請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56944
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | ?良碩 | |
dc.contributor.author | Jia-Wei Du | en |
dc.contributor.author | 杜家瑋 | zh_TW |
dc.date.accessioned | 2021-06-16T06:31:40Z | - |
dc.date.available | 2017-08-17 | |
dc.date.copyright | 2014-08-17 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-06 | |
dc.identifier.citation | 王三郎 (2006)。應用微生物學。新北市:高立圖書有限公司。
王將克等人 (2000)。生物地球化學。台北市:淑馨出版社。 王建龍等人 (2000)。微生物吸附金屬離子的研究進展,微生物學通報,27(6): 449-452。 李曉萍,2002。台灣附近海域浮游植物之化學分類暨群落分佈,國立海洋大學生物科技研究所。 李承軒,2008。淡水河流域銀之物種變化與空間分布,國立台灣大學理學院海洋研究所。 林芷嫻,2009。翡翠水庫浮游植物色素及群聚組成之季節性變化,國立台灣大學海洋研究所。 林苾芬,2010。西太平洋邊源海域浮游植物光合色素分布研究,國立台灣大學理學院海洋研究所。 林佩萱,2012。海洋浮游動物體內的微量金屬元素,國立台灣大學理學院海洋研究所。 袁澣 (1899)。浮游生物學。台北市:南山堂出版社。 黃君瑗,2010。火山灰與煤灰氣膠中可溶微量金屬組成對矽藻或聚球藻生長的影響,國立台灣大學理學院海洋研究所。 黃萬居 (1998)。台灣地區水庫浮游藻類圖鑑。台北市:行政院環境保護署環境檢驗所。 楊絮涵 (2009)。北南海及西菲律賓海浮游性植物族群結構之分布,國立台灣師範大學海洋環境科技研究所。 董淳禾 (2007)。台灣周遭海域表水浮游植物色素分佈初探,國立台灣大學理學院海洋研究所。 Agawin, N. S. R. et al., 2000, Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography, 45 (3): 591-600. Anderson, G. C. and Zeutschel, R. P., 1970, Release of DOM by marine phytoplankton in coastal and offshore areas of the northeast Pacific Ocean. Limnology and Oceanography, 15: 402-407. Annett, A. L. et al., 2008, The effects of Cu and Fe availability on the growth and Cu:C ratios of marine diatoms. Limnology and Oceanography, 53: 2451–61. Antia, H. N. J. et al., 1963. Further measurements of primary production using a large-volume plastic sphere. Limnology and Oceanography, 8: 166–183. Antia, N. J. et al., 1975, Comparative evaluation of certain organic and inorganic sources of nitrogen for phototrophic growth of marine microalgae. J. Mar. Biol. Assoc, 55: 519-539. Atkinson, M. J. and Smith, S. V., 1983, C: N: P rations of benthic marine plants. Limnology and Oceanography, 28(3): 568-574. Babich, H. et al.,1986, Cadmium-nickel toxicity interactions towards a bacterium, filamentous fungi, and a cultured mammalian cell line. Bulletin of Environmental Contamination and Toxicology, 37(1): 550-557. Beardall, J. and Raven, J. A., 2004, The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia, 43(1): 26-40. Beardall, J. and Stojkovic, S., 2006, Microalgae under Global Environmental Change: Implications for Growth and Productivity, Populations and Trophic Flow. ScienceAsia, 32: 1-10. Beardall, J. et al., 2008, Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton.. New Phytologist, 181(2): 295-309. Behrenfeld, M. J. and Falkowski, P. G., 1997, Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography, 42: 1-20. Behrenfeld, M. J. and Falkowski, P. G., 1997, A consumer’s guide to phytoplankton primary productivity models. Limnology and Oceanography, 42(7): 1479-1491. Bekheet, I. A. and Syrett, P. J., 1977, Urea-degrading enzymes in algae. Br. Phycol. J ., 12: 137-143. Biddanda, B. and Benner, R., 1997, Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnology and Oceanography, 42(3): 506-518. Biersmith, A. and Benner, R., 1998, Carbohydrates in phytoplankton and freshly produced dissolved organic matter. Marine Chemistry, 63(1-2): 131-144. Birch, W. P., 1975, Some chemical and calorific properties of tropical marine angiosperms. Journal of Applied Ecology, 12: 201-212. Coale, K. H. 1991, Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the subarctic Pacific. Limnology and Oceanography, 36: 1851–1864. Collier, R. and Edmond, J., 1984, The trace element geochemistry of marine biogenic particulate matter. Progress in Oceanography, 13: 99-113. Crawford, D. W. et al., 2003, Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific. Limnology and Oceanography, 48: 1583–1600. Cullen, J. T. et al., 2003, Effect of iron limitation on the cadmium to phosphorus ratio of natural phytoplankton assemblages from the Southern Ocean. Limnology and Oceanography, 48: 1079–87. Cullen, J. T., 2006, On the nonlinear relationship between dissolved cadmium and phosphate in the modern global ocean: Could chronic iron limitation of phytoplankton growth cause the kink? Limnology and Oceanography, 51(3):1369-1380. Dixon, N. E. et al., 1975, A metalloenzyme. A simple biological role for nickel? J. Am. Chem, 97: 4131-4133. Dupont, C. L. et al., 2008, Ni uptake and limitation in marine Synechococcus strains. Applied and Environmental Microbiology, 74: 23–31. Dupont, C. L. et al., 2010, Nickel utilization in phytoplankton assemblages from contrasting oceanic regimes. Deep-Sea Research Part I: Oceanographic Research Papers, 57: 553–66. Falkowski, P. G., 1994, The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynthesis Research, 39: 235-258. Falkowski, P. G., 1997, Evolution of the nitrogen cycle and its influence on the biological sequestration of CO 2 in the ocean. Nature, 387: 272-275. Falkowski, P. G. et al., 1998, Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science, 281: 200-206. Falkowski, P. G., 2000, Rationalizing elemental ratios in unicellular algae. Journal of Phycology, 36: 3-6. Falkowski, P. G. et al., 2008, The microbial engines that drive Earth's biogeochemical cycles. Science, 320(5879): 1034-1039. Fritioff, A. et al., 2005, Influence of temperature and salinity on heavy metal uptake by submersed plants. Environmental Pollution, 133: 265–274. Geider, R. J. and La Roche, J., 2002, Redfield revisited: variability of C: N: P in marine microalgae and its biochemical basis. Eur. Journal of Phycology, 37: 1-17. Goericke, R. et al., 1993, The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research Papers, 40(11-12): 2283-2294. Graham, L., 2000, Algae. Linda E. Graham, Lee W. Wilcox. Gressel, J. et al., 2013, Environmental risks of large scale cultivation of microalgae: Mitigation of spills. Algal Research, 2(3):286-298. Handa, N., 1969, Carbohydrate metabolism in the marine diatom S. costatum. Marine Biology, 4: 208–214. Harrison, W. G. et al., 1985, The distribution and metabolism of urea in the Canadian Arctic. Deep-Sea Research, 32: 23-42. Haug, A. and Myklestad, S., 1976, Polysaccharides of marine diatoms with special reference to Chaetoceros species. Marine Biology, 34: 217–222. Ho, T. Y. et al., 2003, The elemental composition of some marine phytoplankton. Journal of Phycology, 39: 1145-1159. Ho, T. Y., 2006, The trace metal composition of marine microalgae in cultures and natural assemblages . In D. V. Subba Rao (Ed.), Algal cultures, analogues of booms and applications, 1:271-299. Ho, T. Y. et al., 2007,The trace metal composition of size-fractionated plankton in the South China Sea: biotic versus abiotic sources. Limnology and Oceanography, 52(5): 1776–1788. Ho, T. Y. et al., 2009, Cadmium and phosphorus cycling in the water column of the South China Sea: The roles of biotic and abiotic particles. Marine Chemistry, 115: 125–133. Ho, T. Y. et al., 2010, Trace metal cycling in the surface water of the South China Sea: Vertical fluxes, composition, and sources. Limnology and Oceanography, 55(5): 1807–1820. Homsen, H. A. et al., 1999, Heteromorphic Life Histories in Arctic Coccolithophorids (Prymnesiophyceae). Journal of Phycology, 27(5): 634-642. Hudson, R. J. M. and Morel, F. M. M., 1990, Irontransportin marine phytoplankton: kinetics of medium and coordination reactions. Limnology and Oceanography, 35: 1002–1020. Jeffrey, S. W. and Hallegraeff, G. M., 1990, Phytoplankton ecology of Australian waters. In: Clayton. M. N., King, R. J. (eds), Biology of Marine Plants, Longman Cheshire, Melbourne, 310-348. Jeffrey, S. W. and Wright, S. W., 1997, Qualitative and quantitative HPLC analysis of SCOR reference algal cultures. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publ., Paris, 43–360. Jeffrey, S. W. and Vesk, M., 1997, Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (Eds.), UNESCO, Paris, Phytoplankton Pigments in Oceanography, 37-84. Jeffrey, S. W. et al., 2005, Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Johnston, H. W., 1971, A detailed chemical analysis of some edible Japanese seaweeds. Proc. 7th Int. Seaweed Symp. 429-435. Kuss, J. and Kremling, K., 1999, Spatial variability of particle associated trace elements in near-surface waters of the North Atlantic. Marine Chemistry, 68: 71-86. La Fontaine, S. et al., 2002, Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryotic Cell, 1: 736–57. Lane, T. W. and Morel, F. M. M., 2000, A biological function for cadmium in marine diatoms. Proceedings of the National Academy of Sciences, 97(9): 4627-4631. Lane, E. S. et al., 2009, Effects of iron limitation on intracellular cadmium of cultured phytoplankton: Implications for surface dissolved cadmium to phosphate ratios. Marine Chemistry, 15: 155-162. Lane, E. S. et al., 2008, The interaction between inorganic iron and cadmium uptake in the marine diatom Thalassiosira oceanica. Limnology and Oceanography, 53(5): 1784-1789. Li, Y. H., 2000, A compendium of geochemistry: From solar nebula to the human brain. Princeton, New Jersey, U.S.A., Princeton University Press. Liebig, J., 1847, Chemistry in its application to agriculture and physiology. Massachusetts, Peterson, T. B.,1847. U.S.A., Harvard University. Liu, K. K. et al., 2002, Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Research I, 49: 1387–1412. Lohan, M. C. et al., 2005, Iron and zinc enrichments in the northeastern subarctic Pacific: Ligand production and zinc availability in response to phytoplankton growth. Limnology and Oceanography, 50: 1427–1437. Mackey, M. D. et al., 1996, CHEMTAX-A program for estimating class abundances from chemical markers: Application to HPLC measurements of phytoplankton. Marine Ecology-Progress Series, 144(1-3): 265-283. Mackey, D. J. et al., 2002,Phytoplankton abundances and community structure in the equatorial Pacific. Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography, 49(13-14): 2561-2582. Mague, T. H. et al., 1980. Extracellular release of carbon by marine phytoplankton: A physiological approach. Limnology and Oceanography, 25: 262-279. Maldonado, M. T. et al., 2006, Copper-dependent iron transport in coastal and oceanic diatoms. Limnology and Oceanography, 51:1729–43. Martin, J. H., 1970, The possible transport of trace metals via moulted copepod exoskeletons. Limnology and Oceanography, 15(5), 756-761. Martin, J. H. and Knauer, G. A., 1973, The elemental composition of plankton. Geochimica et Cosmochimica Acta, 37(7): 1639-1653. Martin, J. H. et al., 1976, Cadmium transport in the California current. In Windom, H. L. and Duce, R. A. [Eds] Marine Pollutant Transfer, Lexington Books (D. C. Health and Co., Toronto), 84-159. Martin, J. H. and Gordon, R. M., 1988, Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep-Sea Research, 35: 177. Martin, J. H. and Fitzwater, S. E., 1988, Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331: 341-343. Martin, J. H. et al .,1990, Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochemistry, 4: 5–12. Martin, J. H., 1990, Glacial–interglacial CO2 change: The iron hypothesis. Palaeooceanography, 5: 1–13. Martin,W. et al.,2002, Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Science, 99: 12246–12251. McCarthy, J. J. et al., 1977, Nitrogenous nutrition of the plankton in the Chesapeake Bay. 1. Nutrient availability and phytoplankton preferences. Limnology and Oceanography, 22: 996-1011. Miki, M. et al., 2008, Phytoplankton dynamics associated with the monsoon in the Sulu Sea as revealed by pigment signature. Journal of Oceanography, 4(5): 663-673. Mobley, H. L. T. and Hausinger, R. P., 1989, Microbial ureases: Significance, regulation and molecular characterization. Microbial. Rev, 53: 85-108. Morel, F. M. M., Milligan, A. J. and Saito., M. A., 2003, Marine Bioinorganic Chemistry: The role of trace metals in the oceanic cycles of major nutrients. Treatise on Geochemistry, 6, 113-143. Morel, F. M. M and Price, N. M., 2003, The Biogeochemical Cycles of Trace Metals in the Oceans. Science, 300:944-947. Myklestad, S. and Haug, A., 1972, Production of carbohydrates by the marine diatom C. affinis var. willei: I. Effect of the concentration of nutrients in the culture medium. Journal of Experimental Marine Biology and Ecology, 9: 125–136. Myklestad, S., 1974, Production of carbohydrates by marine planktonic diatoms: I. Composition of nine different species in culture. Journal of Experimental Marine Biology and Ecology, 15: 261–274. Myklestad, S., 1977, Production of carbohydrates by marine planktonic diatoms: II. Influence of the NrP ratio in the growth medium on the assimilation ratio, growth rate, and production of cellular and extracellular carbohydrates by C. affinis var. willei and S. costatum. Journal of Experimental Marine Biology and Ecology, 29: 161–179. Nuester, J. et al., 2012, The unique biogeochemical signature of the marine diazotroph Trichodesmium. Front. Microbioly, 3, 150. Nuester, J. et al., 2012, Localization of iron within centric diatoms of the genus Thalassiosira. Journal of Phycology, 8: 626–34. Oliveira, L. and Antia, N. J., 1986, Nickel ion requirements for autotrophic growth of several marine microalgae with urea serving as nitrogen source. Science, 43: 2427-2433. Pai, S. C. et al., 1990, Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylomolybdenum blue complex. Analytica Chimica Acta, 229: 115-120. Parsons, T. R. et al., 1961, On the chemical composition of eleven species of marine phytoplankters. Journal of the Fisheries Research Board of Canada, 18(6): 1001-1016. Parsons, T. R. et al., 1984, Biological oceanographic processes. (Oxford, U. S. A., New York) Patriquin, D. G., 1972, The origin of nitrogen and phosphorus for the growth of marine angiosperms. Marine Biology, 15: 35-46. Peers, G. and Price, N. M., 2006, Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature, 441: 341–44. Platt, T. et al., 1992, Nutrient control of phytoplankton photosynthesis in the Western North Atlantic. Nature, 356: 229-231. Prasad,P. V. D. and Prasa,P. S. D., 1982, Effect of cadmium, lead and nickel on three freshwater green algae. Water, Air, and Soil Pollution,17: 263-268. Price, N. M. et al., 1988/1989, Preparation and chemistry of the artificial algal culture medium aquil. Biologiral Oceanography, 6: 443-461. Price, N. M. and Harrison, P. J.,1988, Urea uptake by Sargasso Sea phytoplankton: Saturated and in situ uptake rates. Deep-Sea Research, 35: 1579-l 593. Price, N. M. and Morel, F. M. M., 1990, Cadmium and cobalt substitution for zinc in a marine diatom. Nature, 344: 658–660. Price, N. M. and Morel, F. M. M.,1991, Colimitation of phytoplankton growth by nickel and nitrogen. Limnology and Oceanography, 36(6): 1071-1077. Quigg. A. et al., 2003, The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature, 425, 291-294. Quigg. A. et al., 2011, Evolutionary inheritance of elemental stoichiometry in phytoplankton. Proc. R, Soc. B Biol.Sci, 278(1705): 526-534. Raven, J. A. et al., 1999, The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynthesis Research, 60:111–49. Redfield, A. C. et al., 1963, The influence of organisms on the composition of sea water. In Hill, M. N. (Ed.) The Sea. Interscience Publication, New York. 2: 26-77. Rees, T. A. V. and Bekheet, I. A., 1982, The role of nickel in urea assimilation by algae. Planta, 165: 385-387. Ryther, J. H. and Menzel, D. W., 1959, Light adaptation by marine phytoplankton. Limnology and Oceanography,4(4): 492–497. Sanudo-Wilhelmy, S. A. et al., 2004, The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Nature, 432(7019): 897-901. Schmidt, W. et al., 1980, Characterization of the lipopolysaccharides from eight strains of the cyanobacterium Synechococcus. Archives of Microbiology, 127: 209–215. Sieburth, J. M., Smetacek, V. and Lenz, J., 1978, Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology and Oceanography, 23: 1256–1263. Skaar, H. et al., 1974, The uptake of 61Ni by the diatom Phneodactylum tricorm & m. Physiology Plant, 32: 353-358. Skoog, D. A. et al., 2007, Principles of Instrumental Analysis, 6th ed., 169-173. Stevenson, F. J. and Cheng, C. N., 1972, Organic geochemistry of the Argentine Basin sediments : carbon-nitrogen relationships and Quaternary correlations. Geochimica et Cosmochimica Acta, 36: 653-671. Sunda, W.G. and Huntsman, S.A., 1986, Relationships among growth rate, cellular manganese concentrations and manganese transport kinetics in estuarine and oceanic species of the diatom Thalassiosira, Journal of Phycology, 22: 259-270. Sunda, W. G.,1989, Trace Metal Interactions with Marine Phytoplankton. Biological Oceanography, 6: 5-6, 411-442. Sunda, W. G.et al.,1991, Low iron requirement for growth in oceanic phytoplankton. Nature, 351: 55-57. Sunda and Huntsman, 1995, Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications. Limnology and Oceanography, 40: 1404–1417. Sunda, W.G. and Huntsman, S.A., 1997, Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature, 390(27): 389-392. Sunda, W. G. and Huntsman, S. A., 1998, Processes regulating cellular metal accumulation and physiological effects: Phytoplankton as model systems. The Science of the total Environment, 219: 165-181. Sunda, W. G. and Huntsman, S. A., 2000, Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: Implications for oceanic Cd cycling. Limnology and Oceanography, 45(7): 1501–1516. Sunda, W. G.et al.,2005, Trace metal ion buffers and their use in culture studies. In R. A. Anderson [ed.] Algal culturing techniques, 35-64. Swan, B. K. et al., 2013, Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proceedings of the National Academy of Sciences, 110: 11463–11468. Tang, D. and Morel, F. M. M., 2006, Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. Marine Chemistry, 98(1): 18-30. Taylor, S. R., 1964, Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28(8): 1273–1285. Tovar-Sanchez, A. et al., 2006, Effects of dust deposition and river discharges on trace metal composition of Trichodesmium spp. in the tropical and subtropical North Atlantic Ocean. Limnology and Oceanography, 51: 1755–61. Tuit, C. et al., 2004, Diel variation of molybdenum and iron in marine diazotrophic cyanobacteria. Limnology and Oceanography, 49(4): 978-990. Twining, B. S. et al., 2010, Variations in Synechococcus cell quotas of phosphorus, sulfur, manganese, iron, nickel, and zinc within mesoscale eddies in the Sargasso Sea. Limnology and Oceanography, 55: 492–506. Twining, B.S. et al., 2011, Metal quotas of plankton in the equatorial Pacific Ocean. Deep-Sea Res II, 58: 325–41. Twining, B. S. et al., 2013, The trace metal composition of marine phytoplankton. Marine Science, 5: 191-215. Varum, K.M. and Myklestad, S., 1984, Effects of light, salinity, and nutrient limitation on the production of b-1,3-D-glucan and exo-D-glucanase activity in S. costatum. Journal of Experimental Marine Biology and Ecology, 83: 13–25. Volk, T. and Hoffert, M. I., 1985, Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean drive atmospheric CO2 changes. Geophysical Monograph Series, 32: 99-110. Walve, J. et al., 2014, Trace metals and nutrients in Baltic Sea cyanobacteria: Internal and external fractions and potential use in nitrogen fixation. Marine Chemistry, 158: 27-38. Wang, H. K.and Wood, J. M., 1984, Bioaccumulation of nickel by algae. Environ. Sci. Technol, 18: 106-109. Wang, W. X. and Dei, R. C. H., 2001, Effects of major nutrient additions on metal uptake in phytoplankton. Environmental Pollution, 111: 233-240. Whitfield, M.,2001, Interactions between phytoplankton and trace metals in the ocean. Marine Biology, 41: 3–128. Whittaker, S. W. et al., 2011, Quantification of nitrogenase in Trichodesmium IMS 101: implications for iron limitation of nitrogen fixation in the ocean. Environmental Microbiology Reports, 3: 54–58. Williams, R. J. P. and da Silva, J. J. R. F., 1996, The Natural Selection of the Chemical Elements. (Clarendon, Oxford) .Wood, A. M. et al., 2005, Measuring growth rates in microalgal cultures. Algal Culturing Techniques, 18: 269-285. Yu, M. C. et al., 2007, Distribution pattern of photosynthetic picoplankton and heterotrophic bacteria in the North South China Sea. Journal of Integrative Plant Bioloy, 49(3): 282-298. Zoltnik, I. and Dubinsky, Z., 1989. The effect of light and temperature on dissolved organic carbon excretion by phytoplankton. Limnology and Oceanography, 34: 831-839. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56944 | - |
dc.description.abstract | 水環境中浮游植物對於物質在生物地球化學循環中,扮演極為重要角色。本研究利用超微過濾方式 (Ultrafiltration) 分離族群並配合多種技術 (計數器、高壓液相層析儀、元素分析儀、石墨爐式原子吸光儀及顯微鏡),探討在自然環境中,微型浮游植物 (0.2~10μm) 基本元素組成、微量金屬含量與莫耳比變化。
本實驗結果顯示,季節轉變會造成淡水湖及海洋微型浮游植物族群及個體元素組成改變。綠藻、藍綠藻、矽藻、金黃藻等族群元素組成皆不相同。個體元素組成平均而言,碳、氮、硫及磷含量分別為20.56 ± 8.78 %、4.11 ± 1.82 %、1.06 ± 0.75 %,以及4.32 ± 3.39 %,各元素組成各異,非為定值。此外,各微量金屬 (鐵、鋅、銅、鎳、鎘) 含量及濃度莫耳比值與前人研究亦不相同。本研究醉月湖微型浮游植物平均元素含量為 (C105.6N16.6P1S0.8)1000Fe141Zn3.2Cu0.20Ni0.31Cd0.006,而台灣邊緣海浮游植物則為 (C90.9N16.7P1S1.6)1000Fe27Zn2.0Cu0.19Ni0.16Cd0.001。水中浮游植物隨著季節轉變,族群組成及其個體元素含量差異性明顯。此外,本研究亦發現鐵與銅及鎳與鎘有良好線性關係,各受到光合作用與代謝作用互相影響導致。不同物種之微型浮游植物其碳、氮、硫含量 (及各微量金屬),並非遵循固定之等比吸收代謝比值 (i.e., Redfield ratio),由實驗室馴化培養微型浮游植物所得之莫耳吸收比或反應比率,並不適用於自然環境。 | zh_TW |
dc.description.abstract | In natural water, phytoplankton plays an extremely important role in biogeochemical cycle of elements. In this study, nanoplankton populations and elemental composition were investigated. The planktons were first isolated and concentrated with the used of ultra-clean cross-flow filtration technique, and then, cell numbers were counted by Coulter Counter, phytoplankton photopigments were analyzed by High Pressure Liquid Chromatography, carbon and nitrogen were measured by Elemental Analyzer, trace metals were measured by Graphite Furnace-Atomic Absorption Spectrometry. The results showed that the phytoplankton populations (green algae, blue-green algae, diatoms, golden algae) and elemental composition are significantly different among each month, and between freshwater and marine environments. On the average, the concentrations of C, N, S, and P in collected nanoplankton were 20.56 ± 8.78 %, 4.11 ± 1.82 %, 1.06 ± 0.75 %, and, 4.32 ± 3.39 % respectively. Trace metal (Fe, Zn, Cu, Cd, Ni) contents, and the elemental (C, N, S, P) to trace metal mole ratio were found different then previous studies. On average, a mole stoichiometry ratio of (C105.6N16.6P1S0.8)1000Fe141Zn3.2Cu0.20Ni0.31Cd0.006 is found for freshwater nanoplankton, and (C90.9N16.7P1S1.6)1000Fe27Zn2.0Cu0.19Ni0.16Cd0.001 for marine nanoplankton. In addition, strong correlations were found between Fe and Cu, and that of Ni and Cd, due to corresponding roles in photosynthese and metabolic reactions. It is concluded that molar absorption ratio and reaction rate obtained from lab-cultured experiments and domesticated nanophytoplankton are significant different than the ones collected from natural environment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:31:40Z (GMT). No. of bitstreams: 1 ntu-103-R01241401-1.pdf: 123676945 bytes, checksum: f902dbe9a46057d70033eae5751327f6 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書-------------------------------------------------------------------------------i
誌謝------------------------------------------------------------------------------------------------ ii 摘要------------------------------------------------------------------------------------------------iii Abstract--------------------------------------------------------------------------------------------iv 目錄-------------------------------------------------------------------------------------------------v 表目錄--------------------------------------------------------------------------------------------- vi 圖目錄----------------------------------------------------------------------------------------vii-viii 第一章 緒論 1.1 浮游植物-----------------------------------------------------------------------------------1~5 1.2 元素功能-----------------------------------------------------------------------------------5~7 1.3 浮游植物體內元素含量比值-----------------------------------------------------------7~8 1.4 研究目的--------------------------------------------------------------------------------------8 第二章 材料及方法 2.1 樣品採集---------------------------------------------------------------------------------------9 2.2 材料及藥品------------------------------------------------------------------------------10~11 2.3 分析項目及方法------------------------------------------------------------------------11~17 第三章 結果 3.1 浮游植物種群---------------------------------------------------------------------------18~21 3.2元素含量----------------------------------------------------------------------------------22~23 第四章 討論 4.1 浮游植物族群變異--------------------------------------------------------------------24~26 4.2 浮游植物元素變化--------------------------------------------------------------------26~33 第五章 結論--------------------------------------------------------------------------------34 參考文獻----------------------------------------------------------------------------------35~45附錄---------------------------------------------------------------------------------------108~120 | |
dc.language.iso | zh-TW | |
dc.title | 天然群落中微型浮游植物的元素含量及組成變化 | zh_TW |
dc.title | Elemental and Trace Metal Composition of Nano-phytoplankton in Natural Assemblage | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 白書禎,簡國童 | |
dc.subject.keyword | 微型浮游植物,超微過濾,基本元素,微量金屬, | zh_TW |
dc.subject.keyword | Nanophytoplankton,Ultrafiltration,Elemental Compositions,Trace metals, | en |
dc.relation.page | 120 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-06 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 120.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。