Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56947
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃秉鈞(Bin-Juine Huang)
dc.contributor.authorYu-Jen Changen
dc.contributor.author張佑任zh_TW
dc.date.accessioned2021-06-16T06:31:43Z-
dc.date.available2017-08-20
dc.date.copyright2014-09-05
dc.date.issued2014
dc.date.submitted2014-08-06
dc.identifier.citation[1] Charlie Gay, Advancing Today’s PV Market Through Crystalline Silicon
Manufacturing Innovation. 2012PV Asia Pacific Conference, Singapore, 23-
25 October 2012.
[2] Bin-Juine Huang, Po-Chien Hsu, Tai-Chuan Wang, Guang-Yu Chen, Hsu-Yu Chang,
Yu-Mi Lin, KangLi, KY Lee. Hybrid solar photovoltaic system fordecentralized
power supply. International Photovoltaic Science and Engineering Conference 2013
(PVSEC-23). Oct 28-Nov 1, Taipei, Taiwan.
[3] Morris, Craig (2 February 2012). 'Merit order effect of PV in Germany'. Renewables
International.Retrieved 17 May 2012.
[4] Joachim Luther. Transformation of the global energy system towards sustainability –
benefits and challenges. 2012 PV Asia Pacific Conference, Singapore, 23-25 October
2012.
[5] Prof. Dr. Bruno Burger. Stromerzeugung aus Solar- und Windenergie im Jahr 2013.
Fraunhofer-Institut fur Solare Energiesysteme ISE. Fraunhofer-Institut fur Solare
Energiesysteme ISE – Stromerzeugung aus Solar- und Windenergie im Jahr 2013
[6] www.ilkdresden.de
[7] B J Huang etc. Annual Report - Solar Energy Research Center, KAUST GRP Award,
KUK-C1-014-12,2012.
[8] B.J.Huang, F.S.Sun and R.W.Ho: “Near-Maximum-Power-Point-Operation
(nMPPO) Design of Photovoltaic Power Generation System”, Solar Energy
80(8),1003-1020(2006).
[9] Bin-Juine Huang, Je-Han Lin, Chi-Wen Chen, Yan-Tze Chen, Kang Li. Solar air
conditioner driven directly by solar PV panels. Photovoltaic Science and Engineering
Conference 2013 (PVSEC-23). Oct 28-Nov 1, Taipei, Taiwan.
[10] Rand, D.A.J., Valve-Regulated Lead-Acid Batteries. 1st ed. 2004: Elsevier.
[11] Oman, W.C.M.a.H., Battery Charging, in Electric Bicycles: A Guide to Design
and Use. 2005, Wiley-IEEE Press. p. 85-108.
[12] Ostergaard, K.C.D.a.J., Battery energy storage technology for power
systems—An overview. Electric Power Systems Research, 2009. 79(4): p. 511-520.
[13] V Pop, H.J.B., P H L Notten, and P P L Regtien, State-of-the-art of battery
state-of-charge determination. Meas Sci Technol, 2005. 16(12): p. R93-R110.
[14] Jiexun Liu, D.G., and Jianhua Cao, Study on the effects of temperature On LiFeP04
Battery life, in Vehicle Power and Propulsion Conference (VPPC), 2012 IEEE. 2012:
Seoul, Korea. p. 1436-1440.
[15] Sayigh, A., Comprehensive Renewable Energy. The Solar Resource. Vol. 3. 2012,
H.D. Kambezidis: Elsevier Ltd.
[16] Geyer, W.B.S.a.M. Power From The Sun. 2001; Available from:
http://www.powerfromthesun.net/book.html.
[17] Palyvos, E.S.a.J.A., Operating temperature of photovoltaic modules: A survey of
pertinent correlations. Renewable Energy, 2009(34): p. 23-29.
[18] Manuel Vazquez, a.I.R.S., Photovoltaic module reliability model based on field
degradation studies. Progress in Photovoltaics: Research and Applications, 2008.
16(5): p. 419-433.
[19] D. C. Jordan, a.S.R.K., Photovoltaic Degradation Rates—an Analytical Review.
Progress in Photovoltaics: Research and Applications, 2013. 21(1): p. 12-29.
[20] B. Marion, J.A., K. Boyle, H. Hayden, B. Hammond, T. Fletcher, B. Canada, D.
Narang, D. Shugar, H. Wenger, A. Kimber, L. Mitchell, G. Rich, and T. Townsend,
Performance Parameters for Grid-Connected PV Systems, in 31st IEEE
Photovoltaics Specialists Conference and Exhibition. 2005: Lake Buena Vista,
Florida.
[21]How to Change Prameters. Available from:
http://www.nrel.gov/rredc/pvwatts/changing_parameters.html.
[22] 林素琴, 大好前景-鋰電池材料發展分析, in 工研院電子報. 2009, 工業技術研
究院.
[23] 郭迺鋒、楊浩彥、林政勳、方文秀, 鋰電池產業對台灣經濟發展影響的研究-
投入產出方法的分析, in 綠能藍海系列研討會—技術與經濟篇. 100: 台北.
[24] 昇陽國際半導體股份有限公司. Pack產品資訊. Available from:
http://www.psi.com.tw/energy2.asp?set=b.
[25] Inc., C. S1500規格書. Available from:
http://www.cotek.com.tw/upload/PDF/S1500.pdf.
[26]經濟部能源局,太陽能光電資訊網
http://solarpv.itri.org.tw/aboutus/index.asp
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56947-
dc.description.abstract本研究旨在探討混合型太陽光發電系統最佳化設計,使系統具有最佳經濟效濟及性能表現。
因近年來石化能源日漸短缺以及對環境汙染問題,科學家不斷尋找可用之新能源,在發現核能存在太多淺在危機後,太陽能被視為目前最有希望之再生能源。目前太陽光發電系統經過多年努力,在成本上以及系統穩定度均達一定水準有其經濟效益。但在已太陽能發電廠達一定規模之國家如德國發現,因太陽能發電廠備載容量較大,在太陽光很強時,電網可能因無法負荷瞬間大電流而造成崩潰。
而為解決此台大新能源中新便開發可在市電與獨立型太陽光發電系統間切換的混合型太陽光發電系統。為的就是讓使用者可利用太陽光發電達到自給自足,但在天候狀況不佳時能夠切換市電持續供電並且不會影響電網運作。
為得到混合型太陽光發電系統之最佳系統匹配以及最佳發電效益,本研究採用模擬分析及實際驗證。先進行傾斜面輻射量模型推導,考慮各種影響發電因素,再進行系統發電模型的建構。接著配合梯型供電切換模型,進行供電切換的判斷。最後可得如:發電量、電池循環次數、供電切換次數等數據,用以決定最佳之系統設計。再利用實際架設於台大工綜管八樓之混合型太陽光發電系統所測得之實際數據與模擬數據進行驗證,以確保模擬之準確性。並在最後進行長程性能模擬以及示範如何找到最佳之系統匹配,以及對兩種實際個案情況做模擬分析。
zh_TW
dc.description.abstractIn this study, it will include simulation and actual verification. First is deriving the inclined surface radiation model and considering various factors affecting power generation. Then construct the system generation model. Second with the ladder switching power supply model to judge the power switch. Last available such as: electricity, battery cycles, power switching frequency of the data used to determine the best system design. And finally the long-range performance simulation and demonstration of how to find the best match of the system, as well as the actual circumstances of the case made for both simulation analysis.
This study aimed to explore the hybrid PV generation system optimized design that the system has the best economic efficiency and economic performance.
In recent years, due to the growing shortage of fossil fuels and the environmental pollution problem, scientists are constantly looking for new energy sources available, the presence of too much light in the discovery of nuclear energy after the crisis, solar energy is considered as the most promising of the renewable energy sources. At present, solar power generation system after years of efforts, the costs and the stability of the system has reached a certain level of its economic benefits. But solar power plant has reached a certain scale of countries such as Germany found that due to a large solar power plant equipment load capacity, strong sunlight, the grid may be due to inability to load moment caused by the collapse of a large current.
And to solve this NTU has developed a new energy in the new hybrid solar power generation system between the mains and the independent solar power generation system switching. As is so that users can take advantage of solar power generation to achieve self-sufficiency, but in poor weather conditions continued to be able to switch the mains power supply and does not affect the operation.
To get the best system to match the hybrid solar power generation systems and best power efficiency. In this study, it will include simulation and actual verification. First is deriving the inclined surface radiation model and considering various factors affecting power generation. Then construct the system generation model. Second with the ladder switching power supply model to judge the power switch. Last available such as: electricity, battery cycles, power switching frequency of the data used to determine the best system design. And finally the long-range performance simulation and demonstration of how to find the best match of the system, as well as the actual circumstances of the case made for both simulation analysis.
And at last, the long-range performance simulation and demonstration of how to find the best system to match, as well as the actual circumstances of the case made for both simulation analysis.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:31:43Z (GMT). No. of bitstreams: 1
ntu-103-R01522116-1.pdf: 5119105 bytes, checksum: db447f65d57fda013847d5b9abf08e3e (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iv
目錄 vii
圖目錄 x
表目錄 xiii
符號說明 xv
第1章 緒論 1
1.1 研究背景 1
太陽光電已進入平價上網時代(Grid parity) 1
太陽光電vs.夏季冷氣空調耗電造成的電網尖載 3
太陽光電推廣造成電網送電瓶頸問題已浮現 4
太陽光發電系統 6
1.2 研究目的與內容 9
第2章 HyPV系統分析模型 10
2.1 HyPV系統構造 10
2.2 太陽輻射預測模型 12
2.2-1 太陽相對位置 12
2.3 太陽能板發電量模型 14
2.3-1 太陽光電板發電特性 14
2.3-2 溫度影響發電量 14
2.3-3 老化影響發電量 18
2.3-4 太陽光電板最大功率發電量模型 18
2.4 逆變器模型 19
2.5 負載模型 20
2.6 供電切換控制 22
2.7 HyPV能量平衡模型 24
2.8 經濟效益分析模型 26
2.8-1 電價模型 26
2.8-2 經濟效益分析 30
第3章 HyPV系統模擬軟體 32
3.1 系統模擬程式介面 32
3.2 匯入資料(Input) 33
3.3 模擬結果(Output) 35
3.4 模擬流程 37
3.5 操作與範例 38
3.5-1 系統模擬載入資料及參數條件設定如下: 38
3.5-2 模擬結果 40
3.6 模擬軟體驗證 41
3.6-1 太陽能控制器 42
3.6-2 蓄電池 44
3.6-3 太陽光電板 46
3.6-4 獨立型逆變器 47
3.6-5 電腦監測系統 48
3.6-6 系統模擬條件設定 49
3.6-7 切換控制模擬結果與實驗數據分析 50
第4章 HyPV最佳系統設計分析 58
4.1 供電模式切換控制分析 58
4.1-1 固定Af切換控制 58
4.1-2 梯形Af切換控制 60
4.2 長程性能模擬 62
4.2-1 模擬條件 62
4.2-2 台北模擬結果 64
4.2-3 台南模擬結果 80
4.3 相對參數分析 95
4.3-1 相對參數定義 95
4.3-2 長程性能模擬結果分析(台北) 97
4.3-3 長程性能模擬結果分析(台南) 101
4.4 最佳系統設計個案分析(商辦型) 105
4.4-1 負載情形 105
4.4-2 模擬結果分析與討論 105
4.5 最佳系統設計個案分析(大樓公設型) 116
4.5-1 負載情形 116
4.5-2 模擬結果分析與討論 116
第5章 結論與未來展望 125
5.1 結論 125
5.2 未來展望 126
參考文獻 127
dc.language.isozh-TW
dc.subject綠能zh_TW
dc.subject太陽能zh_TW
dc.subject混合型zh_TW
dc.subjectGreen Energyen
dc.subjectPVen
dc.subjectHybriden
dc.title混合型太陽光發電系統設計分析zh_TW
dc.titleDesign Analysis of Hybrid PV Systemen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李綱(Kang Li),李坤彥(KUN-YAN Li),陳一飛(YI-FEI CHEN)
dc.subject.keyword太陽能,混合型,綠能,zh_TW
dc.subject.keywordPV,Hybrid,Green Energy,en
dc.relation.page129
dc.rights.note有償授權
dc.date.accepted2014-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved