請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56934完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾雪峰(Snow H. Tseng) | |
| dc.contributor.author | Sergio Cantero Clares | en |
| dc.contributor.author | 和佑 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:31:29Z | - |
| dc.date.available | 2014-08-08 | |
| dc.date.copyright | 2014-08-08 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-06 | |
| dc.identifier.citation | REFERENCES
[1] A. E. Chiou, 'Harnessing Light for Life: An Overview of Biophotonics,' Optics and Photonics News, vol. 16, pp. 30-35, 2005/09/01 2005. [2] A. Jenkins, 'The road to nanophotonics,' Nat Photon, vol. 2, pp. 258-260, 05//print 2008. [3] I. M. Vellekoop, M. Cui, and C. Yang, 'Digital optical phase conjugation of fluorescence in turbid tissue,' Applied Physics Letters, vol. 101, pp. -, 2012. [4] A. Ishimaru, 'Theory and application of wave propagation and scattering in random media,' Proceedings of the IEEE, vol. 65, pp. 1030-1061, 1977. [5] F. Voit, A. Hohmann, J. Schafer, and A. Kienle, 'Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory,' J Biomed Opt, vol. 17, p. 045003, Apr 2012. [6] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed.: Artech House, 2005. [7] A. Taflove, A. Oskooi, and S. Johnson, Advances in FDTD Computational Electrodynamics. Photonics and Nanotechnology: Artech House, 2013. [8] A. Karlsson, H. Jiangping, J. Swartling, and S. Andersson-Engels, 'Numerical simulations of light scattering by red blood cells,' Biomedical Engineering, IEEE Transactions on, vol. 52, pp. 13-18, 2005. [9] R. Drezek, A. Dunn, and R. Richards-Kortum, 'Light Scattering from Cells: Finite-Difference Time-Domain Simulations and Goniometric Measurements,' Applied Optics, vol. 38, pp. 3651-3661, 1999/06/01 1999. [10] S. H. Tseng, 'Investigating the Optical Phase Conjugation Reconstruction Phenomenon of Light Multiply Scattered by a Random Medium,' Photonics Journal, IEEE, vol. 2, pp. 636-641, 2010. [11] S. H. Tseng, W.-L. Ting, and S.-J. Wang, '2-D PSTD Simulation of the time-reversed ultrasound-encoded deep-tissue imaging technique,' Biomed. Opt. Express, vol. 5, pp. 882-894, 2014. [12] J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, et al., 'Subwavelength light focusing using random nanoparticles,' Nature Photon., vol. 7, pp. 454-458, 2013. [13] O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, 'Focusing and compression of ultrashort pulses through scattering media,' Nature Photon., vol. 5, pp. 372-377, 2011. [14] I. M. Vellekoop, LagendijkA, and A. P. Mosk, 'Exploiting disorder for perfect focusing,' Nat Photon, vol. 4, pp. 320-322, 05//print 2010. [15] S. H. Tseng and C. Yang, '2-D PSTD Simulation of optical phase conjugation for turbidity suppression,' Opt. Express, vol. 15, pp. 16005-16016, 2007. [16] J. L. Hollmann, R. Horstmeyer, C. Yang, and C. A. DiMarzio, 'Analysis and modeling of an ultrasound-modulated guide star to increase the depth of focusing in a turbid medium,' J Biomed Opt, vol. 18, p. 25004, Feb 2013. [17] I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, 'Demixing light paths inside disordered metamaterials,' Opt Express, vol. 16, pp. 67-80, Jan 7 2008. [18] S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, 'Using digital micromirror devices for focusing light through turbid media,' in Proc. SPIE 8979, Emerging Digital Micromirror Device Based Systems and Applications VI, 897905 2014. [19] H. A. Atwater and A. Polman, 'Plasmonics for improved photovoltaic devices,' Nat Mater, vol. 9, pp. 205-213, 03//print 2010. [20] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, 'Plasmonics for extreme light concentration and manipulation,' Nat Mater, vol. 9, pp. 193-204, 03//print 2010. [21] C. Argyropoulos, E. Kallos, and Y. Hao, 'FDTD analysis of the optical black hole,' J. Opt. Soc. Amer. B, vol. 27, pp. 2020-2025, 2010. [22] E. E. Narimanov and A. V. Kildishev, 'Optical black hole: Broadband omnidirectional light absorber,' Appl. Phys. Lett., vol. 95, pp. 041106-041106-3, 2009. [23] J.-P. Berenger, 'A perfectly matched layer for the absorption of electromagnetic waves,' J. Comput. Phys., vol. 114, pp. 185-200, 1994. [24] H. Odabasi, F. L. Teixeira, and W. C. Chew, 'Impedance-matched absorbers and optical pseudo black holes,' J. Opt. Soc. Amer. B, vol. 28, pp. 1317-1323, 2011. [25] J. A. Roden and S. D. Gedney, 'Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media,' Microw. Opt. Tech. Lett., vol. 27, pp. 334-339, 2000. [26] F. L. Teixeira and W. C. Chew, 'On causality and dynamic stability of perfectly matched layers for FDTD simulations,' IEEE Trans. Microw. Theory Tech., vol. 47, pp. 775-785, 1999. [27] F. L. Teixeira, K. P. Hwang, W. C. Chew, and J. M. Jin, 'Conformal PML-FDTD schemes for electromagnetic field simulations: a dynamic stability study,' IEEE Trans. Microw. Theory Tech., vol. 49, pp. 902-907, 2001. [28] 'MATLAB and Statistics Toolbox Release 2011a,' ed: The MathWorks Inc., Natick, Massachusetts, United States. [29] Y. Kane, 'Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,' Antennas and Propagation, IEEE Transactions on, vol. 14, pp. 302-307, 1966. [30] G. Mur, 'Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,' Electromagnetic Compatibility, IEEE Transactions on, vol. EMC-23, pp. 377-382, 1981. [31] C. M. Rappaport, 'Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space,' Microwave and Guided Wave Letters, IEEE, vol. 5, pp. 90-92, 1995. [32] W. C. Chew and W. H. Weedon, 'A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates,' Microwave and Optical Technology Letters, vol. 7, pp. 599-604, 1994. [33] J. P. Berenger, 'Improved PML for the FDTD solution of wave-structure interaction problems,' Antennas and Propagation, IEEE Transactions on, vol. 45, pp. 466-473, 1997. [34] S. D. Gedney and Z. Bo, 'An Auxiliary Differential Equation Formulation for the Complex-Frequency Shifted PML,' IEEE Trans. Antennas Propag., vol. 58, pp. 838-847, 2010. [35] J. B. Schneider, C. L. Wagner, and O. M. Ramahi, 'Implementation of transparent sources in FDTD simulations,' Antennas and Propagation, IEEE Transactions on, vol. 46, pp. 1159-1168, 1998. [36] J. B. Schneider, 'Plane waves in FDTD simulations and a nearly perfect total-field/scattered-field boundary,' Antennas and Propagation, IEEE Transactions on, vol. 52, pp. 3280-3287, 2004. [37] T. Tan and M. Potter, 'FDTD Discrete Planewave (FDTD-DPW) Formulation for a Perfectly Matched Source in TFSF Simulations,' Antennas and Propagation, IEEE Transactions on, vol. 58, pp. 2641-2648, 2010. [38] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed.: Artech House, 2000. [39] C. A. DiMarzio, Optics for Engineers: CRC press (Taylor & Francis group), 2011. [40] C. D. Moss, F. L. Teixeira, and J.-A. Kong, 'Analysis and compensation of numerical dispersion in the FDTD method for layered, anisotropic media,' Antennas and Propagation, IEEE Transactions on, vol. 50, pp. 1174-1184, 2002. [41] I. R. Çapoglu, A. Taflove, and V. Backman, 'Generation of an incident focused light pulse in FDTD,' Optics Express, vol. 16, pp. 19208-19220, 2008/11/10 2008. [42] l. R. Çapo?lu, A. Taflove, and V. Backman, 'Computation of tightly-focused laser beams in the FDTD method,' Optics Express, vol. 21, pp. 87-101, 2013/01/14 2013. [43] J. Dugundji, 'Envelopes and pre-envelopes of real waveforms,' Information Theory, IRE Transactions on, vol. 4, pp. 53-57, 1958. [44] Q.-H. Liu, 'Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm,' Geoscience and Remote Sensing, IEEE Transactions on, vol. 37, pp. 917-926, 1999. [45] W. Choi, A. P. Mosk, Q. H. Park, and W. Choi, 'Transmission eigenchannels in a disordered medium,' Physical Review B, vol. 83, p. 134207, 04/27/ 2011. [46] J. L. Hollmann, R. Horstmeyer, C. Yang, and C. A. DiMarzio, 'Analysis and modeling of an ultrasound-modulated guide star to increase the depth of focusing in a turbid medium,' J. Biomed. Opt., vol. 18, pp. 025004-025004, 2013. [47] S. Tanev, V. Tuchin, P. Cheben, P. Bock, J. Schmid, S. Janz, et al., 'Advances in the FDTD design and modeling of nano- and bio-photonics applications,' Photonics and Nanostructures - Fundamentals and Applications, vol. 9, pp. 315-327, 10// 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56934 | - |
| dc.description.abstract | 在大多數生物組織中,散射會限制光學成像技術的適用性。近年來,利用有限差分時域法(FDTD)在巨觀散射模擬中解出準確電磁場的分佈成為一種常見的方法。在這個研究中,我們提出光學靶,應用在有限差分時域法光學散射模擬中。為了建構出光傳遞通過巨觀混濁介質到目標位置,必須設置具有消掉任何入射光性質的光學吸收體,摺積式完美匹配層(CPML)吸收邊界條件被用來產生局部的圓形結構的光學吸收體,此光學吸收體可以吸收來自所有方向的光。為了驗證此方法的可行性,我們利用二維FDTD演算法來產生一個柱狀的光學吸收體,並且探討在全方向入射的光條件下的情況。藉由改變CPML相關變因,我們計算其吸收效率在不同應用中的可行性,並且分析數值光學靶在光的巨觀散射模擬中表現的影響因素。 | zh_TW |
| dc.description.abstract | High scattering in most biological tissues limits the applicability of optical imaging techniques: Focusing depth and resolution depend not only on the absorption loss, but also on the successive scattering through the medium. Due to the complexity of the light propagation in tissue, accurate and robust simulations are necessary. In recent years, computations use the finite-difference time-domain (FDTD) method to exactly solve the electromagnetic field distribution in scattering through macroscopic media.
In this research, we propose implementing an optical target for FDTD light scattering simulations. To model light propagation through a macroscopic turbid medium to a target position, an absorber is required to eliminate impinging light. To construct a tool that absorbs incident light from all incident directions, we modify the convolutional perfectly matched layers (CPML) absorbing boundary condition into a localized, round-shaped optical target. The cylindrical target is then validated using two-dimensional FDTD simulations under omnidirectional light incidence. Varying the different CPML parameters, we compute the absorption efficiency for its characterization in a wide range of applications, and we analyze the factors affecting its performance as a numerical optical target in macroscopic light scattering simulations. To demonstrate the applicability of the presented model, three examples are given in which we report: 1) Effective light elimination and isolation of electromagnetic fields within the problem region. 2) Detection of an ideal absorber within random media. And, 3) shaping the CPML absorbing boundary condition for reduction in computational time and memory resources of an FDTD simulation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:31:29Z (GMT). No. of bitstreams: 1 ntu-103-R00941105-1.pdf: 10468418 bytes, checksum: 237a91f8c0e39ebb1a61511536ca508b (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | CONTENTS
ACKNOWLEDGMENTS v 中文摘要 vii ABSTRACT ix CONTENTS xi LIST OF FIGURES xv LIST OF TABLES xxi Chapter 1 Introduction 1 1.1 An Optical Target for Light Scattering Simulations 1 1.2 FDTD Simulations of Optical Imaging Techniques 2 1.3 Modeling of Perfectly Absorbing Media 4 1.4 Chapter Outline 5 Chapter 2 Finite-Difference Time-Domain Method 7 2.1 Finite Difference Scheme 7 2.2 Yee Algorithm 9 2.3 Central Difference Approximation of Maxwell Equations 11 2.4 Stability and Dispersion 17 2.5 Alternative Schemes and Improvements 23 Chapter 3 Absorbing Boundary Conditions 25 3.1 Mur ABC 26 3.2 Berenger Perfectly Matched Layers 28 3.3 Modifications to Berenger PML 32 3.4 Validation and Performance of Berenger PML 34 3.4.1 Comparison between Mur ABC and Berenger PML 34 3.4.2 Conductivity Discretization and Constitutive Parameters 39 3.4.3 Performance and Optimal Parameters 40 Chapter 4 Electromagnetic Wave Source Conditions and Time Domain Analysis 45 4.1 Source Implementation in Yee Grid 45 4.1.1 Hard Source 46 4.1.2 Soft Source 47 4.1.3 Total-Field/Scattered-Field Formulation 48 4.2 Fourier Analysis 51 4.3 Gaussian Beam 56 4.4 Complex Field Calculation via Hilbert Transform 61 4.5 Summary 65 Chapter 5 CPML Optical Target 67 5.1 Implementation of the Convolutional PML 67 5.2 Cylindrical versus Planar Geometry 71 5.3 Omnidirectional Light Absorption 73 5.3.1 Simulation Setup 73 5.3.2 Performance Evaluation 77 5.3.3 Optimal Conductivity Stepping 81 5.3.4 Limitations 83 5.4 Absorption of Gaussian Beams 85 5.4.1 Simulation Setup 85 5.4.2 Performance of the circular target 88 5.4.3 Comparison with a Planar Absorber 91 5.5 Summary 94 Chapter 6 Applications of the CPML Optical Target 95 6.1 Extracting and Isolating Portion of the Scattered Field 95 6.2 Detection of an Ideal Absorber inside Biological Tissue 99 6.2.1 Placement of the Optical Target in Turbid Media 99 6.2.2 Variation of the Target’s Depth 103 6.2.3 Variation of the Position in the Transversal Axis 107 6.2.4 Placement under Different Incident Wavelength 108 6.2.5 Conclusion 111 6.3 Shaping Absorbing Boundary Conditions 112 6.4 Summary 114 Chapter 7 Conclusion and Future Prospect 115 7.1 Conclusion 115 7.2 Future Prospect 116 REFERENCES 119 | |
| dc.language.iso | en | |
| dc.subject | 時域有限差分法 | zh_TW |
| dc.subject | 光學模擬 | zh_TW |
| dc.subject | 光散射 | zh_TW |
| dc.subject | 光學靶 | zh_TW |
| dc.subject | light scattering | en |
| dc.subject | optical simulation | en |
| dc.subject | FDTD method | en |
| dc.subject | optical target | en |
| dc.subject | absorbing boundary condition | en |
| dc.subject | CPML | en |
| dc.title | 以時域有限差分法模擬分析CPML光學靶之效能 | zh_TW |
| dc.title | Design and Analysis of an Optical Target for FDTD Scattering Simulations by Shaping the CPML Absorbing Boundary Condition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張世慧(Gilbert Chang),江衍偉(Yean-Woei Kiang) | |
| dc.subject.keyword | 光散射,時域有限差分法,光學模擬,光學靶, | zh_TW |
| dc.subject.keyword | light scattering,optical simulation,FDTD method,optical target,absorbing boundary condition,CPML, | en |
| dc.relation.page | 121 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 10.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
