Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56855
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭浩明
dc.contributor.authorChun Wangen
dc.contributor.author王鈞zh_TW
dc.date.accessioned2021-06-16T06:30:22Z-
dc.date.available2019-07-01
dc.date.copyright2014-09-03
dc.date.issued2014
dc.date.submitted2014-08-07
dc.identifier.citation[1] World-Health-Organization. The top 10 causes of death [Online]. Available: http://www.who.int/mediacentre/factsheets/fs310/en/
[2] M. o. H. a. W. Executive Yuan, R.O.C (Taiwan),. 2012 Statistics of Causes of Death [Online].
[3] D. L. Fischman, M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn, et al., 'A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease,' New England Journal of Medicine, vol. 331, pp. 496-501, 1994.
[4] Bostan-Scientific. Angioplasty and Stent Implantation [Online]. Available: http://www.bostonscientific.com/lifebeat-online/cardiac-procedures/angioplasty-and-stents.html
[5] J. B. Hermiller, A. Raizner, L. Cannon, P. A. Gurbel, M. A. Kutcher, S. C. Wong, et al., 'Outcomes with the polymer-based paclitaxel-eluting TAXUS stent in patients with diabetes mellitusThe TAXUS-IV trial,' Journal of the American College of Cardiology, vol. 45, pp. 1172-1179, 2005.
[6] J. E. Sousa, P. W. Serruys, and M. A. Costa, 'New frontiers in cardiology drug-eluting stents: part I,' Circulation, vol. 107, pp. 2274-2279, 2003.
[7] J. A. Ormiston and P. W. Serruys, 'Bioabsorbable coronary stents,' Circulation: Cardiovascular Interventions, vol. 2, pp. 255-260, 2009.
[8] J. A. Ormiston, P. W. Serruys, E. Regar, D. Dudek, L. Thuesen, M. W. Webster, et al., 'A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial,' The Lancet, vol. 371, pp. 899-907, 2008.
[9] R. Waksman and R. Pakala, 'Biodegradable and bioabsorbable stents,' Current pharmaceutical design, vol. 16, pp. 4041-4051, 2010.
[10] C. Dumoulin and B. Cochelin, 'Mechanical behaviour modelling of balloon-expandable stents,' Journal of Biomechanics, vol. 33, pp. 1461-1470, 2000.
[11] H.-M. Hsiao, C.-T. Yeh, Y.-H. Chiu, C. Wang, and C.-P. Chen, 'New clinical failure mode triggered by a new coronary stent design,' Bio-medical materials and engineering, vol. 24, pp. 37-43, 2014.
[12] E. Camenzind, P. G. Steg, and W. Wijns, 'A cause for concern,' Circulation, vol. 115, pp. 1440-1455, 2007.
[13] E. P. McFadden, E. Stabile, E. Regar, E. Cheneau, A. T. Ong, T. Kinnaird, et al., 'Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy,' The Lancet, vol. 364, pp. 1519-1521, 2004.
[14] A. T. Ong, E. P. McFadden, E. Regar, P. P. de Jaegere, R. T. van Domburg, and P. W. Serruys, 'Late angiographic stent thrombosis (LAST) events with drug-eluting stents,' Journal of the American College of Cardiology, vol. 45, pp. 2088-2092, 2005.
[15] P. W. Serruys, Y. Onuma, S. Garg, P. Vranckx, B. De Bruyne, M.-C. Morice, et al., '5-year clinical outcomes of the ARTS II (Arterial Revascularization Therapies Study II) of the sirolimus-eluting stent in the treatment of patients with multivessel de novo coronary artery lesions,' Journal of the American College of Cardiology, vol. 55, pp. 1093-1101, 2010.
[16] A. V. Finn, M. Joner, G. Nakazawa, F. Kolodgie, J. Newell, M. C. John, et al., 'Pathological correlates of late drug-eluting stent thrombosis strut coverage as a marker of endothelialization,' Circulation, vol. 115, pp. 2435-2441, 2007.
[17] A. V. Finn, G. Nakazawa, M. Joner, F. D. Kolodgie, E. K. Mont, H. K. Gold, et al., 'Vascular responses to drug eluting stents importance of delayed healing,' Arteriosclerosis, thrombosis, and vascular biology, vol. 27, pp. 1500-1510, 2007.
[18] M. Joner, A. V. Finn, A. Farb, E. K. Mont, F. D. Kolodgie, E. Ladich, et al., 'Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk,' Journal of the American College of Cardiology, vol. 48, pp. 193-202, 2006.
[19] E. Spuentrup, A. Ruebben, A. Mahnken, M. Stuber, C. Kolker, T. H. Nguyen, et al., 'Artifact-free coronary magnetic resonance angiography and coronary vessel wall imaging in the presence of a new, metallic, coronary magnetic resonance imaging stent,' Circulation, vol. 111, pp. 1019-1026, 2005.
[20] Y. Onuma and P. W. Serruys, 'Bioresorbable Scaffold The Advent of a New Era in Percutaneous Coronary and Peripheral Revascularization?,' Circulation, vol. 123, pp. 779-797, 2011.
[21] T. Kimura, S. Kaburagi, T. Tamura, H. Yokoi, Y. Nakagawa, H. Yokoi, et al., 'Remodeling of human coronary arteries undergoing coronary angioplasty or atherectomy,' Circulation, vol. 96, pp. 475-483, 1997.
[22] G. S. Mintz, J. J. Popma, A. D. Pichard, K. M. Kent, L. F. Satler, S. C. Wong, et al., 'Arterial remodeling after coronary angioplasty a serial intravascular ultrasound study,' Circulation, vol. 94, pp. 35-43, 1996.
[23] M. Nobuyoshi, T. Kimura, H. Nosaka, S. Mioka, K. Ueno, H. Yokoi, et al., 'Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients,' Journal of the American College of Cardiology, vol. 12, pp. 616-623, 1988.
[24] P. Serruys, H. Luijten, K. Beatt, R. Geuskens, P. De Feyter, M. van den Brand, et al., 'Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months,' Circulation, vol. 77, pp. 361-371, 1988.
[25] R. Erbel, C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F. R. Eberli, et al., 'Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial,' The Lancet, vol. 369, pp. 1869-1875, 2007.
[26] A.-C. Albertsson, Degradable aliphatic polyesters vol. 157: Springer, 2002.
[27] M. Vert, S. Li, G. Spenlehauer, and P. Guerin, 'Bioresorbability and biocompatibility of aliphatic polyesters,' Journal of materials science: Materials in medicine, vol. 3, pp. 432-446, 1992.
[28] D. Garlotta, 'A literature review of poly (lactic acid),' Journal of Polymers and the Environment, vol. 9, pp. 63-84, 2001.
[29] G. Kfoury, J.-M. Raquez, F. Hassouna, J. Odent, V. Toniazzo, D. Ruch, et al., 'Recent advances in high performance poly (lactide): from “green” plasticization to super-tough materials via (reactive) compounding,' Frontiers in chemistry, vol. 1, 2013.
[30] H. Liu, S. Wang, and N. Qi, 'Controllable structure, properties, and degradation of the electrospun PLGA/PLA‐blended nanofibrous scaffolds,' Journal of Applied Polymer Science, vol. 125, pp. E468-E476, 2012.
[31] N. Lopez‐Rodriguez, A. Lopez‐Arraiza, E. Meaurio, and J. Sarasua, 'Crystallization, morphology, and mechanical behavior of polylactide/poly (ε‐caprolactone) blends,' Polymer Engineering & Science, vol. 46, pp. 1299-1308, 2006.
[32] I. Pillin, N. Montrelay, and Y. Grohens, 'Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor?,' Polymer, vol. 47, pp. 4676-4682, 2006.
[33] T. Semba, K. Kitagawa, U. S. Ishiaku, and H. Hamada, 'The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends,' Journal of applied polymer science, vol. 101, pp. 1816-1825, 2006.
[34] N. Grabow, M. Schlun, K. Sternberg, N. Hakansson, S. Kramer, and K.-P. Schmitz, 'Mechanical properties of laser cut poly (L-lactide) micro-specimens: implications for stent design, manufacture, and sterilization,' Journal of biomechanical engineering, vol. 127, pp. 25-31, 2005.
[35] H. Tamai, K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, et al., 'Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans,' Circulation, vol. 102, pp. 399-404, 2000.
[36] M. Post, A. de Graaf-Bos, H. Van Zanten, P. De Groot, J. Sixma, and C. Borst, 'Thrombogenicity of the human arterial wall after interventional thermal injury,' Journal of vascular research, vol. 33, pp. 156-163, 1996.
[37] R. Schulze. REVA Medical Inc., 'Bioresorbable stent,' presented at the Cardiovascular Revascularization Therapies Conference, Washington, DC., 2007.
[38] E. Grube, 'Bioabsorbable stent: the Boston Scientific and REVA technology,' presented at the EuroPCR, Barcelona, Spain, 2009.
[39] R. Jabara, L. Pendyala, S. Geva, J. Chen, N. Chronos, and K. Robinson, 'Novel fully bioabsorbable salicylate-based sirolimus-eluting stent,' EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, vol. 5, pp. F58-64, 2009.
[40] P. W. Serruys, J. A. Ormiston, Y. Onuma, E. Regar, N. Gonzalo, H. M. Garcia-Garcia, et al., 'A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods,' The Lancet, vol. 373, pp. 897-910, 2009.
[41] D. Gastaldi, V. Sassi, L. Petrini, M. Vedani, S. Trasatti, and F. Migliavacca, 'Continuum damage model for bioresorbable magnesium alloy devices—Application to coronary stents,' Journal of the mechanical behavior of biomedical materials, vol. 4, pp. 352-365, 2011.
[42] J. Grogan, S. Leen, and P. McHugh, 'A physical corrosion model for bioabsorbable metal stents,' Acta biomaterialia, vol. 10, pp. 2313-2322, 2014.
[43] J. A. Grogan, S. B. Leen, and P. E. McHugh, 'Optimizing the design of a bioabsorbable metal stent using computer simulation methods,' Biomaterials, vol. 34, pp. 8049-8060, 2013.
[44] A. Muliana and K. Rajagopal, 'Modeling the response of nonlinear viscoelastic biodegradable polymeric stents,' International Journal of Solids and Structures, vol. 49, pp. 989-1000, 2012.
[45] A. C. Vieira, R. M. Guedes, and V. Tita, 'Constitutive modeling of biodegradable polymers: Hydrolytic degradation and time-dependent behavior,' International Journal of Solids and Structures, vol. 51, pp. 1164-1174, 2014.
[46] N. W. Bressloff, 'Multi-Objective Design of a Biodegradable Coronary Artery Stent,' 2013.
[47] C. Schultze, N. Grabow, H. Martin, and K.-P. Schmitz, 'Finite-element-analysis and in vitro study of bioabsorbable polymer stent designs,' in 4th European Conference of the International Federation for Medical and Biological Engineering, 2009, pp. 2175-2178.
[48] H.-M. Hsiao, Y.-H. Chiu, K.-H. Lee, and C.-H. Lin, 'Computational modeling of effects of intravascular stent design on key mechanical and hemodynamic behavior,' Computer-Aided Design, vol. 44, pp. 757-765, 2012.
[49] H.-M. Hsiao, K.-H. Lee, Y.-C. Liao, and Y.-C. Cheng, 'Cardiovascular stent design and wall shear stress distribution in coronary stented arteries,' Micro & Nano Letters, vol. 7, pp. 430-433, 2012.
[50] Y. Hu, M. Rogunova, V. Topolkaraev, A. Hiltner, and E. Baer, 'Aging of poly (lactide)/poly (ethylene glycol) blends. Part 1. Poly (lactide) with low stereoregularity,' Polymer, vol. 44, pp. 5701-5710, 2003.
[51] S. Yamadi and S. Kobayashi, 'Effects of strain rate on the mechanical properties of tricalcium phosphate/poly (L-lactide) composites,' Journal of Materials Science: Materials in Medicine, vol. 20, pp. 67-74, 2009.
[52] S. M. Peltola, F. P. Melchels, D. W. Grijpma, and M. Kellomaki, 'A review of rapid prototyping techniques for tissue engineering purposes,' Annals of medicine, vol. 40, pp. 268-280, 2008.
[53] F. Rengier, A. Mehndiratta, H. von Tengg-Kobligk, C. M. Zechmann, R. Unterhinninghofen, H.-U. Kauczor, et al., '3D printing based on imaging data: review of medical applications,' International journal of computer assisted radiology and surgery, vol. 5, pp. 335-341, 2010.
[54] L. L. TAN. (2007) Plugging bone the painless way. Innovation, The magazine of research & technology.
[55] N. N. Zein, I. A. Hanouneh, P. D. Bishop, M. Samaan, B. Eghtesad, C. Quintini, et al., 'Three‐dimensional print of a liver for preoperative planning in living donor liver transplantation,' Liver Transplantation, vol. 19, pp. 1304-1310, 2013.
[56] H. Hsiao, C. Yeh, C. Wang, L. Chao, and D. Li, 'Effects of stent design on new clinical issue of longitudinal stent compression in interventional cardiology,' Biomedical microdevices, 2014.
[57] F. a. D. Administration, 'Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems Document,' ed, 2010.
[58] A. D. Robinson, T. L. Schreiber, M. A. Sobh, and C. L. Grines, 'Deformation, longitudinal shortening, and accordion of an ion stent,' Journal of interventional cardiology, vol. 24, pp. 493-495, 2011.
[59] Y. Chalet, F. Panes, B. Chevalier, J. P. Monassier, C. Spaulding, B. Lancelin, et al., 'Should we avoid ostial implantations of Wiktor stents?,' Catheterization and cardiovascular diagnosis, vol. 32, pp. 376-379, 1994.
[60] P. D. Williams, M. A. Mamas, K. P. Morgan, M. El-Omar, B. Clarke, A. Bainbridge, et al., 'Longitudinal stent deformation: a retrospective analysis of frequency and mechanisms,' EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, vol. 8, pp. 267-274, 2012.
[61] G. Finet and G. Rioufol, 'Coronary stent longitudinal deformation by compression: is this a new global stent failure, a specific failure of a particular stent design or simply an angiographic detection of an exceptional PCI complication?,' EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, vol. 8, p. 177, 2012.
[62] N. Foin, C. Di Mario, D. P. Francis, and J. E. Davies, 'Stent flexibility versus concertina effect: Mechanism of an unpleasant trade-off in stent design and its implications for stent selection in the cath-lab,' International Journal of Cardiology, vol. 164, pp. 259-261, 4/15/ 2013.
[63] C. Hanratty and S. Walsh, 'Longitudinal compression: a “new” complication with modern coronary stent platforms – time to think beyond deliverability?,' EuroIntervention, vol. 7, pp. 872-877, 2011.
[64] E. Janakiraman, V. Subban, S. M. Victor, and A. S. Mullasari, 'Longitudinal deformation–Price we pay for better deliverability of coronary stent platforms,' Indian heart journal, vol. 64, pp. 518-520, 2012.
[65] J. Grogan, S. Leen, and P. McHugh, 'Comparing coronary stent material performance on a common geometric platform through simulated bench testing,' Journal of the mechanical behavior of biomedical materials, vol. 12, pp. 129-138, 2012.
[66] D. K. Liang, D. Z. Yang, M. Qi, and W. Q. Wang, 'Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery,' International Journal of Cardiology, vol. 104, pp. 314-318, 10/10/ 2005.
[67] F. Migliavacca, L. Petrini, M. Colombo, F. Auricchio, and R. Pietrabissa, 'Mechanical behavior of coronary stents investigated through the finite element method,' Journal of Biomechanics, vol. 35, pp. 803-811.
[68] H. M. Hsiao and Y. H. Chiu, 'Assessment of mechanical integrity for drug-eluting renal stent with micro-sized drug reservoirs,' Comput Methods Biomech Biomed Engin, vol. 16, pp. 1307-18, 2013.
[69] H.-M. Hsiao, Y.-H. Chiu, T.-Y. Wu, J.-K. Shen, and T.-Y. Lee, 'Effects of through-hole drug reservoirs on key clinical attributes for drug-eluting depot stent,' Medical Engineering & Physics, vol. 35, pp. 884-897, 7// 2013.
[70] J. A. Ormiston, S. R. Dixon, M. W. Webster, P. N. Ruygrok, J. T. Stewart, I. Minchington, et al., 'Stent longitudinal flexibility: a comparison of 13 stent designs before and after balloon expansion,' Catheterization and cardiovascular interventions, vol. 50, pp. 120-124, 2000.
[71] W. Schmidt, R. Andresen, P. Behrens, and K. Schmitz, 'Comparison of mechanical properties of peripheral self-expanding Nitinol and balloon-expandable stainless-steel stents,' in Electronic Poster, Annual Meeting and Postgraduate Course, Cardiovascular and Interventional Radiological Society of Europe (CIRSE), Barcelona, Spain, 2004.
[72] K. Schmitz, D. Behrend, P. Behrens, and W. Schmidt, 'Comparative studies of different stent designs,' Prog Biomed Res, vol. 4, pp. 52-58, 1999.
[73] J. A. Ormiston, B. Webber, and M. W. Webster, 'Stent longitudinal integrity: bench insights into a clinical problem,' JACC: Cardiovascular Interventions, vol. 4, pp. 1310-1317, 2011.
[74] S. Prabhu, T. Schikorr, T. Mahmoud, J. Jacobs, A. Potgieter, and C. Simonton, 'Engineering assessment of the longitudinal compression behaviour of contemporary coronary stents,' EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, vol. 8, pp. 275-281, 2012.
[75] N. Bitinis, A. Sanz, A. Nogales, R. Verdejo, M. A. Lopez-Manchado, and T. A. Ezquerra, 'Deformation mechanisms in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by synchrotron X-ray scattering,' Soft Matter, vol. 8, pp. 8990-8997, 2012.
[76] M. Todo and T. Takayama, 'Fracture Mechanisms of Biodegradable PLA and PLA/PCL Blends.'
[77] S. K. Eswaran, J. A. Kelley, J. S. Bergstrom, and V. L. Giddings, 'Material Modeling of Polylactide.'
[78] J. E. Moore Jr, J. S. Soares, and K. R. Rajagopal, 'Biodegradable stents: biomechanical modeling challenges and opportunities,' Cardiovascular Engineering and Technology, vol. 1, pp. 52-65, 2010.
[79] T. C. Gasser and G. A. Holzapfel, 'Finite element modeling of balloon angioplasty by considering overstretch of remnant non-diseased tissues in lesions,' Computational Mechanics, vol. 40, pp. 47-60, 2007.
[80] P. Mortier, G. A. Holzapfel, M. De Beule, D. Van Loo, Y. Taeymans, P. Segers, et al., 'A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents,' Annals of biomedical engineering, vol. 38, pp. 88-99, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56855-
dc.description.abstract心血管支架為一項微型醫療器材,部署於血管中可以維持血管管徑並恢復血流暢通,目前血管支架手術已經成為心血管疾病的主要治療方式,然而手術後仍會有晚期血栓的風險,於是生物可吸收式血管模架因應而生,它在完成階段性的任務之後,隨即被人體完全分解,預期將成為未來治療心血管疾病的趨勢。本研究透過有限元素分析法模擬生物可吸收式血管模架的機械行為,內容主要分為兩部分,第一部分探討設計樣式及使用材料對血管模架機械性質的影響,選用了VYW-shaped和V-shaped兩款設計樣式與兩種強度不同的生物可吸收式材料互相搭配進行研究。有鑑於3D列印技術的快速發展,第二部分提出利用此技術製造材料分層之生物可吸收式血管模架的概念,將傳統單一材料的血管模架改為分層指定不同材料,並觀察血管模架不同部位的材料性質差異會對血管模架的表現產生何種影響,以期能找到提升血管模架整體機械性能的方法。第一部分的模擬結果顯示血管模架的機械性質主要是由材料主導,設計樣式差異的影響則較小,比較特別的是設計樣式對血管模架彎曲的影響因材料不同而有所差異;第二部分的研究結果顯示血管模架的機械性質受到不同部位的材料影響程度不同,需要考量血管模架需求的優先順序來調整血管模架的表現。本研究能提供後繼者研究生物可吸收式血管模架的參考,文中提出結合3D列印技術將血管模架材料分層的創新概念,有望成為改善血管模架整體機械性能的新方法,協助生物可吸收式血管模架的研發進展。zh_TW
dc.description.abstractStents are miniature medical devices that can be inserted into arteries and expanded during angioplasty to maintain patency and re-establish flow through the vessel. They have been the primary treatment for cardiovascular diseases. However, after stenting, potential risks associated with late stent/scaffold thrombosis may occur. This problem promises to be solved with the advent of bioresorbable vascular scaffolds which offer the possibility of transient scaffolding of the vessel to prevent acute vessel closure and recoil. In this study, finite element models were developed to investigate the mechanical behaviors of bioresorbable vascular scaffolds. In the first part of this thesis, computational simulations were performed on two scaffold design patterns assigned with two different materials in attempts to quantify individual effects of the scaffold design patterns and materials on the mechanical performance. Simulation results show that the material properties plays the most significant role in all three finite element models. In the second part, a novel scaffold design concept associated with 3D printing was introduced for the purpose of enhancing mechanical properties Struts of the scaffolds were separated into many layers and each of them was assigned with different materials in certain order. Simulation results shows that the scaffold materials at particular location may have larger impacts on certain mechanical behaviors. If used appropriately, this phenomenon can improve the mechanical performance of scaffolds. This study provides great insight for the future design optimization and physician practice to help achieve the best possible clinical outcomes.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:30:22Z (GMT). No. of bitstreams: 1
ntu-103-R01522803-1.pdf: 17769874 bytes, checksum: fe2a16385ef649159232ba6a550078c3 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 心血管疾病和血管支架 1
1.2 血管支架的設計與製造 3
1.3 研究目的與貢獻 4
第二章 文獻回顧 7
2.1 生物可吸收式血管模架優勢 7
2.2 生物可吸收式材料簡介 8
2.3 現今生物可吸收式血管模架介紹 10
2.4 生物可吸收式血管模架和有限元素分析 12
第三章 研究方法 13
3.1 血管模架幾何參數 13
3.2 材料性質設定 16
3.2.1 血管模架材料參數 16
3.2.2 材料分層設定 17
3.3 機械性質測試模型設定 18
3.3.1 徑向支撐力測試模型 18
3.3.2 血管模架側向彎曲模型 22
3.3.3 血管模架軸向壓縮模型 24
3.4 機械性質參考指標 25
3.4.1 等效塑性應變(Equivalent Plastic Strain, PEEQ) 26
3.4.2 血管模架擴張回彈(Expansion Recoil, ER) 26
3.4.3 徑向支撐強度(Radial Strength, RS) 27
3.4.4 抗彎勁度(Bending Stiffness, BS)和抗力峰值(Peak Value, PV) 28
3.4.5 抗壓勁度(Compression Stiffness, CS) 29
3.4.6 血管模架設計要點 30
第四章 研究結果與討論 31
4.1 樣式和材料對血管模架機械性質的影響 31
4.1.1 徑向支撐力測試模擬結果 31
4.1.2 血管模架側向彎曲模擬結果 36
4.1.3 血管模架軸向壓縮模擬結果 41
4.1.4 第一部分小結 42
4.2 材料分層對血管模架機械性質的影響 42
4.2.1 徑向支撐力測試模擬結果 42
4.2.2 血管模架側向彎曲測試模擬結果 48
4.2.3 軸向壓縮測試模擬結果 50
4.2.4 第二部分小結 51
第五章 結論和未來展望 53
參考文獻 55
dc.language.isozh-TW
dc.subject有限元素分析zh_TW
dc.subject氣球擴張式血管模架zh_TW
dc.subject生物可吸收式血管模架zh_TW
dc.subject血管模架機械性質zh_TW
dc.subject3D列印zh_TW
dc.subjectBioresorbable vascular scaffolden
dc.subjectBalloon expandable stenten
dc.subjectFinite element analysisen
dc.subject3D Printingen
dc.title生物可吸收式血管模架機械行為之電腦模擬zh_TW
dc.titleComputational Simulation of Mechanical Behavior for Bioresorbable Vascular Scaffolden
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊馥菱,廖英志
dc.subject.keyword生物可吸收式血管模架,氣球擴張式血管模架,有限元素分析,血管模架機械性質,3D列印,zh_TW
dc.subject.keywordBioresorbable vascular scaffold,Balloon expandable stent,Finite element analysis,3D Printing,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2014-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
17.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved