請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56882完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林水龍 | |
| dc.contributor.author | Fan-Chi Chang | en |
| dc.contributor.author | 張芳綺 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:30:43Z | - |
| dc.date.available | 2015-11-06 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-07 | |
| dc.identifier.citation | 1. Risau W. Mechanisms of angiogenesis. Nature. 1997;386(6626):671-674.
2. Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314(1):15-23. 3. Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 2009;10(3):165-177. 4. Rojas A, Chang FC, Lin SL, Duffield JS. The role played by perivascular cells in kidney interstitial injury. Clin Nephrol. 2012;77(5):400-408. 5. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6(4):389-395. 6. Bajou K, Noel A, Gerard RD, et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med. 1998;4(8):923-928. 7. Murohara T, Asahara T, Silver M, et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest. 1998;101(11):2567-2578. 8. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol. Mar 1994;55(3):410-422. 9. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407(6801):242-248. 10. Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int. 1999;56(3):794-814. 11. Lin H, Shabbir A, Molnar M, et al. Adenoviral expression of vascular endothelial growth factor splice variants differentially regulate bone marrow-derived mesenchymal stem cells. J Cell Physiol. 2008;216(2):458-468. 12. Sato TN, Qin Y, Kozak CA, Audus KL. Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci U S A. 1993;90(20):9355-9358. 13. Barton WA, Tzvetkova-Robev D, Miranda EP, et al. Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2-Tie2 complex. Nat Struct Mol Biol. 2006;13(6):524-532. 14. Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell. 1996;87(7):1161-1169. 15. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science (New York, N Y ). 1997;277(5322):55-60. 16. Procopio WN, Pelavin PI, Lee WM, Yeilding NM. Angiopoietin-1 and -2 coiled coil domains mediate distinct homo-oligomerization patterns, but fibrinogen-like domains mediate ligand activity. J Biol Chem. 1999;274(42):30196-30201. 17. Kim K-T, Choi H-H, Steinmetz MO, et al. Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate Tie2. J Biol Chem. 2005;280(20):20126-20131. 18. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87(7):1171-1180. 19. Reiss Y, Droste J, Heil M, et al. Angiopoietin-2 impairs revascularization after limb ischemia. Circ Res. 2007;101(1):88-96. 20. Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell. 2002;3(3):411-423. 21. Pitera JE, Woolf AS, Gale NW, Yancopoulos GD, Yuan HT. Dysmorphogenesis of kidney cortical peritubular capillaries in angiopoietin-2-deficient mice. Am J Pathol. 2004;165(6):1895-1906. 22. Papapetropoulos A, Fulton D, Mahboubi K, et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem. 2000;275(13):9102-9105. 23. Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Circ Res. 2000;86(1):24-29. 24. Daly C, Wong V, Burova E, et al. Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev. 2004;18(9):1060-1071. 25. Jeon BH, Khanday F, Deshpande S, Haile A, Ozaki M, Irani K. Tie-ing the antiinflammatory effect of angiopoietin-1 to inhibition of NF-kappaB. Circ Res. 2003;92(6):586-588. 26. Tadros A, Hughes DP, Dunmore BJ, Brindle NPJ. ABIN-2 protects endothelial cells from death and has a role in the antiapoptotic effect of angiopoietin-1. Blood. 2003;102(13):4407-4409. 27. Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y. Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem. 1999;274(22):15732-15739. 28. Fiedler U, Augustin HG. Angiopoietins: a link between angiogenesis and inflammation. Trends in immunology. 2006;27(12):552-558. 29. Fiedler U, Scharpfenecker M, Koidl S, et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood. 2004;103(11):4150-4156. 30. Findley CM, Cudmore MJ, Ahmed A, Kontos CD. VEGF induces Tie2 shedding via a phosphoinositide 3-kinase/Akt dependent pathway to modulate Tie2 signaling. Arterioscler Thromb Vasc Biol. 2007;27(12):2619-2626. 31. Fiedler U, Reiss Y, Scharpfenecker M, et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med. 2006;12(2):235-239. 32. De Palma M, Venneri MA, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005;8(3):211-226. 33. Venneri MA, De Palma M, Ponzoni M, et al. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood. 2007;109(12):5276-5285. 34. Daly C, Pasnikowski E, Burova E, et al. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci U S A. 2006;103(42):15491-15496. 35. Kim I, Kim JH, Moon SO, Kwak HJ, Kim NG, Koh GY. Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3 '-kinase/Akt signal transduction pathway. Oncogene. 2000;19(39):4549-4552. 36. Teichert-Kuliszewska K, Maisonpierre PC, Jones N, et al. Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res. 2001;49(3):659-670. 37. Davis S, Papadopoulos N, Aldrich TH, et al. Angiopoietins have distinct modular domains essential for receptor binding, dimerization and superclustering. Nat Struct Biol. 2003;10(1):38-44. 38. Felcht M, Luck R, Schering A, et al. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest. 2012;122(6):1991-2005. 39. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease'. Kidney Int Suppl. 2013;3(1):S1-150. 40. Wen CP, Cheng TYD, Tsai MK, et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet. 2008;371(9631):2173-2182. 41. Foley RN, Murray AM, Li S, et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol. 2005;16(2):489-495. 42. Park M, Hsu C-y, Li Y, et al. Associations between kidney function and subclinical cardiac abnormalities in CKD. J Am Soc Nephrol. 2012;23(10):1725-1734. 43. Chronic Kidney Disease Prognosis C, Matsushita K, van der Velde M, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073-2081. 44. Gansevoort RT, Matsushita K, van der Velde M, et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 2011;80(1):93-104. 45. van der Velde M, Matsushita K, Coresh J, et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79(12):1341-1352. 46. Chien K-L, Hsu H-C, Lee Y-T, Chen M-F. Renal function and metabolic syndrome components on cardiovascular and all-cause mortality. Atherosclerosis. 2008;197(2):860-867. 47. Arnlov J, Evans JC, Meigs JB, et al. Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation. 2005;112(7):969-975. 48. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, et al. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation. 2004;110(1):32-35. 49. Wachtell K, Ibsen H, Olsen MH, et al. Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. Ann Intern Med. 2003;139(11):901-906. 50. Zoccali C. Traditional and emerging cardiovascular and renal risk factors: an epidemiologic perspective. Kidney Int. 2006;70(1):26-33. 51. Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116(1):85-97. 52. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;76(113):S1-130. 53. Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK. Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol. 2001;12(10):2131-2138. 54. London GM, Guerin AP, Verbeke FH, et al. Mineral metabolism and arterial functions in end-stage renal disease: potential role of 25-hydroxyvitamin D deficiency. J Am Soc Nephrol. 2007;18(2):613-620. 55. Zoccali C. Endothelial dysfunction in CKD: a new player in town? Nephrol Dial Transplant. 2008;23(3):783-785. 56. O'Riordan E, Chen J, Brodsky SV, Smirnova I, Li H, Goligorsky MS. Endothelial cell dysfunction: the syndrome in making. Kidney Int. 2005;67(5):1654-1658. 57. Ravani P, Tripepi G, Malberti F, Testa S, Mallamaci F, Zoccali C. Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J Am Soc Nephrol. 2005;16(8):2449-2455. 58. Sharma M, Zhou Z, Miura H, et al. ADMA injures the glomerular filtration barrier: role of nitric oxide and superoxide. Am J Physiol Renal Physiol. 2009;296(6):F1386-1395. 59. Baylis C. Arginine, arginine analogs and nitric oxide production in chronic kidney disease. Nat Clin Pract Nephrol. 2006;2(4):209-220. 60. Stenvinkel P, Ketteler M, Johnson RJ, et al. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia--the good, the bad, and the ugly. Kidney Int. 2005;67(4):1216-1233. 61. Upadhyay A, Larson MG, Guo C-Y, et al. Inflammation, kidney function and albuminuria in the Framingham Offspring cohort. Nephrol Dial Transplant. 2011;26(3):920-926. 62. Yeun JY, Levine RA, Mantadilok V, Kaysen GA. C-Reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am J Kidney Dis. 2000;35(3):469-476. 63. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135-1143. 64. van Tellingen A, Grooteman MPC, Schoorl M, et al. Intercurrent clinical events are predictive of plasma C-reactive protein levels in hemodialysis patients. Kidney Int. 2002;62(2):632-638. 65. Stenvinkel P. New insights on inflammation in chronic kidney disease-genetic and non-genetic factors. Nephrol Ther. 2006;2(3):111-119. 66. Lahera V, Goicoechea M, de Vinuesa SG, et al. Oxidative stress in uremia: the role of anemia correction. J Am Soc Nephrol. 2006;17(12 Suppl 3):S174-177. 67. Kaysen GA, Eiserich JP. The role of oxidative stress-altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. J Am Soc Nephrol. 2004;15(3):538-548. 68. Stenvinkel P, Heimburger O, Lindholm B, Kaysen GA, Bergstrom J. Are there two types of malnutrition in chronic renal failure? Evidence for relationships between malnutrition, inflammation and atherosclerosis (MIA syndrome). Nephrol Dial Transplant. 2000;15(7):953-960. 69. Kaysen GA. Association between inflammation and malnutrition as risk factors of cardiovascular disease. Blood Purif. 2006;24(1):51-55. 70. Contreras G, Hu B, Astor BC, et al. Malnutrition-inflammation modifies the relationship of cholesterol with cardiovascular disease. J Am Soc Nephrol. 2010;21(12):2131-2142. 71. Lim HS, Lip GYH, Blann AD. Angiopoietin-1 and angiopoietin-2 in diabetes mellitus: relationship to VEGF, glycaemic control, endothelial damage/dysfunction and atherosclerosis. Atherosclerosis. 2005;180(1):113-118. 72. Nadar SK, Blann A, Beevers DG, Lip GYH. Abnormal angiopoietins 1&2, angiopoietin receptor Tie-2 and vascular endothelial growth factor levels in hypertension: relationship to target organ damage [a sub-study of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)]. J Intern Med. 2005;258(4):336-343. 73. Chong AY, Caine GJ, Freestone B, Blann AD, Lip GYH. Plasma angiopoietin-1, angiopoietin-2, and angiopoietin receptor tie-2 levels in congestive heart failure. J Am Coll Cardiol. 2004;43(3):423-428. 74. Lee KW, Lip GYH, Blann AD. Plasma angiopoietin-1, angiopoietin-2, angiopoietin receptor tie-2, and vascular endothelial growth factor levels in acute coronary syndromes. Circulation. 2004;110(16):2355-2360. 75. Findley CM, Mitchell RG, Duscha BD, Annex BH, Kontos CD. Plasma levels of soluble Tie2 and vascular endothelial growth factor distinguish critical limb ischemia from intermittent claudication in patients with peripheral arterial disease. J Am Coll Cardiol. 2008;52(5):387-393. 76. Kumpers P, Lukasz A, David S, et al. Excess circulating angiopoietin-2 is a strong predictor of mortality in critically ill medical patients. Crit Care. 2008;12(6):R147. 77. David S, Kumpers P, Hellpap J, et al. Angiopoietin 2 and cardiovascular disease in dialysis and kidney transplantation. Am J Kidney Dis. 2009;53(5):770-778. 78. David S, Kumpers P, Lukasz A, et al. Circulating angiopoietin-2 levels increase with progress of chronic kidney disease. Nephrol Dial Transplant. 2010;25(8):2571-2576. 79. David S, John SG, Jefferies HJ, et al. Angiopoietin-2 levels predict mortality in CKD patients. Nephrol Dial Transplant. 2012;27(5):1867-1872. 80. Chang F-C, Chou Y-H, Chen Y-T, Lin S-L. Novel insights into pericyte-myofibroblast transition and therapeutic targets in renal fibrosis. J Formos Med Assoc. 2012;111(11):589-598. 81. Kang D-H, Kanellis J, Hugo C, et al. Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol. 2002;13(3):806-816. 82. Lin SL, Kisseleva T, Brenner DA, Duffield JS. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 2008;173(6):1617-1627. 83. Humphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176(1):85-97. 84. Chevalier RL, Forbes MS, Thornhill BA. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 2009;75(11):1145-1152. 85. Lin SL, Chang FC, Schrimpf C, et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am J Pathol. 2011;178(2):911-923. 86. Rizkalla B, Forbes JM, Cao Z, Boner G, Cooper ME. Temporal renal expression of angiogenic growth factors and their receptors in experimental diabetes: role of the renin-angiotensin system. J Hypertens. 2005;23(1):153-164. 87. Yuan HT, Tipping PG, Li XZ, Long DA, Woolf AS. Angiopoietin correlates with glomerular capillary loss in anti-glomerular basement membrane glomerulonephritis. Kidney Int. 2002;61(6):2078-2089. 88. Campean V, Karpe B, Haas C, et al. Angiopoietin 1 and 2 gene and protein expression is differentially regulated in acute anti-Thy1.1 glomerulonephritis. Am J Physiol Renal Physiol. 2008;294(5):F1174-1184. 89. Long DA, Price KL, Ioffe E, et al. Angiopoietin-1 therapy enhances fibrosis and inflammation following folic acid-induced acute renal injury. Kidney Int. 2008;74(3):300-309. 90. Kim W, Moon S-O, Lee SY, et al. COMP-angiopoietin-1 ameliorates renal fibrosis in a unilateral ureteral obstruction model. J Am Soc Nephrol. 2006;17(9):2474-2483. 91. Jung YJ, Kim DH, Lee AS, et al. Peritubular capillary preservation with COMP-angiopoietin-1 decreases ischemia-reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol. 2009;297(4):F952-960. 92. Rao S, Lobov IB, Vallance JE, et al. Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. Development. 2007;134(24):4449-4458. 93. Lin SL, Li B, Rao S, et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci U S A. 2010;107(9):4194-4199. 94. McCullough PA, Agrawal V, Danielewicz E, Abela GS. Accelerated atherosclerotic calcification and Monckeberg's sclerosis: a continuum of advanced vascular pathology in chronic kidney disease. Clin J Am Soc Nephrol. 2008;3(6):1585-1598. 95. Amann K. Media calcification and intima calcification are distinct entities in chronic kidney disease. Clin J Am Soc Nephrol. 2008;3(6):1599-1605. 96. Cavalcante JL, Lima JAC, Redheuil A, Al-Mallah MH. Aortic stiffness: current understanding and future directions. J Am Coll Cardiol. 2011;57(14):1511-1522. 97. Willum Hansen T, Staessen JA, Torp-Pedersen C, et al. Prognostic Value of Aortic Pulse Wave Velocity as Index of Arterial Stiffness in the General Population. Circulation. 2006 2006;113(5):664-670. 98. Mitchell GF, Hwang S-J, Vasan RS, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505-511. 99. Guerin AP, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation. 2001;103(7):987-992. 100. Townsend RR, Wimmer NJ, Chirinos JA, et al. Aortic PWV in chronic kidney disease: a CRIC ancillary study. Am J Hypertens. 2010;23(3):282-289. 101. Upadhyay A, Hwang S-J, Mitchell GF, et al. Arterial Stiffness in Mild-to-Moderate CKD. J Am Soc Nephrol. 2009;20(9):2044-2053. 102. London GM, Guerin AP, Marchais SJ, et al. Cardiac and arterial interactions in end-stage renal disease. Kidney Int.1996;50(2):600-608. 103. Briet M, Collin C, Karras A, et al. Arterial remodeling associates with CKD progression. J Am Soc Nephrol. 2011;22(5):967-974. 104. Tsai M-C, Chen L, Zhou J, et al. Shear stress induces synthetic-to-contractile phenotypic modulation in smooth muscle cells via peroxisome proliferator-activated receptor alpha/delta activations by prostacyclin released by sheared endothelial cells. Circ Res. 2009;105(5):471-480. 105. Lemstrom KB, Krebs R, Nykanen AI, et al. Vascular endothelial growth factor enhances cardiac allograft arteriosclerosis. Circulation. 2002;105(21):2524-2530. 106. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84(3):767-801. 107. Hillege HL, Fidler V, Diercks GF, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106(14):1777-1782. 108. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861-869. 109. Cirillo M, Laurenzi M, Panarelli P, Mancini M, Zanchetti A, De Santo NG. Relation of urinary albumin excretion to coronary heart disease and low renal function: role of blood pressure. Kidney Int. 2004;65(6):2290-2297. 110. de Zeeuw D, Remuzzi G, Parving HH, et al. Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation. 2004;110(8):921-927. 111. Davis B, Dei Cas A, Long DA, et al. Podocyte-specific expression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia. J Am Soc Nephrol. 2007;18(8):2320-2329. 112. Jamal SA, Fitchett D, Lok CE, Mendelssohn DC, Tsuyuki RT. The effects of calcium-based versus non-calcium-based phosphate binders on mortality among patients with chronic kidney disease: a meta-analysis. Nephrol Dial Transplant. 2009;24(10):3168-3174. 113. Shroff RC, Price KL, Kolatsi-Joannou M, et al. Circulating angiopoietin-2 is a marker for early cardiovascular disease in children on chronic dialysis. PLoS One. 2013;8(2):e56273. 114. Tressel SL, Kim H, Ni CW, et al. Angiopoietin-2 stimulates blood flow recovery after femoral artery occlusion by inducing inflammation and arteriogenesis. Arterioscler Thromb Vasc Biol. Nov 2008;28(11):1989-1995. 115. Stehouwer CD, Smulders YM. Microalbuminuria and risk for cardiovascular disease: Analysis of potential mechanisms. J Am Soc Nephrol. 2006;17(8):2106-2111. 116. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461-470. 117. Kuo H-K, Chen C-Y, Liu H-M, et al. Metabolic risks, white matter hyperintensities, and arterial stiffness in high-functioning healthy adults. Int J Cardiol. 2010;143(2):184-191. 118. Leelahavanichkul A, Yan Q, Hu X, et al. Angiotensin II overcomes strain-dependent resistance of rapid CKD progression in a new remnant kidney mouse model. Kidney Int. 2010;78(11):1136-1153. 119. Ahmed A, Fujisawa T, Niu XL, et al. Angiopoietin-2 confers Atheroprotection in apoE-/- mice by inhibiting LDL oxidation via nitric oxide. Circ Res. 2009;104(12):1333-1336. 120. Watts GF, Herrmann S, Dogra GK, et al. Vascular function of the peripheral circulation in patients with nephrosis. Kidney Int. 2001;60(1):182-189. 121. Kielstein JT, Zoccali C. Asymmetric dimethylarginine: a cardiovascular risk factor and a uremic toxin coming of age? Am J Kidney Dis. 2005;46(2):186-202. 122. Bureau W, Van Slyke P, Jones J, et al. Chronic systemic delivery of angiopoietin-2 reveals a possible independent angiogenic effect. Am J Physiol Heart Circ Physiol. 2006;291(2):H948-956. 123. Pinsky DJ, Naka Y, Liao H, et al. Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. J Clin Invest. 1996;97(2):493-500. 124. Makinde TO, Agrawal DK. Increased expression of angiopoietins and Tie2 in the lungs of chronic asthmatic mice. Am J Respir Cell Mol Biol. 2011;44(3):384-393. 125. Post S, Peeters W, Busser E, et al. Balance between angiopoietin-1 and angiopoietin-2 is in favor of angiopoietin-2 in atherosclerotic plaques with high microvessel density. J Vasc Res. 2008;45(3):244-250. 126. Kumpers P, Lukasz A, David S, et al. Excess circulating angiopoietin-2 is a strong predictor of mortality in critically ill medical patients. Crit Care. 2008;12(6). 127. Page AV, Kotb M, McGeer A, Low DE, Kain KC, Liles WC. Systemic dysregulation of angiopoietin-1/2 in streptococcal toxic shock syndrome. Clin Infect Dis. 2011;52(8):e157-161. 128. Eardley KS, Kubal C, Zehnder D, et al. The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int. 2008;74(4):495-504. 129. Lin SL, Castano AP, Nowlin BT, Lupher ML, Jr., Duffield JS. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol. 2009;183(10):6733-6743. 130. Ma LJ, Fogo AB. Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int. 2003;64(1):350-355. 131. Rumberger B, Vonend O, Kreutz C, et al. cDNA microarray analysis of adaptive changes after renal ablation in a sclerosis-resistant mouse strain. Kidney Blood Press Res. 2007;30(6):377-387. 132. Mackie FE, Campbell DJ, Meyer TW. Intrarenal angiotensin and bradykinin peptide levels in the remnant kidney model of renal insufficiency. Kidney Int. 2001;59(4):1458-1465. 133. Lin SL, Chen YM, Chien CT, Chiang WC, Tsai CC, Tsai TJ. Pentoxifylline attenuated the renal disease progression in rats with remnant kidney. J Am Soc Nephrol. 2002;13(12):2916-2929. 134. Ibrahim HN, Hostetter TH. The renin-aldosterone axis in two models of reduced renal mass in the rat. J Am Soc Nephrol. 1998;9(1):72-76. 135. Lemieux C, Maliba R, Favier J, Theoret JF, Merhi Y, Sirois MG. Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. Blood.15 2005;105(4):1523-1530. 136. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19(1):71-82. 137. Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science (New York, N Y ). 2007;317(5838):666-670. 138. Geissmann F, Auffray C, Palframan R, et al. Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol. 2008;86(5):398-408. 139. Oliner J, Min H, Leal J, et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell. 2004;6(5):507-516. 140. Xue Y, Cao R, Nilsson D, et al. FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proc Natl Acad Sci U S A. 2008;105(29):10167-10172. 141. Huang H, Bhat A, Woodnutt G, Lappe R. Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer. 2010;10(8):575-585. 142. Doppalapudi VR, Huang J, Liu D, et al. Chemical generation of bispecific antibodies. Proc Natl Acad Sci U S A. 2010;107(52):22611-22616. 143. Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, et al. Animal models of cardiovascular diseases. J Biomed Biotechnol. 2011;2011:497841. 144. Reaven P, Merat S, Casanada F, Sutphin M, Palinski W. Effect of streptozotocin-induced hyperglycemia on lipid profiles, formation of advanced glycation endproducts in lesions, and extent of atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol. 1997;17(10):2250-2256. 145. Shen X, Bornfeldt KE. Mouse models for studies of cardiovascular complications of type 1 diabetes. Ann N Y Acad Sci. 2007;1103:202-217. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56882 | - |
| dc.description.abstract | 台灣末期腎病患者的發生率與盛行率皆居世界首位,慢性腎病不僅是個體健康問題,相關併發症治療的花費更是社會經濟的巨大負擔。心血管疾病是造成慢性腎病患者死亡的主要原因,多年來的研究已證實慢性腎病本身即等同於心血管疾病的危險因子,而在慢性腎病患者,即使在使用藥物矯正傳統心血管疾病危險因子,如糖尿病、高血壓、高血脂等,患者的死亡率仍較一般族群高,意味著存在一些與慢性腎病相關的特殊危險因子,對患者的預後有極為重要的影響,其中最為注目的就是鈣磷不平衡所造成的血管鈣化。臨床研究已證實慢性腎病患者的血管壁中層鈣化所造成的血管硬化,與病人的心血管疾病預後有明確相關。一些研究認為致病機轉可能與血管平滑肌細胞之形態轉變有相關,而血管壁細胞包括血管平滑肌細胞與血管內皮細胞等細胞間之相互作用可能也與血管鈣化的發生有關聯。此外,發炎反應與內皮失衡也是重要的非傳統心血管疾病危險因子。臨床研究顯示發炎反應與患者心血管疾病之發生及死亡率有明確相關,而在臨床上白蛋白尿不僅代表內皮受損,臨床研究亦證實其與慢性腎病患者之心血管疾病預後有明確關聯。
在眾多致病因子及媒介物中,臨床研究發現第二型血管生成素(angiopoietin-2)與透析患者之冠狀動脈及周邊動脈疾病相關,同時血中第二型血管生成素濃度與白蛋白尿程度皆與慢性患者之心血管疾病發生及死亡有明顯關聯。在動物實驗中,第二型血管生成素除了在血管新生有其角色之外,與發炎反應的誘發更是密切相關。第二型血管生成素會經由影響巨噬細胞浸潤及吸引血管平滑肌細胞而促進動脈血管生成(arteriogenesis),我們認為在慢性腎病中,第二型血管生成素可能透過活化血管內皮細胞及血管平滑肌細胞,影響血管塑造及發炎反應之過程。因此在我們的研究計畫中,第一部分為探討慢性腎病患者血漿中第二型血管生成素濃度與發炎因子及白蛋白尿之關聯;第二部分則是探討第二型血管生成素與脈波速度(pulse wave velocity)所代表的動脈硬化程度,兩者之間的關聯性;在第三部分我們利用慢性腎病的動物模式及細胞實驗,來觀察第二型血管生成素與動脈硬化的發生之關聯及其可能之病理生成機轉。 我們首先分析慢性腎病第3期至第5期共416位患者,發現患者血漿中第二型血管生成素濃度隨慢性腎病惡化而升高、與患者血中之高敏感度C-反應蛋白呈正相關。隨著患者白蛋白尿程度愈厲害,血漿中之第二型血管生成素濃度亦愈高。統計分析更顯示血漿中之第二型血管生成素濃度與用脈波速度測量的動脈硬化程度呈正相關。 在動物實驗中,我們利用六分之五腎臟切除及單側輸尿管阻塞之模式,發現小鼠血漿中之第二型血管生成素濃度增加,同時發現在纖維化的腎臟中,受傷害的腎小管細胞明顯表現較高的第二型血管生成素。而在六分之五腎臟切除模式中,除了腎臟之外,其他器官包括主動脈及肺臟,第二型血管生成素的表現都較控制組老鼠之表現為低。此外,在六分之五腎臟切除模式中,主動脈的膠原蛋白基因、促纖維化生長因子基因、及促發炎反應因子基因,表現都明顯較控制組為增加。我們另外還利用腺病毒在小鼠的循環表現人類第二型血管生成素,發現表現人類第二型血管生成素,會刺激在主動脈血管平滑肌細胞的膠原蛋白基因、促纖維化生長因子基因之表現,同時發現在此實驗中,主動脈的巨噬細胞次族群之表現會受到影響,Ly6C低表現之巨噬細胞會增加,而這群細胞會產生促纖維化生長因子,β型轉型生長因子(TGF-β1)。在細胞實驗中,我們發現主動脈血管內皮細胞會受到第二型血管生成素的刺激,表現趨化因子(chemokines)、黏附分子(adhesion molecules)及β型轉型生長因子,促進發炎細胞的趨附反應。最後我們於小鼠接受六分之五腎臟切除的動物模式中,利用重組拮抗劑蛋白L1-10來阻斷活體內第二型血管生成素之作用,發現主動脈中增加的膠原蛋白基因、促纖維化生長因子基因、及促發炎反應因子基因表現都受到明顯的抑制。 我們的研究從臨床到基礎實驗,首先證實在臨床慢性腎病患者,血漿中第二型血管生成素濃度與發炎因子、白尿白尿、及脈波速度有正相關。在動物及細胞實驗中,我們證實了第二型血管生成素在纖維化腎臟及動脈硬化之間可能扮演的角色:第二型血管生成素在纖維化腎臟本身及循環中上升、直接作用在血管內皮細胞及巨噬細胞產生不同的生長因子及分子物質、間接刺激主動脈平滑肌細胞膠原蛋白之產生,而造成慢性腎病之血管硬化。因此針對第二型血管生成素,致力於減少發炎反應及血管硬化之產生,可能是治療慢性腎病患者之心血管疾病的新契機。 | zh_TW |
| dc.description.abstract | Cardiovascular disease (CVD) is the major cause of morbidity and mortality in patients with chronic kidney disease (CKD). Even though attempting to correct the traditional risk factors, the mortality rates still exceed the expected. Among all the CKD-related risk factors, much attention has been paid to the mineral metabolism and vascular calcification. Medial calcification, leading to arterial stiffness clinically, is recognized detrimental to cardiovascular outcome. The arterial stiffness in CKD patients is characterized by arterial intima-media hypertrophy resulting from alterations of the intrinsic properties of arterial wall materials. Arterial stiffness is accelerated in CKD patients in comparison with age-, sex-, and pressure-matched controls, suggesting that there are unique CKD-related factors leading to such acceleration. Treatment with phosphate binders to correct mineral disturbance, however, has not shown improvement in cardiovascular outcome. Phenotype changes of vascular smooth muscle cells (VSMCs), cross-talks between endothelial cells, VSMCs and other cells through humoral and mechanical mechanisms are possible involving pathogenesis. Besides, inflammation and endothelial dysfunction also play important roles in the CKD-related risk factors. Clinically, albuminuria is indicative of endothelial damage and vascular disease in CKD population. Albuminuria is also an independent predictor of cardiovascular events in patients with CKD. Systemic microinflammation as well infers the increased cardiovascular morbidity and mortality. Although albuminuria and microinflammation explain the complex interplay in CKD, the effectors mediating the cross talk between CKD and CVD are still not confirmative.
Among all these humoral factors, increased levels of circulating angiopoietin-2 (Angpt2) are correlated with scores of coronary and peripheral artery diseases in dialysis patients. Elevated albuminuria and circulating Angpt2 both predict CVD and mortality in CKD. Angiopoietin-1 (Angpt1) and Angpt2 are ligands of the Tie-2 receptor, a second class of vascular specific receptor tyrosine kinases. The Angpt/Tie-2 system tightly controls the endothelial phenotype during angiogenesis in a unique and nonredundant fashion. In addition to angiogenesis, Angpt2 is an important regulator in numerous diseases including inflammation. Angpt1-mediated Tie-2 activation is required to maintain the quiescent endothelium. By contrast Angpt2 destabilizes the quiescent endothelium and primes it to respond to exogenous stimuli, thereby modulate the activities of inflammatory (tumor necrosis factor α and interleukin-1) and angiogenic (vascular endothelial growth factor, VEGF) cytokine. In the mice undergoing femoral artery ligation, Angpt2 is shown to induce expression of intercellular and vascular adhesion molecules, infiltration of macrophage and recruitment of VSMCs, thereby promoting arteriogenesis and blood flow recovery. Hence it is reasonable to speculate that dysregulation of Angpt/Tie-2 system in favor of Angpt2 may affect vascular remodeling through activation of endothelial cells and VSMCs. First of all, we aim to define the relationship between plasma levels of Angpt2 with albuminuria and markers of systemic microinflammation in patients with CKD stage 3 to 5. Secondly, we delineate the relationship between plasma levels of Angpt2 and arterial stiffness, measured by pulse wave velocity (PWV), in the clinical cohort of patients with CKD stage 3 to 5. Finally, we attempt to design experimental arterial stiffness in mice to study whether the elevated systemic Angpt2 contribute to arterial stiffness in CKD animal model. We further use in vivo and in vitro cell experiment to investigate the underlying mechanisms through which elevated circulating Angpt2 leads to aortic remodeling in CKD animal model. A total of 416 patients with CKD stages 3 to 5 are stratified by urine albumin-creatinine ratio (ACR) as normoalbuminuria (<30 mg/g), microalbuminuria (30–300 mg/g), or macroalbuminuria (>300 mg/g). The levels of plasma Angpt2 and VEGF increase, and soluble Tie-2 receptor (sTie-2) decrease in the subgroups of albuminuria; whereas Angpt1 does not change. Linear regression analysis shows a positive correlation between urine ACR and plasma Angpt2 (correlation coefficient r=0.301, 95% confidence interval 0.211–0.386, P<0.0001), but not between ACR and VEGF or sTie-2. Multivariate linear regression analysis confirms that plasma Angpt2 is independently associated with ACR (P=0.025). Furthermore, plasma Angpt2 is positively correlated with levels of high sensitive C-reactive protein (hsCRP) (r=0.114, 95% confidence interval 0.018–0.208, P=0.020). Among the cohort of 416 patients with CKD, plasma levels of Angpt2 are independently correlated with PWV by multivariate linear regression analysis (P=0.023). Using murine CKD models induced by 5/6 subtotal nephrectomy or unilateral ureteral obstruction, we demonstrate the increase of plasma Angpt2 independent of plasma creatinine. We demonstrate that Angpt2 expression markedly increases in tubular epithelial cells of fibrotic kidney by immunofluorescence and in situ hybridization. With quantitative polymerase chain reaction, we find the decrease of Angpt2 transcript in other tissues including aorta and lung of mice in the model of 5/6 subtotal nephrectomy. Quantitative polymerase chain reaction also reveals increased collagen transcripts, profibrotic and proinflammatory genes in aorta of mice after 5/6 subtotal nephrectomy. Expression of collagen and profibrotic genes in aortic VSMCs is increased in mice producing human Angpt2. In vivo study of mice producing human Angpt2 demonstrates that Angpt2 induces discrete subpopulation of macrophages defined by Ly6C in aorta. Angpt2 increases the population of Ly6Clow macrophages in aorta, producing profibrotic cytokine transforming growth factor β1 (TGF-β1). In vitro cell experiment shows that Angpt2 stimulates endothelial expression of chemokines and adhesion molecules for monocytes. Angpt2 also induces profibrotic cytokine TGF-β1. In the blocking experiments, we prove that Angpt2 blockade with recombinant antagonist L1-10 attenuates expression of monocyte chemokines, profibrotic cytokines, and collagen expression in aorta of mice after 5/6 subtotal nephrectomy. In the first part of the study, we could only demonstrate the association between Angpt2 with symbolized markers of microinflammation (hsCRP) and vascular injury (ACR). Likewise, the cross-sectional study demonstrating the association between Angpt2 and PWV cannot provide the causal relationship. In the animal experiment, the subjective tool to evaluate arterial stiffness in mice is still lacking. We also need to design the delicate animal model to investigate the origin of increasing systemic Angpt2, the exact receptor and mechanism through which Angpt2 induces arterial stiffness in CKD. In conclusion, plasma Angpt2 is associated with albuminuria and markers of systemic microinflammation in patients with CKD. In addition, plasma Angpt2 is associated with worsening of arterial stiffness measured by PWV in patients with CKD. In the experimental study, we identify a link between fibrotic kidney and arterial stiffness through Angpt2, which is increased in kidney and circulation, induces pro-arteriosclerotic signaling to endothelia and macrophages thereby promoting collagen production of aortic VSMCs. Targeting Angpt2 to attenuate inflammation and collagen expression may provide a novel therapy for CVD in CKD. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:30:43Z (GMT). No. of bitstreams: 1 ntu-103-D00441001-1.pdf: 63818924 bytes, checksum: de91daa32d13218766de752f75a58c2e (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………….……………….…... ⅰ
誌謝…………………………………………………………………………………. ⅱ 中文摘要………………………………………………………………….………… ⅲ 英文摘要………………………………………………………………………….… ⅴ 第一章 Introduction…………………………………………………………….... 1 1.1 Angiogenesis…………………………………………………………… 2 1.2 Angiopoietin-Tie system……………………………………………….. 5 1.3 Cardiovascular disease in chronic kidney disease……………………… 11 1.4 Angiopoietin-2 in chronic kidney disease……………………………… 17 1.5 Pathogenesis of arterial stiffness in chronic kidney disease……………. 21 1.6 The aim of this study…………………………………………………… 24 第二章 The Relationship between Angiopoietin-2 with Albuminuria and Inflammation in Chronic kidney Disease………………………………………… 27 2.1 Introduction……………………………………………………………... 28 2.2 Method and Material……………………………………………….…… 30 2.3 Result……………………………………………………………………. 34 第三章 The Role of Angiopoietin-2 in Arterial stiffness in Chronic Kidney disease…………………………………………………………………………….. 37 3.1 Introduction……………………………………………………………… 38 3.2 Method and Material…………………………………………………….. 40 3.3 Result……………………………………………………………………. 54 第四章 Discussion…………………………………………………………….…. 62 4.1 Angiopoietin-2 might be the possible mediator translating albuminuria and endothelial dysfunction to CVD in CKD…………………………………………. 63 4.2 The origin of increased circulating Angiopoietin-2 in Chronic Kidney disease……………………………………………………………………..……… 65 4.3 Angiopoietin-2 may act as a mediator of CVD through arterial stiffness in CKD………………………………………………………………………….…… 67 4.4 Use of mice with different genetic background and different animal models…………………………………………………………………………….. 68 4.5 Experimental arterial stiffness is still lacking…………………………… 72 4.6 Angpt2 exerts paracrine effects on VSMCs……………………..…….… 73 4.7 Angpt2 may induce inflammatory response through different pathways.. 74 4.8 The effective receptor and mechanisms are still not conclusive……..….. 76 4.9 Conclusion……………………………………………………….....….… 77 第五章 Prospect…………………………………………………………..……… 79 5.1 Introduction………………………………………………………....…… 80 5.2 Basic Research and Clinical Application…………………………...…… 81 5.3 Future Prospect…………………………………………………………... 83 參考文獻……………………………………………………………………..…… 123 附錄 博士班修業期間發表相關論文清冊………………………………….……147 | |
| dc.language.iso | en | |
| dc.subject | 第二型血管生成素 | zh_TW |
| dc.subject | 動脈硬化 | zh_TW |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | 慢性腎臟病 | zh_TW |
| dc.subject | 血管內皮 | zh_TW |
| dc.subject | 白蛋白尿 | zh_TW |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | Chronic kidney disease | en |
| dc.subject | macrophage | en |
| dc.subject | Albuminuria | en |
| dc.subject | Endothelium | en |
| dc.subject | Angiopoietin-2 | en |
| dc.subject | Arterial stiffness | en |
| dc.subject | Cardiovascular disease | en |
| dc.title | 第二型血管生成素與慢性腎病的白蛋白尿及動脈硬化之關聯 | zh_TW |
| dc.title | Angiopoietin-2 in Chronic Kidney Disease: Focus on Albuminuria
and Arterial Stiffness | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 朱宗信 | |
| dc.contributor.oralexamcommittee | 江福田,姜文智,陳文彬 | |
| dc.subject.keyword | 第二型血管生成素,動脈硬化,心血管疾病,慢性腎臟病,血管內皮,白蛋白尿,巨噬細胞, | zh_TW |
| dc.subject.keyword | Angiopoietin-2,Arterial stiffness,Cardiovascular disease,Chronic kidney disease,Endothelium,Albuminuria,macrophage, | en |
| dc.relation.page | 147 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-07 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 62.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
