Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56966
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭卜壬(Pu-Jen Cheng)
dc.contributor.authorYen-Chun Liuen
dc.contributor.author劉彥均zh_TW
dc.date.accessioned2021-06-16T06:32:03Z-
dc.date.available2019-08-16
dc.date.copyright2014-08-16
dc.date.issued2014
dc.date.submitted2014-08-06
dc.identifier.citation[1] Ido Guy, Naama Zwerdling, Inbal Ronen, David Carmel, and Erel Uziel. Social media recommendation based on people and tags. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’10, pages 194–201, New York, NY, USA, 2010. ACM.
[2] Wangqun Lin, Xiangnan Kong, Philip S. Yu, Quanyuan Wu, Yan Jia, and Chuan Li. Community detection in incomplete information networks. In Proceedings of the 21st International Conference on World Wide Web, WWW ’12, pages 341–350, New York, NY, USA, 2012. ACM.
[3] Lars Backstrom and Jure Leskovec. Supervised random walks: Predicting and recommending links in social networks. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM ’11, pages 635–644, New York, NY, USA, 2011. ACM.
[4] Jie Tang, Tiancheng Lou, and Jon Kleinberg. Inferring social ties across heterogenous networks. In Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM ’12, pages 743–752, New York, NY, USA, 2012. ACM.
[5] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1):415–444, 2001.
[6] David J. Crandall, Lars Backstrom, Dan Cosley, Siddharth Suri, Daniel Huttenlocher, and Jon Kleinberg. Inferring social ties from geographic coincidences. Proceedings of the National Academy of Sciences, 107(52):22436–22441, 2010.
[7] Rongjing Xiang, Jennifer Neville, and Monica Rogati. Modeling relationship strength in online social networks. In Proceedings of the 19th International Conference on World Wide Web, WWW ’10, pages 981–990, New York, NY, USA, 2010. ACM.
[8] Ching-man Au Yeung and Tomoharu Iwata. Strength of social influence in trust networks in product review sites. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM ’11, pages 495–504, New York, NY, USA, 2011. ACM.
[9] Shuang-Hong Yang, Alexander J. Smola, Bo Long, Hongyuan Zha, and Yi Chang. Friend or frenemy?: Predicting signed ties in social networks. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, pages 555–564, New York, NY, USA, 2012. ACM.
[10] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and negative links in online social networks. In Proceedings of the 19th International Conference on World Wide Web, WWW ’10, pages 641–650, New York, NY, USA, 2010. ACM.
[11] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 58(7):1019–1031, 2007.
[12] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social Networks, 25(3):211 – 230, 2003.
[13] Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43, 1953.
[14] Ryan N. Lichtenwalter, Jake T. Lussier, and Nitesh V. Chawla. New perspectives and methods in link prediction. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 243–252, New York, NY, USA, 2010. ACM.
[15] Adam Sadilek, Henry Kautz, and Jeffrey P. Bigham. Finding your friends and following them to where you are. In Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM ’12, pages 723–732, New York, NY, USA, 2012. ACM.
[16] Chao Wang, V. Satuluri, and S. Parthasarathy. Local probabilistic models for link prediction. In Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference
on, pages 322–331, Oct 2007.
[17] Yuxiao Dong, Jie Tang, Sen Wu, Jilei Tian, N.V. Chawla, Jinghai Rao, and Huanhuan Cao. Link prediction and recommendation across heterogeneous social networks. In Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 181–190, Dec 2012.
[18] Paolo Massa and Paolo Avesani. Trust-aware recommender systems. In Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys ’07, pages 17–24, New York, NY, USA, 2007. ACM.
[19] Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang. App recommendation: A contest between satisfaction and temptation. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, WSDM ’13, pages 395–404, New York, NY, USA, 2013. ACM.
[20] Tom Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27(8):861–874, June 2006.
[21] Mark Granovetter. The strength of weak ties: A network theory revisited. Sociological Theory, 1(1983):201–233, 1983.
[22] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random networks.Science, 286(5439):509–512, 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56966-
dc.description.abstract在具有社群網路性質的網路服務中,人與人之間的人際關係網路是一個很重要的資訊,讓我們可以利用這個資訊來增進這些服務的使用性,因此,如何推測人與人之間的關係是很重要的議題。在這篇論文中,我們提出了一個與先前研究不同的方向,我們想要藉由觀察到的人與人之間的互動資訊來推測他們之間的人際關係及它們的強度,在這個前提下,我們提出兩個想法來解決這個問題,第一,如果兩個人是朋友的話,他們會一起出現在同一個物件中很多次,第二,如果兩個人是朋友的話,他們會一起出現在人少的物件中,我們藉由真實資料的觀察來驗證我們的這兩個想法是正確的。根據這兩個想法,我們藉由貝塔分布的概念提出一個非監督式模型,再利用梯度下降法來推測人與人之間的關係。在實驗中,我們提出的方法表現優於其他三個比較方法,此外,我們所推測出來的人際關係網路擁有一般社群網路所擁有的性質。zh_TW
dc.description.abstractIn the social services, the relation networks between people bring us valuable information to make these services more convenient. Therefore, how to predict the relation between users is an important issue. In this thesis, we propose a new research direction that predicts the hidden relations and their strengths between people according to the observed interaction between them. We have two ideas to solve this problem. First, if two people are friends, they may appear together many times. Second, if two people are friends, they may appear in the object which there are no anyone else. We make observations to verify our ideas first. Then, based on these two ideas, we purpose an unsupervised model by Beta distribution and use gradient descent method to infer the relation between users. In our experiments, our methodology outperforms other three baselines. Moreover, the relation network inferred by us satisfies the constraints for a real social network.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:32:03Z (GMT). No. of bitstreams: 1
ntu-103-R01922033-1.pdf: 803626 bytes, checksum: 596a9f842973c043c3df6b2235a6b3d3 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables vii
1 Introduction 1
2 Related Work 4
3 Data Observations 6
3.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.1 Co-occurrence Distribution Observation . . . . . . . . . . . . . . 9
3.2.2 Average-people Distribution Observation . . . . . . . . . . . . . 10
4 Problem Formulation 13
4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Problem Solving Flowchart 16
6 Methodology 18
6.1 Count Co-occurrence Set and Average-people Set . . . . . . . . . . . . . 18
6.1.1 Count the Number of Co-occurrence . . . . . . . . . . . . . . . . 18
6.1.2 Count the Value of Average-people . . . . . . . . . . . . . . . . 19
6.2 Co-occurrence Average-people Model . . . . . . . . . . . . . . . . . . . 20
6.2.1 An Assumption to Combine Co-occurrence and Average-people . 20
6.2.2 Model of Co-occurrence Average-people . . . . . . . . . . . . . 21
6.2.3 Model Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Friend Relation Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7 Experiments 28
7.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.2 Comparing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.3 Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4.1 F1-score Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4.2 AUC Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.4.3 Performance in Top Co-occurrence User Pairs . . . . . . . . . . . 33
7.5 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.5.1 Distribution of friend similarity . . . . . . . . . . . . . . . . . . 34
7.5.2 Distribution of Numbers of Friends . . . . . . . . . . . . . . . . 36
8 Conclusions and Future Work 38
Bibliography 40
dc.language.isoen
dc.subject關係強度zh_TW
dc.subject社群網路zh_TW
dc.subject鍵結預測zh_TW
dc.subject梯度下降法zh_TW
dc.subject貝塔分布zh_TW
dc.subjectSocial networksen
dc.subjectLink predictionen
dc.subjectRelation strengthen
dc.subjectBeta distributionen
dc.subjectGradient descenten
dc.title依群聚現象建立人際關係網路zh_TW
dc.titleBuilding Relation Network between People by Considering Aggregative Dynamicsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建錦(Chien-Chin Chen),陳信希(Hsin-Hsi Chen),張嘉惠(Chia-Hui Chang),曾新穆(Shin-Mu Tseng)
dc.subject.keyword社群網路,鍵結預測,關係強度,貝塔分布,梯度下降法,zh_TW
dc.subject.keywordSocial networks,Link prediction,Relation strength,Beta distribution,Gradient descent,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2014-08-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
784.79 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved