Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56878Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳建彰(Jian-Zhang Chen) | |
| dc.contributor.author | Tsung-Han Wu | en |
| dc.contributor.author | 吳宗翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:30:39Z | - |
| dc.date.available | 2019-09-03 | |
| dc.date.copyright | 2014-09-03 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-07 | |
| dc.identifier.citation | [1] M. Liu and H. K. Kim, 'Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma,' Applied physics letters, vol. 84, pp. 173-175, 2004.
[2] W. Liang and A. Yoffe, 'Transmission spectra of ZnO single crystals,' Physical Review Letters, vol. 20, p. 59, 1968. [3] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, et al., 'A comprehensive review of ZnO materials and devices,' Journal of applied physics, vol. 98, p. 041301, 2005. [4] P. Carcia, R. McLean, M. Reilly, and G. Nunes, 'Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,' Applied Physics Letters, vol. 82, pp. 1117-1119, 2003. [5] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, 'UV Electroluminescence Emission from ZnO Light‐Emitting Diodes Grown by High‐Temperature Radiofrequency Sputtering,' Advanced Materials, vol. 18, pp. 2720-2724, 2006. [6] M. Saito and S. Fujihara, 'Large photocurrent generation in dye-sensitized ZnO solar cells,' Energy & Environmental Science, vol. 1, pp. 280-283, 2008. [7] J. Xu, Q. Pan, Y. a. Shun, and Z. Tian, 'Grain size control and gas sensing properties of ZnO gas sensor,' Sensors and Actuators B: Chemical, vol. 66, pp. 277-279, 2000. [8] E. M. Fortunato, P. M. Barquinha, A. Pimentel, A. M. Goncalves, A. J. Marques, L. M. Pereira, et al., 'Fully Transparent ZnO Thin‐Film Transistor Produced at Room Temperature,' Advanced Materials, vol. 17, pp. 590-594, 2005. [9] R. Hoffman, B. J. Norris, and J. Wager, 'ZnO-based transparent thin-film transistors,' Applied Physics Letters, vol. 82, pp. 733-735, 2003. [10] K. Liu, M. Sakurai, and M. Aono, 'ZnO-based ultraviolet photodetectors,' Sensors, vol. 10, pp. 8604-8634, 2010. [11] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, 'ZnO Schottky ultraviolet photodetectors,' Journal of crystal Growth, vol. 225, pp. 110-113, 2001. [12] J. Z. Chen, C.-H. Li, and I. Cheng, 'Phase transitions of room temperature RF-sputtered ZnO/Mg< sub> 0.4</sub> Zn< sub> 0.6</sub> O multilayer thin films after thermal annealing,' Thin Solid Films, vol. 520, pp. 1918-1923, 2012. [13] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, et al., 'Mg x Zn 1-x O as a II–VI widegap semiconductor alloy,' Applied Physics Letters, vol. 72, pp. 2466-2468, 1998. [14] P. Bhattacharya, R. R. Das, and R. Katiyar, 'Fabrication of stable wide-band-gap ZnO/MgO multilayer thin films,' Applied physics letters, vol. 83, pp. 2010-2012, 2003. [15] O. Ambacher, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, et al., 'Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures,' Journal of Applied Physics, vol. 85, pp. 3222-3233, 1999. [16] H. Tampo, H. Shibata, K. Matsubara, A. Yamada, P. Fons, S. Niki, et al., 'Two-dimensional electron gas in Zn polar ZnMgO/ZnO heterostructures grown by radical source molecular beam epitaxy,' Applied physics letters, vol. 89, pp. 132113-132113-3, 2006. [17] H. Tampo, H. Shibata, K. Maejima, A. Yamada, K. Matsubara, P. Fons, et al., 'Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures,' Applied Physics Letters, vol. 93, p. 202104, 2008. [18] E. Monroy, F. Calle, J. Pau, E. Munoz, F. Omnes, B. Beaumont, et al., 'AlGaN-based UV photodetectors,' Journal of crystal growth, vol. 230, pp. 537-543, 2001. [19] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, et al., 'Roll-to-roll production of 30-inch graphene films for transparent electrodes,' Nature nanotechnology, vol. 5, pp. 574-578, 2010. [20] F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, 'A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,' Journal of Materials Chemistry, vol. 19, pp. 5442-5451, 2009. [21] W. Xu, Z. Ye, Y. Zeng, L. Zhu, B. Zhao, L. Jiang, et al., 'ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition,' Applied physics letters, vol. 88, pp. 173506-173506-3, 2006. [22] B. Jin, S. Bae, S. Lee, and S. Im, 'Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition,' Materials Science and Engineering: B, vol. 71, pp. 301-305, 2000. [23] H.-A. Chin, I. Cheng, C.-I. Huang, Y.-R. Wu, W.-S. Lu, W.-L. Lee, et al., 'Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by rf-sputtering process,' Journal of Applied Physics, vol. 108, pp. 054503-054503-4, 2010. [24] H. Chin, I. Cheng, C. Li, Y. Wu, J. Chen, W. Lu, et al., 'Electrical properties of modulation-doped rf-sputtered polycrystalline MgZnO/ZnO heterostructures,' Journal of Physics D: Applied Physics, vol. 44, p. 455101, 2011. [25] S. Sze, D. Coleman Jr, and A. Loya, 'Current transport in metal-semiconductor-metal (MSM) structures,' Solid-State Electronics, vol. 14, pp. 1209-1218, 1971. [26] W. Gao, A. S. Khan, P. R. Berger, R. Hunsperger, G. Zydzik, H. O’Bryan, et al., 'In0. 53Ga0. 47As metal‐semiconductor‐metal photodiodes with transparent cadmium tin oxide Schottky contacts,' Applied physics letters, vol. 65, pp. 1930-1932, 1994. [27] G. Heiland and P. Kunstmann, 'Polar surfaces of zinc oxide crystals,' Surface Science, vol. 13, pp. 72-84, 1969. [28] A. N. Georgobiani, 'Wide-band II-VI semiconductors and the prospects of their application,' Physics-Uspekhi, vol. 17, pp. 424-437, 1974. [29] http://zh.wikipedia.org/wiki/File:Wurtzite_polyhedra.png. [30] S. Hayamizu, H. Tabata, H. Tanaka, and T. Kawai, 'Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition,' Journal of applied physics, vol. 80, pp. 787-791, 1996. [31] C. Gorla, N. Emanetoglu, S. Liang, W. Mayo, Y. Lu, M. Wraback, et al., 'Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition,' Journal of Applied Physics, vol. 85, pp. 2595-2602, 1999. [32] K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe, B. Zhang, and Y. Segawa, 'High-quality ZnO films prepared on Si wafers by low-pressure MO-CVD,' Thin Solid Films, vol. 433, pp. 131-134, 2003. [33] A. Yamada, B. Sang, and M. Konagai, 'Atomic layer deposition of ZnO transparent conducting oxides,' Applied Surface Science, vol. 112, pp. 216-222, 1997. [34] P.-F. Yang, H.-C. Wen, S.-R. Jian, Y.-S. Lai, S. Wu, and R.-S. Chen, 'Characteristics of ZnO thin films prepared by radio frequency magnetron sputtering,' Microelectronics Reliability, vol. 48, pp. 389-394, 2008. [35] Y. Natsume, H. Sakata, T. Hirayama, and H. Yanagida, 'Low‐temperature conductivity of ZnO films prepared by chemical vapor deposition,' Journal of applied physics, vol. 72, pp. 4203-4207, 1992. [36] M. Ohyama, H. Kouzuka, and T. Yoko, 'Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution,' Thin solid films, vol. 306, pp. 78-85, 1997. [37] J. Aranovich, A. Ortiz, and R. H. Bube, 'Optical and electrical properties of ZnO films prepared by spray pyrolysis for solar cell applications,' Journal of vacuum science & technology, vol. 16, pp. 994-1003, 1979. [38] H. Kato, M. Sano, K. Miyamoto, and T. Yao, 'Effect of O/Zn flux ratio on crystalline quality of ZnO films grown by plasma-assisted molecular beam epitaxy,' Japanese Journal of Applied Physics, vol. 42, p. 2241, 2003. [39] E. Kaidashev, M. Lorenz, H. Von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, et al., 'High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition,' Applied Physics Letters, vol. 82, pp. 3901-3903, 2003. [40] X.-L. Chen, X.-H. Geng, J. Xue, D. Zhang, G. Hou, and Y. Zhao, 'Temperature-dependent growth of zinc oxide thin films grown by metal organic chemical vapor deposition,' Journal of crystal growth, vol. 296, pp. 43-50, 2006. [41] W. Taeg Lim and C. Hyo Lee, 'Highly oriented ZnO thin films deposited on Ru/Si substrates,' Thin Solid Films, vol. 353, pp. 12-15, 1999. [42] B. Li, Y. Liu, Z. Chu, D. Shen, Y. Lu, J. Zhang, et al., 'High quality ZnO thin films grown by plasma enhanced chemical vapor deposition,' Journal of applied physics, vol. 91, pp. 501-505, 2002. [43] J.-H. Lee, K.-H. Ko, and B.-O. Park, 'Electrical and optical properties of ZnO transparent conducting films by the sol–gel method,' Journal of Crystal Growth, vol. 247, pp. 119-125, 2003. [44] W. Yang, S. Hullavarad, B. Nagaraj, I. Takeuchi, R. Sharma, T. Venkatesan, et al., 'Compositionally-tuned epitaxial cubic Mg x Zn 1-x O on Si (100) for deep ultraviolet photodetectors,' Applied physics letters, vol. 82, pp. 3424-3426, 2003. [45] Y. Hou, Z. Mei, H. Liang, D. Ye, C. Gu, X. Du, et al., 'Annealing Effects of Ti/Au Contact on n-MgZnO/p-Si Ultraviolet-B Photodetectors,' Electron Devices, IEEE Transactions on, vol. 60, pp. 3474-3477, 2013. [46] http://www.webelements.com/compounds/magnesium/magnesium_oxide.html. [47] S. Fujita, H. Tanaka, and S. Fujita, 'MBE growth of wide band gap wurtzite MgZnO quasi-alloys with MgO/ZnO superlattices for deep ultraviolet optical functions,' Journal of crystal growth, vol. 278, pp. 264-267, 2005. [48] B. Zhang, N. Binh, K. Wakatsuki, C. Liu, Y. Segawa, and N. Usami, 'Growth of ZnO/ MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect,' Applied Physics Letters, vol. 86, p. 032105, 2005. [49] H. Zhu, C. Shan, B. Li, J. Zhang, B. Yao, Z. Zhang, et al., 'Ultraviolet electroluminescence from MgZnO-based heterojunction light-emitting diodes,' The Journal of Physical Chemistry C, vol. 113, pp. 2980-2982, 2009. [50] A. Sharma, J. Narayan, J. Muth, C. Teng, C. Jin, A. Kvit, et al., 'Optical and structural properties of epitaxial MgxZn1− xO alloys,' Applied physics letters, vol. 75, pp. 3327-3329, 1999. [51] H. Asahara, D. Takamizu, A. Inokuchi, M. Hirayama, A. Teramoto, S. Saito, et al., 'Characterization of MgZnO films grown by plasma enhanced metal-organic chemical vapor deposition,' Thin Solid Films, vol. 518, pp. 2953-2956, 2010. [52] Y. Matsumoto, M. Murakami, Z. Jin, A. Ohtomo, M. Lippmaa, M. Kawasaki, et al., 'Combinatorial laser molecular beam epitaxy (MBE) growth of Mg–Zn–O alloy for band gap engineering,' Japanese journal of applied physics, vol. 38, p. L603, 1999. [53] Y. Kim, C. An, H. Cho, J. Kim, H. Lee, E. Jung, et al., 'High-temperature growth and< i> in-situ</i> annealing of MgZnO thin films by RF sputtering,' Thin Solid Films, vol. 516, pp. 5602-5606, 2008. [54] http://www.learningace.com/doc/230330/55dd595e57bad77ef11f7ad90a6077c4/smt-11-deposition-cd. [55] C.-Y. Chen, T.-K. Tseng, C.-Y. Tsay, and C.-K. Lin, 'Formation of irregular nanocrystalline CeO2 particles from acetate-based precursor via spray pyrolysis,' Journal of Materials Engineering and Performance, vol. 17, pp. 20-24, 2008. [56] G. Blandenet, M. Court, and Y. Lagarde, 'Thin layers deposited by the pyrosol process,' Thin Solid Films, vol. 77, pp. 81-90, 1981. [57] http://thurj.org/as/2011/01/1035/. [58] Y. Kozuka, A. Tsukazaki, and M. Kawasaki, 'Challenges and opportunities of ZnO-related single crystalline heterostructures,' Applied Physics Reviews, vol. 1, p. 011303, 2014. [59] Y. Noel, C. Zicovich-Wilson, B. Civalleri, P. D’arco, and R. Dovesi, 'Polarization properties of ZnO and BeO: An ab initio study through the Berry phase and Wannier functions approaches,' Physical Review B, vol. 65, p. 014111, 2001. [60] F. Bernardini, V. Fiorentini, and D. Vanderbilt, 'Spontaneous polarization and piezoelectric constants of III-V nitrides,' Physical Review B, vol. 56, p. R10024, 1997. [61] E. Yu, X. Dang, P. Asbeck, S. Lau, and G. Sullivan, 'Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures,' Journal of Vacuum Science & Technology B, vol. 17, pp. 1742-1749, 1999. [62] I. Kobiakov, 'Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures,' Solid State Communications, vol. 35, pp. 305-310, 1980. [63] M. Yano, K. Hashimoto, K. Fujimoto, K. Koike, S. Sasa, M. Inoue, et al., 'Polarization-induced two-dimensional electron gas at Zn< sub> 1−</sub>< i> x</i> Mg< i> x</i> O/ZnO heterointerface,' Journal of Crystal Growth, vol. 301, pp. 353-357, 2007. [64] 秦懷安, '氧化鋅鎂/氧化鋅多晶異質結構系統之電性探討,' 光電工程研究所, 國立台灣大學, 2010. [65] 王柏雄, '以磁控射頻濺鍍法製作氧化鎂鋅/氧化鋅異質接面場效電晶體,' 光電工程所, 國立台灣大學, 2011. [66] 連紹慈, '大氣噴射電漿於氧化鋅鎂/氧化鋅異質接面結構之應用,' 應用力學研究所, 國立台灣大學, 2013. [67] J. Steinhauser, S. Fay, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, 'Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films,' Applied Physics Letters, vol. 90, p. 142107, 2007. [68] 侯昕華, '以磁控射頻濺度法製作之氧化鋅鎂/氧化鋅薄膜電晶體特性研究及其於邏輯閘之應用,' 光電工程研究所, 國立台灣大學, 2013. [69] http://chemistry.tutorvista.com/inorganic-chemistry/crystal-defects.html. [70] J. Levinson, F. Shepherd, P. Scanlon, W. Westwood, G. Este, and M. Rider, 'Conductivity behavior in polycrystalline semiconductor thin film transistors,' Journal of Applied Physics, vol. 53, pp. 1193-1202, 1982. [71] 黃智怡, '以蒙地卡羅法分析氧化鋅鎂/氧化鋅薄膜層載子遷移率,' 光電工程研究所, 國立台灣大學, 2009. [72] C.-I. Huang, H.-A. Chin, Y.-R. Wu, I.-C. Cheng, J. Z. Chen, K.-C. Chiu, et al., 'Mobility enhancement of polycrystalline MgZnO/ZnO thin film layers with modulation doping and polarization effects,' Electron Devices, IEEE Transactions on, vol. 57, pp. 696-703, 2010. [73] http://resources.edb.gov.hk/physics/articleIE/uvdetectors/UVDetectors_c.htm. [74] J. Gryko, P. F. McMillan, R. F. Marzke, G. K. Ramachandran, D. Patton, S. K. Deb, et al., 'Low-density framework form of crystalline silicon with a wide optical band gap,' Physical Review B, vol. 62, p. R7707, 2000. [75] Q. Chen, J. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Anwar, et al., 'Schottky barrier detectors on GaN for visible–blind ultraviolet detection,' Applied physics letters, vol. 70, pp. 2277-2279, 1997. [76] E. Mollwo, 'Electrical and optical properties of ZnO,' in Proceedings of the Conference on Photoconductivity, Atlantic City, USA, 1954, pp. 509-528. [77] H. Fabricius, T. Skettrup, and P. Bisgaard, 'Ultraviolet detectors in thin sputtered ZnO films,' Applied optics, vol. 25, pp. 2764-2767, 1986. [78] P. Sharma, K. Sreenivas, and K. Rao, 'Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering,' Journal of Applied Physics, vol. 93, pp. 3963-3970, 2003. [79] D. Zhang, 'Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering,' Journal of Physics D: Applied Physics, vol. 28, p. 1273, 1995. [80] Q. Li, T. Gao, Y. Wang, and T. Wang, 'Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements,' Applied Physics Letters, vol. 86, p. 123117, 2005. [81] !!! INVALID CITATION !!! [82] J. Law and J. Thong, 'Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,' Applied physics letters, vol. 88, p. 133114, 2006. [83] Y. Liu, C. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, et al., 'Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD,' Journal of Electronic Materials, vol. 29, pp. 69-74, 2000. [84] Q. Xu, J. Zhang, K. Ju, X. Yang, and X. Hou, 'ZnO thin film photoconductive ultraviolet detector with fast photoresponse,' Journal of Crystal Growth, vol. 289, pp. 44-47, 2006. [85] K. Liu, J. Ma, J. Zhang, Y. Lu, D. Jiang, B. Li, et al., 'Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film,' Solid-State Electronics, vol. 51, pp. 757-761, 2007. [86] S. Chang, R. W. Chuang, S.-J. Chang, C. Lu, Y. Chiou, and S. Hsieh, 'Surface HCl treatment in ZnO photoconductive sensors,' Thin Solid Films, vol. 517, pp. 5050-5053, 2009. [87] Z. Bi, X. Yang, J. Zhang, X. Bian, D. Wang, X. Zhang, et al., 'A Back-Illuminated Vertical-Structure Ultraviolet Photodetector Based on an RF-Sputtered ZnO Film,' Journal of electronic materials, vol. 38, pp. 609-612, 2009. [88] Y.-K. Su, Y.-Z. Chiou, F.-S. Juang, S.-J. Chang, and J.-K. Sheu, 'GaN and InGaN metal-semiconductor-metal photodetectors with different Schottky contact metals,' Japanese Journal of Applied Physics, vol. 40, p. 2996, 2001. [89] Online. Available: http://www.alyssahale.com/design.htm [90] Y.-w. Hsu, Y.-j. Yang, C.-y. Wu, and C.-c. Hsu, 'Downstream characterization of an atmospheric pressure pulsed arc jet,' Plasma Chemistry and Plasma Processing, vol. 30, pp. 363-372, 2010. [91] S. K. Gupta, J. Singh, and J. Akhtar, 'Materials and Processing for Gate Dielectrics on Silicon Carbide (SiC) Surface,' 2013. [92] D.-H. Lee and N.-G. Cho, 'Assessment of surface profile data acquired by a stylus profilometer,' Measurement Science and Technology, vol. 23, p. 105601, 2012. [93] http://commons.wikimedia.org/wiki/File:Bragg's_Law.PNG. [94] http://pruffle.mit.edu/atomiccontrol/education/xray/xray_diff.php. [95] http://www.hzdr.de/db/Cms?pOid=11644&pNid=0. [96] http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html. [97] http://www.microscopy.ethz.ch/sem_detectors.htm. [98] http://pe.taylorjl.net/PE_Blog/?p=392. [99] S.-T. Lien, H.-C. Li, Y.-J. Yang, C.-C. Hsu, I.-C. Cheng, and J.-Z. Chen, 'Atmospheric pressure plasma jet annealed ZnO films for MgZnO/ZnO heterojunctions,' Journal of Physics D: Applied Physics, vol. 46, p. 075202, 2013. [100] A. Patterson, 'The Scherrer formula for X-ray particle size determination,' Physical review, vol. 56, p. 978, 1939. [101] J. Tauc, Amorphous and liquid semiconductors: Plenum New York, 1974. [102] S. Mandal, R. Singha, A. Dhar, and S. Ray, 'Optical and structural characteristics of ZnO thin films grown by rf magnetron sputtering,' Materials Research Bulletin, vol. 43, pp. 244-250, 2008. [103] R. Ghosh, D. Basak, and S. Fujihara, 'Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films,' Journal of applied physics, vol. 96, pp. 2689-2692, 2004. [104] Y. Zhu, H. Zhou, G. Fang, and M. Li, 'Middle-ultraviolet-enhanced photodetectors based on Mg0. 4Zn0. 6O/ZnO homojunction with a high selectivity for 300 nm around light,' Semiconductor Science and Technology, vol. 27, p. 065003, 2012. [105] S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, et al., 'Photoresponse of sol-gel-synthesized ZnO nanorods,' Applied Physics Letters, vol. 84, pp. 5022-5024, 2004. [106] K. Hui, H. Ong, P. Lee, and J. Dai, 'Effects of AlOx-cap layer on the luminescence and photoconductivity of ZnO thin films,' Applied Physics Letters, vol. 86, p. 152116, 2005. [107] A. Bera and D. Basak, 'Effect of surface capping with poly (vinyl alcohol) on the photocarrier relaxation of ZnO nanowires,' ACS applied materials & interfaces, vol. 1, pp. 2066-2070, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56878 | - |
| dc.description.abstract | 本研究的第一部分針對以射頻濺鍍沉積氧化鋅鎂/氧化鋅(MgZnO/ZnO)異質結構於軟性PI塑膠基板和不鏽鋼基板的薄膜性質進行研究。回顧先前研究,要在室溫濺鍍的高缺陷密度MgZnO/ZnO異質結構形成二維量子氣體(2DEG)效應,ZnO層的退火是關鍵的步驟,且可藉由大氣電漿縮短處理時間。因此本研究採用大氣電漿快速處理此二種基板上的ZnO,使其介面形成2DEG效應。而由於PI基板不耐高溫,針對PI基板做300°C氮氣的長時間退火,以彌補溫度不足。而結果顯示,在300 °C退火, 3小時以上的退火,可增強2DEG效應,使MgZnO/ZnO之片阻值下降。並且藉由施以機械外力的彎曲和拉伸測試下,找出可穩定操作的極限應變大小,故此研究結果指出,射頻濺鍍之MgZnO/ZnO異質結構可廣泛應用於大面積的軟性電子元件中。
第二部分則是將氧化鋅及氧化鋅鎂/氧化鋅異質結構薄膜作為紫外光感測器,並且比較在不同熱退火處理下(包含大氣噴射電漿和傳統高溫爐熱退火處理),對於ZnO及MgZnO/ZnO紫外光感測性能的影響。而由於大氣電漿溫度較高,故基板的選擇為玻璃基板;而在傳統高溫爐處理下,則同時使用玻璃及PI塑膠基板。而結果顯示,極短時間的大氣電漿處理,對於感測器的光反應性即可有明顯的改善,但過長時間的處理與異質結構所形成的高導電層反而會使其光電流值難以恢復至原始值。同樣情形也可以在傳統高溫爐後處理上觀察到,隨著薄膜結晶性越好,暗電流值越高,其在照光反應下雖然會比較快,但在結束光照後,其光電流的消逝就變得非常困難,故在選擇紫外光感測器之處理條件時,必須將各項性質做綜合比較,選出適當的參數。以大氣電漿處理部分來說,對氧化鋅薄膜做30秒的處理,可改善其光反應性且同時保持良好的反應及恢復速度;而在傳統爐管退火上,對氧化鋅做300 °C的氮氣退火30分鐘對電流在照光反應和恢復上影響最小,需要的恢復時間最短。相較起來,異質結構由於兩材料間極化效應的影響,皆會導致光電流難以回復至暗電流值,讓回復過程非常緩慢。而我們也意外發現,沉積氧化鋅鎂於未經任何處理的氧化鋅上,雖然不會形成高導電介面,但是由於氧化鋅鎂的覆蓋效應影響下,光反應性可以增幅數倍且同時保有快速的反應和恢復過程,為一良好的改善方法。 | zh_TW |
| dc.description.abstract | In the first part of the experiment, we investigate the electromechanical properties of RF-sputtered MgZnO/ZnO heterosructures on flexible polyimide (PI) and stainless steel 304 (StSt304) substrates. By subjecting ZnO to ultra-short (30–40 s) atmospheric-pressure plasma jet (APPJ) treatment and prolonged (>3 h) thermal annealing at 300 oC, highly conductive interfaces are induced in rf-sputtered MgZnO/ZnO heterostructures on flexible PI and StSt304 substrates. The electrical properties of on-StSt MgZnO/ZnO annealed at 400 °C for 30 min are evaluated under the inward and outward bending conditions. Furthermore, the electrical properties of on-PI MgZnO/ZnO heterostructures annealed at 300 °C for 3 h are examined under the bending and stretching conditions. Compared with ZnO, MgZnO/ZnO heterostructures show better electrical stability under mechanical flexing; deviations in the electrical properties of MgZnO/ZnO heterostructures occur under larger strain levels. Piezoelectric polarization is induced under flexing, resulting in an increase or decrease in the resistance of MgZnO/ZnO heterostructures
The second part of the research is the comparison of rf-sputtered ZnO and MgZnO/ZnO heterostructures based photodetectors (PDs) with atmospheric pressure plasma jet (APPJ) treatment and traditional furnace annealing on ZnO layer. Because the temperature of APPJ exceeds the working temperature of PI substrates, Corning glass was chosen as the substrates. For the UV detectors with furnace annealing on ZnO, both films on PI and glass substrates were investigated. ZnO films under different APPJ treatment duration and different furnace annealing parameters were characterized, I-V curves and time-dependent responses of detectors after UV-illumination were shown. The mechanisms were also discussed. It is well known that the photo-conductivity of ZnO is greatly influenced by the surface adsorption and desorption of oxygen. In the past few years, M. Liu et al had the ZnO-based PD treated with oxygen plasma and found a massive enhancement in UV detection properties [1]. Thus, the APPJ treatment was chosen as a surface modification method for our ZnO PDs in this work and compared with furnace annealing. The photoresponsivity could be dramatically improved after the APPJ treatment or the thermal annealing process of furnace, but the resultant high conductivity results in a long-time recovery of photocurrent after UV-illumination. A 30-s APPJ treatment duration is the optimized APPJ treatment condition for ZnO PD. The responsivity was enhanced with little influence on the time-dependent photo-response. Moreover, depositing MgZnO on APPJ-treated and furnace-annealed ZnO films to form MgZnO/ZnO heterostructures can induce highly conductive interfaces and increase photocurrent. However, the interface may trap the excited electrons such that the photocurrent will not recover to initial value unless placing the UV diode in dark for a very long time. Capping MgZnO on as-deposited ZnO films does not induce highly conductive layer but can enhance the photocurrent level without deterioration of the response time. Our experimental results indicate that the optimized PDs are MgZnO on as-deposited ZnO and pure ZnO with a 30-s APPJ treatment; these PDs can have improved photoresponsivity without the deterioration of response time. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:30:39Z (GMT). No. of bitstreams: 1 ntu-103-R01543006-1.pdf: 12599856 bytes, checksum: 5e4aa2dc4fc1b846211886db234012f5 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 ix 表目錄 xix 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 論文架構 3 第二章 基礎理論與文獻回顧 4 2.1 金屬氧化物半導體 4 2.1.1 氧化鋅(Zinc Oxide, ZnO)基本性質 4 2.1.2 氧化鋅鎂(Magnesium Zinc Oxide, MgZnO) 6 2.2 氧化鋅鎂、氧化鋅薄膜之製備 8 2.2.1 濺鍍法之薄膜成長機制 8 2.2.2 噴霧熱裂解法 9 2.3 異質接面原理與文獻回顧 11 2.3.1 氧化鋅鎂/氧化鋅異質結構 12 2.3.2 極化效應與二維量子氣 13 2.3.3 散射與晶界散射 15 2.3.4 屏蔽效應(screening effect)[64, 68, 71] 16 2.3.5 單晶系統下之氧化鋅鎂/氧化鋅異質結構文獻回顧 17 2.3.6 多晶系統沉積氧化鋅鎂/氧化鋅異質結構之文獻回顧 19 2.4 紫外光感測器原理與文獻回顧 21 2.4.1 寬能隙半導體材料為吸光層之紫外光感測器 22 2.4.2 氧化鋅紫外光偵測原理 23 2.4.3 氧化鋅薄膜紫外光感測器之文獻回顧 25 第三章 實驗方法與流程 28 3.1.1 基板清洗 28 3.1.2 氧化鋅鎂/氧化鋅異質結構於PI基板之製備流程 29 3.1.3 氧化鋅鎂/氧化鋅異質結構於不鏽鋼基板之製備流程 30 3.1.4 紫外光偵測器於玻璃基板之製備流程 31 3.1.5 紫外光基板於PI基板之製備流程 32 3.1.6 金屬-半導體-金屬(Metal-Semiconductor-Metal, MSM)架構 33 3.2 製程儀器與原理 34 3.2.1 射頻磁控濺鍍機(RF magnetron sputtering) 34 3.2.2 爐管熱退火處理 35 3.2.3 大氣電漿(Atmospheric pressure plasma jet, APPJ)退火處理 36 3.2.4 電子束蒸鍍機(E-beam evaporator) 38 3.2.5 微影製程 39 3.3 量測儀器與原理 40 3.3.1 表面分析儀(Surface profiler) 40 3.3.2 X光繞射儀(X-ray Diffraction, XRD) 41 3.3.3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 43 3.3.4 紫外光-可見光光譜儀(UV-Visible spectrometer) 45 3.3.5 電性量測 45 3.3.6 彎曲與拉伸測試 46 3.3.7 紫外光照光測試 48 第四章 實驗結果與討論 50 4.1 氧化鋅鎂/氧化鋅異質結構於軟性基板 50 4.1.1 不鏽鋼基板之表面粗糙度 50 4.1.2 氧化鋅鎂/氧化鋅異質結構於不鏽鋼基板之電性量測 50 4.1.3 氧化鋅鎂/氧化鋅異質結構於PI基板之電性量測 51 4.1.4 氧化鋅鎂/氧化鋅異質結構做彎曲測試 (向外彎曲,承受張應變) 53 4.1.5 氧化鋅鎂/氧化鋅異質結構做彎曲測試 (向內彎曲,薄膜承受壓應變) 57 4.1.6 PI基板上之氧化鋅鎂/氧化鋅異質結構做拉伸測試 61 4.2 大氣電漿處理氧化鋅與氧化鋅鎂/氧化鋅異質結構於光感測器之應用 63 4.2.1 低掠角X光繞射分析 63 4.2.2 SEM 表面形態分析 64 4.2.3 氧化鋅薄膜光學性質分析 65 4.2.4 氧化鋅及氧化鋅鎂/氧化鋅紫外光感測器之I-V 特性 67 4.2.5 氧化鋅及氧化鋅鎂/氧化鋅紫外光感測器之光反應性 70 4.2.6 氧化鋅及氧化鋅鎂/氧化鋅紫外光感測器之動態照光量測 71 4.3 比較不同退火條件處理下氧化鋅與氧化鋅鎂/氧化鋅異質結構於光感測器之差異 80 4.3.1 低掠角X光繞射分析 80 4.3.2 SEM 表面形態分析 81 4.3.3 氧化鋅薄膜光學性質分析 83 4.3.4 氧化鋅及氧化鋅鎂/氧化鋅紫外光感測器之I-V 特性 84 4.3.5 氧化鋅及氧化鋅鎂/氧化鋅紫外光感測器之光反應性 87 4.3.6 氧化鋅及氧化鋅鎂/氧化鋅紫外光感測器之動態照光量測 88 第五章 討論與未來展望 100 附錄 …………………………………………………………………………102 6.1 大氣電漿處理氧化鋅鎂紫外光感測器 102 6.1.1 薄膜分析 102 6.1.2 光感測器靜態照光量測 103 6.1.3 光感測器動態照光量測 105 6.2 高溫盧退火於氧化鋅鎂紫外光感測器之比較 107 6.2.1 薄膜性質 107 6.2.2 光感測器靜態照光量測 110 6.2.3 光感測器動態照光量測 112 6.3 於300C下沉積之氧化鋅、氧化鋅鎂、氧化鋅鎂/氧化鋅異質結構光感測器 121 6.3.1 薄膜性質 121 6.3.2 光感測器靜態照光量測 122 6.3.3 光感測器動態照光量測 125 6.4 真空退火氧化鋅以形成氧化鋅鎂/氧化鋅異質結構之電性與變溫量測 130 6.5 噴射式大氣電漿於氧化鋅鉿薄膜之製備 131 6.5.1 先驅物溶液 131 6.5.2 0.2M氯化鋅摻入2.5 at%鉿之前驅物其大氣電漿沉積薄膜性質 132 6.5.3 0.2M醋酸鋅摻入2.5 at%鉿之前驅物其大氣電漿沉積薄膜性質 134 6.5.4 0.2M硝酸鋅摻入2.5 at%鉿之前驅物其大氣電漿沉積薄膜性質 136 參考資料 139 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 氧化鋅鎂/氧化鋅異質結構 | zh_TW |
| dc.subject | 大氣電漿 | zh_TW |
| dc.subject | 軟性基板 | zh_TW |
| dc.subject | 紫外光感測 | zh_TW |
| dc.subject | UV detection | en |
| dc.subject | ZnO | en |
| dc.subject | MgZnO/ZnO heterostructure | en |
| dc.subject | APPJ | en |
| dc.subject | flexible substrate | en |
| dc.title | 適用於大面積製程氧化鋅鎂/氧化鋅異質結構紫外光感測器 | zh_TW |
| dc.title | MgZnO/ZnO heterostrucure based UV photodetectors fabricated using large area compatible processes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳奕君(I-Chun Cheng),徐振哲(Cheng-Che Hsu) | |
| dc.subject.keyword | 氧化鋅,氧化鋅鎂/氧化鋅異質結構,大氣電漿,軟性基板,紫外光感測, | zh_TW |
| dc.subject.keyword | ZnO,MgZnO/ZnO heterostructure,APPJ,flexible substrate,UV detection, | en |
| dc.relation.page | 145 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| Appears in Collections: | 應用力學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-103-1.pdf Restricted Access | 12.3 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
