, A.I., Lieberman, P.H., 1990. Lymphomas in dogs. A morphologic, immunologic, and clinical study. Cancer-Am Cancer Soc 66, 480-490. Gschwind, A., Fischer, O.M., Ullrich, A., 2004. Timeline - The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Reviews Cancer 4, 361-370. Hall, M.D., Handley, M.D., Gottesman, M.M., 2009. Is resistance useless? Multidrug resistance and collateral sensitivity. Trends in pharmacological sciences 30, 546-556. Hans, C.P., Weisenburger, D.D., Greiner, T.C., Gascoyne, R.D., Delabie, J., Ott, G., Muller-Hermelink, H.K., Campo, E., Braziel, R.M., Jaffe, E.S., Pan, Z., Farinha, P., Smith, L.M., Falini, B., Banham, A.H., Rosenwald, A., Staudt, L.M., Connors, J.M., Armitage, J.O., Chan, W.C., 2004. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103, 275-282. Harris, N.L., Jaffe, E.S., Diebold, J., Flandrin, G., Muller-Hermelink, H.K., Vardiman, J., 2000. Lymphoma classification - from controversy to consensus: The REAL and WHO Classification of lymphoid neoplasms. Ann Oncol 11, 3-10. Hassold, N., Seystahl, K., Kempf, K., Urlaub, D., Zekl, M., Einsele, H., Watzl, C., Wischhusen, J., Seggewiss-Bernhardt, R., 2012. Enhancement of natural killer cell effector functions against selected lymphoma and leukemia cell lines by dasatinib. International journal of cancer. Journal international du cancer 131, E916-927. Helleday, T., Petermann, E., Lundin, C., Hodgson, B., Sharma, R.A., 2008. DNA repair pathways as targets for cancer therapy. Nature reviews. Cancer 8, 193-204. Hermine, O., Haioun, C., Lepage, E., dAgay, M.F., Briere, J., Lavignac, C., Fillet, G., Salles, G., Marolleau, J.P., Diebold, J., Reyes, F., Gaulard, P., 1996. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin's lymphoma. Blood 87, 265-272. Hollstein, M., Sidransky, D., Vogelstein, B., Harris, C.C., 1991. p53 mutations in human cancers. Science 253, 49-53. Imamura, J., Miyoshi, I., Koeffler, H.P., 1994. p53 in hematologic malignancies. Blood 84, 2412-2421. Impellizeri, J.A., Howell, K., McKeever, K.P., Crow, S.E., 2006. The role of rituximab in the treatment of canine lymphoma: an ex vivo evaluation. Veterinary journal 171, 556-558. Iqbal, J., Meyer, P.N., Smith, L.M., Johnson, N.A., Vose, J.M., Greiner, T.C., Connors, J.M., Staudt, L.M., Rimsza, L., Jaffe, E., Rosenwald, A., Ott, G., Delabie, J., Campo, E., Braziel, R.M., Cook, J.R., Tubbs, R.R., Gascoyne, R.D., Armitage, J.O., Weisenburger, D.D., Chan, W.C., 2011. BCL2 predicts survival in germinal center B-cell-like diffuse large B-cell lymphoma treated with CHOP-like therapy and rituximab. Clinical cancer research : an official journal of the American Association for Cancer Research 17, 7785-7795. Iqbal, J., Neppalli, V.T., Wright, G., Dave, B.J., Horsman, D.E., Rosenwald, A., Lynch, J., Hans, C.P., Weisenburger, D.D., Greiner, T.C., Gascoyne, R.D., Campo, E., Ott, G., Muller-Hermelink, H.K., Delabie, J., Jaffe, E.S., Grogan, T.M., Connors, J.M., Vose, J.M., Armitage, J.O., Staudt, L.M., Chan, W.C., 2006. BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. J Clin Oncol 24, 961-968. Ito, D., Frantz, A.M., Modiano, J.F., 2014. Canine lymphoma as a comparative model for human non-Hodgkin lymphoma: recent progress and applications. Veterinary immunology and immunopathology. Jemal, A., Tiwari, R.C., Murray, T., Ghafoor, A., Samuels, A., Ward, E., Feuer, E.J., Thun, M.J., 2004. Cancer statistics, 2004. Ca-Cancer J Clin 54, 8-29. Joetzke, A.E., Eberle, N., Nolte, I., Mischke, R., Simon, D., 2012. Flow cytometric evaluation of peripheral blood and bone marrow and fine-needle aspirate samples from multiple sites in dogs with multicentric lymphoma. American journal of veterinary research 73, 884-893. Johnston, P.B., Yuan, R., Cavalli, F., Witzig, T.E., 2010. Targeted therapy in lymphoma. Journal of hematology & oncology 3, 45. Katoh, M., Nakagama, H., 2014. FGF receptors: cancer biology and therapeutics. Medicinal research reviews 34, 280-300. Keller, E.T., MacEwen, E.G., Rosenthal, R.C., Helfand, S.C., Fox, L.E., 1993. Evaluation of prognostic factors and sequential combination chemotherapy with doxorubicin for canine lymphoma. Journal of veterinary internal medicine / American College of Veterinary Internal Medicine 7, 289-295. Khanna, C., Lindblad-Toh, K., Vail, D., London, C., Bergman, P., Barber, L., Breen, M., Kitchell, B., McNeil, E., Modiano, J.F., Niemi, S., Comstock, K.E., Ostrander, E., Westmoreland, S., Withrow, S., 2006. The dog as a cancer model. Nature biotechnology 24, 1065-1066. Kisseberth, W.C., Nadella, M.V.P., Breen, M., Thomas, R., Duke, S.E., Murahari, S., Kosarek, C.E., Vernau, W., Avery, A.C., Burkhard, M.J., Rosol, T.J., 2007. A novel canine lymphoma cell line: A translational and comparative model for lymphoma research. Leukemia research 31, 1709-1720. Ko, L.J., Prives, C., 1996. p53: puzzle and paradigm. Genes & development 10, 1054-1072. Konecny, G.E., Kolarova, T., O'Brien, N.A., Winterhoff, B., Yang, G., Qi, J., Qi, Z., Venkatesan, N., Ayala, R., Luo, T., Finn, R.S., Kristof, J., Galderisi, C., Porta, D.G., Anderson, L., Shi, M.M., Yovine, A., Slamon, D.J., 2013. Activity of the fibroblast growth factor receptor inhibitors dovitinib (TKI258) and NVP-BGJ398 in human endometrial cancer cells. Molecular cancer therapeutics 12, 632-642. Korkolopoulou, P., Oates, J., Kittas, C., Crocker, J., 1994. p53, c-myc p62 and proliferating cell nuclear antigen (PCNA) expression in non-Hodgkin's lymphomas. Journal of clinical pathology 47, 9-14. Kosior, K., Lewandowska-Grygiel, M., Giannopoulos, K., 2011. Tyrosine kinase inhibitors in hematological malignancies. Postep Hig Med Dosw 65, 819-828. Kramer, M.H.H., Hermans, J., Wijburg, E., Philippo, K., Geelen, E., van Krieken, J.H.J.M., de Jong, D., Maartense, E., Schuuring, E., Kluin, P.M., 1998. Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. Blood 92, 3152-3162. Kumar, V., Jain, G., Kishor, S., Ramaniah, L.M., 2011. Chemical reactivity analysis of some alkylating drug molecules - A density functional theory approach. Comput Theor Chem 968, 18-25. Kurosu, T., Ohki, M., Wu, N., Kagechika, H., Miura, O., 2009. Sorafenib induces apoptosis specifically in cells expressing BCR/ABL by inhibiting its kinase activity to activate the intrinsic mitochondrial pathway. Cancer research 69, 3927-3936. Lana, S.E., Jackson, T.L., Burnett, R.C., Morley, P.S., Avery, A.C., 2006. Utility of polymerase chain reaction for analysis of antigen receptor rearrangement in staging and predicting prognosis in dogs with lymphoma. Journal of Veterinary Internal Medicine 20, 329-334. Lee, G.K., Park, H.J., Macleod, M., Chandler, P., Munn, D.H., Mellor, A.L., 2002. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 107, 452-460. Lee, P.C., Lee, H.J., Kakadiya, R., Sanjiv, K., Su, T.L., Lee, T.C., 2013. Multidrug-resistant cells overexpressing P-glycoprotein are susceptible to DNA crosslinking agents due to attenuated Src/nuclear EGFR cascade-activated DNA repair activity. Oncogene 32, 1144-1154. Lee, S.H., Lopes de Menezes, D., Vora, J., Harris, A., Ye, H., Nordahl, L., Garrett, E., Samara, E., Aukerman, S.L., Gelb, A.B., Heise, C., 2005. In vivo target modulation and biological activity of CHIR-258, a multitargeted growth factor receptor kinase inhibitor, in colon cancer models. Clinical cancer research : an official journal of the American Association for Cancer Research 11, 3633-3641. Lind, M.J., Ardiet, C., 1993. Pharmacokinetics of Alkylating-Agents. Cancer Surv 17, 157-188. Lo, W.L., Chu, P.Y., Lee, T.H., Su, T.L., Chien, Y., Chen, Y.W., Huang, P.I., Tseng, L.M., Tu, P.H., Kao, S.Y., Lo, J.F., 2012. A Combined DNA-Affinic Molecule and N-Mustard Alkylating Agent Has an Anti-Cancer Effect and Induces Autophagy in Oral Cancer Cells. Int J Mol Sci 13, 3277-3290. Lopes de Menezes, D.E., Peng, J., Garrett, E.N., Louie, S.G., Lee, S.H., Wiesmann, M., Tang, Y., Shephard, L., Goldbeck, C., Oei, Y., Ye, H., Aukerman, S.L., Heise, C., 2005. CHIR-258: a potent inhibitor of FLT3 kinase in experimental tumor xenograft models of human acute myelogenous leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research 11, 5281-5291. MacDonald, V.S., Thamm, D.H., Kurzman, I.D., Turek, M.M., Vail, D.M., 2005. Does L-asparaginase influence efficacy or toxicity when added to a standard CHOP protocol for dogs with lymphoma? Journal of veterinary internal medicine / American College of Veterinary Internal Medicine 19, 732-736. MacEwen, E.G., 1990. Spontaneous Tumors in Dogs and Cats - Models for the Study of Cancer Biology and Treatment. Cancer Metast Rev 9, 125-136. MacEwen, E.G., Patnaik, A.K., Wilkins, R.J., 1977. Diagnosis and treatment of canine hematopoietic neoplasms. The Veterinary clinics of North America 7, 105-118. Marconato, L., 2011. The staging and treatment of multicentric high-grade lymphoma in dogs: A review of recent developments and future prospects. Veterinary journal 188, 34-38. Mayr, B., Schellander, K., Schleger, W., Reifinger, M., 1994. Sequence of an exon of the canine p53 gene--mutation in a papilloma. The British veterinary journal 150, 81-84. Maze, R., Carney, J.P., Kelley, M.R., Glassner, B.J., Williams, D.A., Samson, L., 1996. Increasing DNA repair methyltransferase levels via bone marrow stem cell transduction rescues mice from the toxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea, a chemotherapeutic alkylating agent. Proceedings of the National Academy of Sciences of the United States of America 93, 206-210. Mellanby, R.J., Herrtage, M.E., Dobson, J.M., 2003. Owners' assessments of their dog's quality of life during palliative chemotherapy for lymphoma. The Journal of small animal practice 44, 100-103. Meuten, D.J., 2002. Tumors in Domestic Animals. Blackwell Publishing Company, Iowa. Modiano, J.F., Breen, M., Burnett, R.C., Parker, H.G., Inusah, S., Thomas, R., Avery, P.R., Lindblad-Toh, K., Ostrander, E.A., Cutter, G.C., Avery, A.C., 2005. Distinct B-cell and T-cell lymphoproliferative disease prevalence among dog breeds indicates heritable risk. Cancer research 65, 5654-5661. Munn, D.H., 2011. Indoleamine 2,3-dioxygenase, Tregs and cancer. Current medicinal chemistry 18, 2240-2246. Munn, D.H., Shafizadeh, E., Attwood, J.T., Bondarev, I., Pashine, A., Mellor, A.L., 1999. Inhibition of T cell proliferation by macrophage tryptophan catabolism. The Journal of experimental medicine 189, 1363-1372. Muris, J.J.F., Meijer, C.J.L.M., Vos, W., van Krieken, J.H.J.M., Jiwa, N.M., Ossenkoppele, G.J., Oudejans, J.J., 2006. Immunohistochemical profiling based on Bcl-2, CD10 and MUMI expression improves risk stratification in patients with primary nodal diffuse large B cell lymphoma. J Pathol 208, 714-723. Rajski, S.R., Williams, R.M., 1998. DNA cross-linking agents as antitumor drugs. Chemical reviews 98, 2723-2795. Ramakrishnan, V., Timm, M., Haug, J.L., Kimlinger, T.K., Halling, T., Wellik, L.E., Witzig, T.E., Rajkumar, S.V., Adjei, A.A., Kumar, S., 2012. Sorafenib, a multikinase inhibitor, is effective in vitro against non-Hodgkin lymphoma and synergizes with the mTOR inhibitor rapamycin. American journal of hematology 87, 277-283. Rungsipipat, A., Tateyama, S., Yamaguchi, R., Uchida, K., Miyoshi, N., Hayashi, T., 1999. Immunohistochemical analysis of c-yes and c-erbB-2 oncogene products and p53 tumor suppressor protein in canine mammary tumors. The Journal of veterinary medical science / the Japanese Society of Veterinary Science 61, 27-32. Ruslander, D.A., Gebhard, D.H., Tompkins, M.B., Grindem, C.B., Page, R.L., 1997. Immunophenotypic characterization of canine lymphoproliferative disorders. In Vivo 11, 169-172. Rutgen, B.C., Hammer, S.E., Gerner, W., Christian, M., de Arespacochaga, A.G., Willmann, M., Kleiter, M., Schwendenwein, I., Saalmuller, A., 2010. Establishment and characterization of a novel canine B-cell line derived from a spontaneously occurring diffuse large cell lymphoma. Leukemia research 34, 932-938. Rutgen, B.C., Willenbrock, S., Reimann-Berg, N., Walter, I., Fuchs-Baumgartinger, A., Wagner, S., Kovacic, B., Essler, S.E., Schwendenwein, I., Nolte, I., Saalmuller, A., Murua Escobar, H., 2012. Authentication of primordial characteristics of the CLBL-1 cell line prove the integrity of a canine B-cell lymphoma in a murine in vivo model. PloS one 7, e40078. Sander, C.A., Yano, T., Clark, H.M., Harris, C., Longo, D.L., Jaffe, E.S., Raffeld, M., 1993. p53 mutation is associated with progression in follicular lymphomas. Blood 82, 1994-2004. Sanjiv, K., Su, T.L., Suman, S., Kakadiya, R., Lai, T.C., Wang, H.Y., Hsiao, M., Lee, T.C., 2012. The novel DNA alkylating agent BO-1090 suppresses the growth of human oral cavity cancer in xenografted and orthotopic mouse models. International Journal of Cancer 130, 1440-1450. Shi, M., Kim, K., Chesney, J., Wang, X., Motwani, M., Wang, J., Steed, M., Anak, O., Jones, G., Saro, J., 2009. Effect of TKI258 in plasma biomarkers and pharmacokinetics in patients with advanced melanoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 27, 9020. Simon, D., Nolte, I., Eberle, N., Abbrederis, N., Killich, M., Hirschberger, J., 2006. Treatment of dogs with lymphoma using a 12-week, maintenance-free combination chemotherapy protocol. Journal of Veterinary Internal Medicine 20, 948-954. Small, D., 2006. FLT3 mutations: biology and treatment. Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program, 178-184. Sokolowska, J., Cywinska, A., Malicka, E., 2005. p53 expression in canine lymphoma. Journal of veterinary medicine. A, Physiology, pathology, clinical medicine 52, 172-175. Sozmen, M., Tasca, S., Carli, E., De Lorenzi, D., Furlanello, T., Caldin, M., 2005. Use of fine needle aspirates and flow cytometry for the diagnosis, classification, and immunophenotyping of canine lymphomas. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc 17, 323-330. Stone, T.W., Darlington, L.G., 2002. Endogenous kynurenines as targets for drug discovery and development. Nature reviews. Drug discovery 1, 609-620. Suter, S.E., Small, G.W., Seiser, E.L., Thomas, R., Breen, M., Richards, K.L., 2011. FLT3 mutations in canine acute lymphocytic leukemia. Bmc Cancer 11, 38. Tageja, N., Padheye, S., Dandawate, P., Al-Katib, A., Mohammad, R.M., 2009. New targets for the treatment of follicular lymphoma. Journal of hematology & oncology 2, 50. Tarlock, K., Blau, C.A., Martins, T., Meshinchi, S., 2013. Characterization Of FLT3/ITD Resistant Cells and Identification Of Novel Therapeutic Targets Utilizing High Throughput Drug Screening. Blood 122. Teachey, D.T., Grupp, S.A., Brown, V.I., 2009. Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies. British journal of haematology 145, 569-580. Teske, E., 1994. Prognostic Factors for Malignant-Lymphoma in the Dog - an Update. Vet Quart 16, S29-S31. Tomiyasu, H., Goto-Koshino, Y., Takahashi, M., Fujino, Y., Ohno, K., Tsujimoto, H., 2010. Quantitative Analysis of m RNA for 10 Different Drug Resistance Factors in Dogs with Lymphoma. Journal of Veterinary Medical Science 72, 1165-1172. Trudel, S., Li, Z.H., Wei, E., Wiesmann, M., Chang, H., Chen, C., Reece, D., Heise, C., Stewart, A.K., 2005. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 105, 2941-2948. Umeki, S., Ema, Y., Suzuki, R., Kubo, M., Hayashi, T., Okamura, Y., Yamazaki, J., Tsujimoto, H., Tani, K., Hiraoka, H., Okuda, M., Mizuno, T., 2013. Establishment of Five Canine Lymphoma Cell Lines and Tumor Formation in a Xenotransplantation Model. Journal of Veterinary Medical Science 75, 467-474. Uozurmi, K., Nakaichi, M., Yamamoto, Y., Une, S., Taura, Y., 2005. Development of multidrug resistance in a canine lymphoma cell line. Res Vet Sci 78, 217-224. Usher, S.G., Radford, A.D., Villiers, E.J., Blackwood, L., 2009. RAS, FLT3, and C-KIT mutations in immunophenotyped canine leukemias. Exp Hematol 37, 65-77. Vail, D.M., MacEwen, E.G., 2000. Spontaneously occurring tumors of companion animals as models for human cancer. Cancer investigation 18, 781-792. Valerius, K.D., Ogilvie, G.K., Mallinckrodt, C.H., Getzy, D.M., 1997. Doxorubicin alone or in combination with asparaginase, followed by cyclophosphamide, vincristine, and prednisone for treatment of multicentric lymphoma in dogs: 121 cases (1987-1995). Journal of the American Veterinary Medical Association 210, 512-516. Valli, V.E., San Myint, M., Barthel, A., Bienzle, D., Caswell, J., Colbatzky, F., Durham, A., Ehrhart, E.J., Johnson, Y., Jones, C., Kiupel, M., Labelle, P., Lester, S., Miller, M., Moore, P., Moroff, S., Roccabianca, P., Ramos-Vara, J., Ross, A., Scase, T., Tvedten, H., Vernau, W., 2011. Classification of canine malignant lymphomas according to the World Health Organization criteria. Vet Pathol 48, 198-211. Veldhoen, N., Stewart, J., Brown, R., Milner, J., 1998. Mutations of the p53 gene in canine lymphoma and evidence for germ line p53 mutations in the dog. Oncogene 16, 249-255. Vezzali, E., Parodi, A.L., Marcato, P.S., Bettini, G., 2010. Histopathologic classification of 171 cases of canine and feline non-Hodgkin lymphoma according to the WHO. Veterinary and comparative oncology 8, 38-49. Wadleigh, M., DeAngelo, D.J., Griffin, J.D., Stone, R.M., 2005. After chronic myelogenous leukemia: tyrosine kinase inhibitors in other hematologic malignancies. Blood 105, 22-30. Wang, X.W., Harris, C.C., 1997. p53 tumor-suppressor gene: clues to molecular carcinogenesis. Journal of cellular physiology 173, 247-255. Wilkerson, M.J., Dolce, K., Koopman, T., Shuman, W., Chun, R., Garrett, L., Barber, L., Avery, A., 2005. Lineage differentiation of canine lymphoma/leukemias and aberrant expression of CD molecules. Veterinary immunology and immunopathology 106, 179-196. Winnicka, A., Jagielski, D., Hoffmann-Jagielska, M., Lechowski, R., 2002. Cytometric evaluation of peripheral blood lymphocytes in dogs with lymphoma during chemotherapy. Journal of veterinary medicine. A, Physiology, pathology, clinical medicine 49, 303-306. Withrow, S.J., Vail, D.M., 2007. Withrow & MacEwen's small animal clinical oncology., Saunders. Yuan, R., Kay, A., Berg, W.J., Lebwohl, D., 2009. Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy. Journal of hematology & oncology 2, 45. Zwilling, D., Huang, S.Y., Sathyasaikumar, K.V., Notarangelo, F.M., Guidetti, P., Wu, H.Q., Lee, J., Truong, J., Andrews-Zwilling, Y., Hsieh, E.W., Louie, J.Y., Wu, T., Scearce-Levie, K., Patrick, C., Adame, A., Giorgini, F., Moussaoui, S., Laue, G., Rassoulpour, A., Flik, G., Huang, Y.D., Muchowski, J.M., Masliah, E., Schwarcz, R., Muchowski, P.J., 2011. Kynurenine 3-Monooxygenase Inhibition in Blood Ameliorates Neurodegeneration. Cell 145, 863-874. Zwingenberger, A.L., Vernau, W., Shi, C., Yan, W., Chen, X., Gordon, I.K., Kent, M.S., 2012. Development and characterization of 5 canine B-cell lymphoma cell lines. Leukemia research 36, 601-606. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56976 | - |
| dc.description.abstract | 淋巴瘤是犬隻最常見的造血器官腫瘤,在臨床上通常會以多種藥劑併用的化療方法來進行治療,而接受治療的犬隻,在治療初期大都會有良好的反應,大約可以使80-90 %患犬的淋巴瘤消退。然而,大多數的犬隻最終還是會由於抗藥性的產生而復發,平均約發生於診斷後一年。由於現今沒有比化療更有效用的治療方法,因此在過去的治療上,犬淋巴瘤分類僅簡單的區分為B細胞或T細胞兩型。因此,在治療犬隻淋巴瘤上,必須為犬淋巴瘤進行更多的分類且提供不同的治療藥物。在這項研究中為了確定犬淋巴瘤細胞株 CLBL -1(B細胞型),CLC (非T非B細胞型)和UL-1(T細胞型)的表現型,我們首先使用了流式細胞儀偵測了CD3、CD4、CD5、CD8、CD21、CD34、CD45、CD56和CD79αcy 抗體表現,用免疫細胞化學染色法偵測了MUM -1、Bcl-6、Bcl-2、CD10和KMO的蛋白表現,並以PCR / RT-PCR法偵測了p53、FLT3、NRAS和BRAF基因有無突變。而在UL-1細胞株,我們發現在p53基因有一個G485A的點突變,造成了R162H突變。接著我們以小分子抑製劑, Kynurenine 3-monooxygenase (KMO)抑製劑和新型烷基化藥物BO-1055、BO-1922、BO-2094和BO-1978來進行細胞增生試驗,其結果發現此三種類型的藥物都能顯著降低三種細胞株的增殖並造成細胞死亡。此實驗結果表示這些藥物俱有治療犬隻淋巴瘤的潛力,而未來的研究將集中在藥物作用機制的分析。 | zh_TW |
| dc.description.abstract | Canine lymphoma is the most common hematopoietic tumor affecting dog. The remission rate of canine lymphoma treated by available combination chemotherapy protocols is usually high (80%-90%). However, most dogs eventually succumb to drug-resistant recurrence, on average, 1 year after diagnosis. Since no more therapeutic option other than chemotherapy, canine lymphoma is simply classified as B cell or T cell type so far. Therefore, offering more therapeutic options for different types of canine lymphoma will be necessary. In this study, flow cytometry (CD3, CD4, CD5, CD8, CD21, CD34, CD45, CD56, and CD79αcy), immunocytochemistry (MUM-1, Bcl-6, Bcl-2, CD10 and KMO) and PCR/RT-PCR (p53, FLT3, NRAS and BRAF) were used to identify the phenotypes of canine lymphoma cell lines, CLBL-1 (B cell type), CLC (non-T non-B cell type) and UL-1 (T cell type). A G485A point mutation causing R162H mutation was found in p53 gene of UL-1 cells. In subsequent viability assay, small molecule inhibitor, kyneurenine 3-monooxygenase (KMO) inhibitor and novel alkylating agents, BO-1055, BO-1922, BO-2094 and BO-1978, significantly reduced proliferation of all cell lines. This revealed their therapeutic potential on canine lymphoma. Future studies will focus on analysis of drugs mechanism. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:32:15Z (GMT). No. of bitstreams: 1 ntu-103-R01629004-1.pdf: 74287905 bytes, checksum: 195e34babae202152bd009b0c103d9cc (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 II Abstract IV Contents V Chapter 1. Background and Literature Review 1 1.1 Canine lymphoma 1 1.1.1 Prevalence of canine lymphoma 1 1.1.2 Classification, staging and phenotyping of canine lymphoma 2 1.1.3 Therapy for canine lymphoma 3 1.2 Development of novel therapy for lymphoma 5 1.2.1 Targeted therapy for human lymphoma 5 1.2.2 Tyrosine kinase inhibitor (TKI) 6 1.2.3 Alkylating agents 7 1.2.4 Kynurenine 3-monooxygenase (KMO) 8 1.3 Biomarkers of canine lymphoma 9 1.3.1 Mutations in p53 gene 9 1.3.2 Mutations in flt3 gene 10 1.3.3 Bcl-2, Bcl-6, MUM-1, CD10 11 Chapter 2. Introduction 12 Chapter 3. Materials and methods 15 3.1 Establish the canine lymphoma cell lines 15 3.2 Cell lines and reagents 16 3.3 Cell surface marker analysis 17 3.4 PCR for antigen receptor rearrangement (PARR) 17 3.5 Colony formation assay 18 3.6 Soft agar immunocytochemistry (SA-ICC) 18 3.7 Reverse transcription polymerase chain reaction (RT-PCR) 20 3.8 Examination lymphoma mutation genes 20 3.9 Proliferation assay 22 3.10 Western blotting 23 3.11 Cell cycle analysis 24 3.12 Statistical analysis 25 Chapter 4. Results 26 4.1 Morphology and soft agar colony formation assay in canine lymphoma cells 26 4.2 Canine lymphoma cell line phenotyping 26 4.2.1 Flow cytometry 26 4.2.2 PCR for antigen receptor rearrangement (PARR) 28 4.2.3 Immunocytochemistry (ICC) 28 4.2.4 Polymerase chain reaction (PCR) 28 4.2.5 Reverse transcription polymerase chain reaction (RT-PCR) 29 4.2.6 KMO expression of canine lymphoma cells 29 4.3 Alkylating agents inhibited proliferation of CLBL-1, CLC and UL-1 cells 30 4.4 Dovitinib inhibited proliferation of CLBL-1, CLC and UL-1 cells 31 4.5 KMO inhibitor inhibited proliferation of CLBL-1, CLC and UL-1 cells 32 Chapter 5. Discussion 33 Tables 42 Table 1. World Health Organization clinical staging for domestic animals with lymphoma 42 Table 2. Monoclonal antibodies used for flow cytometry 43 Table 3. Sequence of primers used in PARR 44 Table 4. Sequence of primers used in PCR and RT-PCR 45 Table 5. Sequence of primers used in p53 RT-PCR 46 Table 6. Mutation in p53 gene detected in canine lymphoma cells 47 Table 7. Canine cell line CLBL-1, CLC, UL-1, CLN and DH82 phenotyping results 48 Table 8. Sensitivity of canine lymphoma cells to therapeutic drugs 50 Figures 51 Figure 1. Relative distribution of canine lymphoma subtypes 51 Figure 2. Morphology and soft agar colony formation assay in canine lymphoma cells 52 Figure 3. Comparative the canine lymphoma cell lines CLBL-1, CLC and UL-1 labeled with monoclonal antibodies against canine antigens 54 Figure 4. Comparative the canine lymphoma cell lines CLN large groupn 57 Figure 5. PCR for antigen receptor rearrangement 58 Figure 6. The protein expression of MUM-1, CD10, Bcl-2 and Bcl-6 in canine lymphoma cells by immunocytochemistry 60 Figure 7. PCR and RT-PCR for FLT3 14/15&20, NRAS&BRAF and p53 gene mutations in canine lymphoma cell line 61 Figure 8. The mRNA and protein expression of KMO in canine lymphoma cells 62 Figure 9. Effect of alkylating agents on the cell viability of canine lymphoma cells 65 Figure 10. Effect of dovitinib and KMO inhibitor on the cell viability of canine lymphoma cells 68 Figure 11. Effect of dovitinib on the cell cycle in canine lymphoma cells 70 Figure 12. Effect of KMO inhibitor on the cell cycle in canine lymphoma cells 72 Reference 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 表型分析 | zh_TW |
| dc.subject | 烷基化藥物 | zh_TW |
| dc.subject | Kynurenine 3-monooxygenase (KMO) | zh_TW |
| dc.subject | dovitinib | zh_TW |
| dc.subject | 流式細胞技術 | zh_TW |
| dc.subject | 犬淋巴瘤 | zh_TW |
| dc.subject | dovitinib | en |
| dc.subject | phenotyping | en |
| dc.subject | flow cytometry | en |
| dc.subject | alkylating agents | en |
| dc.subject | kyneurenine 3-monooxygenase | en |
| dc.subject | Canine lymphoma | en |
| dc.title | 犬淋巴瘤細胞表現型鑑定以及治療藥物之評估 | zh_TW |
| dc.title | Identification of Phenotype and Evaluation of Therapeutic Drugs on Canine Lymphoma Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林辰栖,李繼忠,張仕杰 | |
| dc.subject.keyword | 犬淋巴瘤,表型分析,流式細胞技術,烷基化藥物,Kynurenine 3-monooxygenase (KMO),dovitinib, | zh_TW |
| dc.subject.keyword | Canine lymphoma,phenotyping,flow cytometry,alkylating agents,kyneurenine 3-monooxygenase,dovitinib, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-06 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 72.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
