請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56854完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林亮音(Liang-In Lin) | |
| dc.contributor.author | Yi-Ju Yang | en |
| dc.contributor.author | 楊宜茹 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:30:22Z | - |
| dc.date.available | 2017-08-01 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-08 | |
| dc.identifier.citation | 1. Baccarani M, Dreyling M, Group EGW. Chronic myeloid leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21 Suppl 5:v165-167.
2. Sawyers CL. CHRONIC MYELOID LEUKEMIA. N Engl J Med. 1999;340:1330-1340. 3. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am J Hematol. 2014;89(5):547-556. 4. Bizzozero OJ, Jr., Johnson KG, Ciocco A. Radiation-related leukemia in Hiroshima and Nagasaki, 1946-1964. I. Distribution, incidence and appearance time. N Engl J Med. 1966;274(20):1095-1101. 5. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5(3):172-183. 6. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292-2302. 7. Kurzrock R, Gutterman JU, Talpaz M. The Molecular Genetics of Philadelphia Chromosome–Positive Leukemias. New England Journal of Medicine. 1988;319(15):990-998. 8. Holyoake DTL. Recent advances in the molecular and cellular biology of chronic myeloid leukaemia: lessons to be learned from the laboratory. British Journal of Haematology. 2001;113:11–23. 9. van Rhee F, Hochhaus A, Lin F, Melo JV, Goldman JM, Cross NC. p190 BCR-ABL mRNA is expressed at low levels in p210-positive chronic myeloid and acute lymphoblastic leukemias. Blood. 1996;87(12):5213-5217. 10. Michael W. N. Deininger, John M. Goldman, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96(10):3342-3356. 11. Dhara P. BCR-ABL kinase inhibitors for cancer therapy. International Journal of Pharmaceutical Sciences and Drug Research. 2010; 2(2):80-90. 12. Hehlmann R, Heimpel H, Hasford J, et al. Randomized comparison of interferon-alpha with busulfan and hydroxyurea in chronic myelogenous leukemia. The German CML Study Group. Blood. 1994;84(12):4064-4077. 13. Brian J. Druker ST, Elisabeth Buchdunger. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr Abl positive cells. Nature Medicine 1996; 2:561 - 566. 14. Kantarjian H, Schiffer C, Jones D, Cortes J. Monitoring the response and course of chronic myeloid leukemia in the modern era of BCR-ABL tyrosine kinase inhibitors: practical advice on the use and interpretation of monitoring methods. Blood. 2008;111(4):1774-1780. 15. Yakes FM, Chen J, Tan J, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298-2308. 16. Kurzrock R, Sherman SI, Ball DW, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29(19):2660-2666. 17. Winer EP, Tolaney S, Nechushtan H, et al. Activity of cabozantinib (XL184) in metastatic breast cancer (MBC): results from a phase II randomized discontinuation trial (RDT). J Clin Oncol 2012;30:535. 18. Wakelee H, Gettinger S, Engelman J, et al. A phase Ib/II study of XL184 (BMS 907351) with and without erlotinib (E) in patients (pts) with non-small cell lung cancer (NSCLC). J Clin Oncol. 2010;28(Suppl 15):3017. 19. Choueiri TK, Vaishampayan U, Rosenberg JE, et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol. 2013;31(2):181-186. 20. Viola D, Cappagli V, Elisei R. Cabozantinib (XL184) for the treatment of locally advanced or metastatic progressive medullary thyroid cancer. Future Oncol. 2013;9(8):1083-1092. 21. Smith DC, Smith MR, Sweeney C, et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J Clin Oncol. 2013;31(4):412-419. 22. Sawafuji K, Miyakawa Y, Kizaki M, Ikeda Y. Cyclosporin A induces erythroid differentiation of K562 cells through p38 MAPK and ERK pathways. Am J Hematol. 2003;72(1):67-69. 23. Steinheider G, Schaefer A, Westendorf J, Marquardt H. Induction of erythroid differentiation by the anthracycline antitumor antibiotic pyrromycin. Cell Biol Toxicol. 1988;4(1):123-133. 24. Witt O, Sand K, Pekrun A. Butyrate-induced erythroid differentiation of human K562 leukemia cells involves inhibition of ERK and activation of p38 MAP kinase pathways. Blood. 2000;95(7):2391-2396. 25. Huo XF, Yu J, Peng H, et al. Differential expression changes in K562 cells during the hemin-induced erythroid differentiation and the phorbol myristate acetate (PMA)-induced megakaryocytic differentiation. Mol Cell Biochem. 2006;292(1-2):155-167. 26. Burda P, Laslo P, Stopka T. The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis. Leukemia. 2010;24(7):1249-1257. 27. Flygare J, Karlsson S. Diamond-Blackfan anemia: erythropoiesis lost in translation. Blood. 2007;109(8):3152-3154. 28. Dzierzak E, Philipsen S. Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med. 2013;3(4):a011601. 29. Bianchi N, Chiarabelli C, Borgatti M, Mischiati C, Fibach E, Gambari R. Accumulation of gamma-globin mRNA and induction of erythroid differentiation after treatment of human leukaemic K562 cells with tallimustine. Br J Haematol. 2001;113(4):951-961. 30. Park JI, Choi HS, Jeong JS, Han JY, Kim IH. Involvement of p38 kinase in hydroxyurea-induced differentiation of K562 cells. Cell Growth Differ. 2001;12(9):481-486. 31. Nagata Y, Takahashi N, Davis RJ, Todokoro K. Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation. Blood. 1998;92(6):1859-1869. 32. Pace BS, Qian XH, Sangerman J, et al. p38 MAP kinase activation mediates gamma-globin gene induction in erythroid progenitors. Exp Hematol. 2003;31(11):1089-1096. 33. Missiroli S, Etro D, Buontempo F, Ye K, Capitani S, Neri LM. Nuclear translocation of active AKT is required for erythroid differentiation in erythropoietin treated K562 erythroleukemia cells. Int J Biochem Cell Biol. 2009;41(3):570-577. 34. Huang HM, Chang TW, Liu JC. Basic fibroblast growth factor antagonizes activin A-mediated growth inhibition and hemoglobin synthesis in K562 cells by activating ERK1/2 and deactivating p38 MAP kinase. Biochem Biophys Res Commun. 2004;320(4):1247-1252. 35. Grosveld G, Verwoerd T, van Agthoven T, et al. The chronic myelocytic cell line K562 contains a breakpoint in bcr and produces a chimeric bcr/c-abl transcript. Mol Cell Biol. 1986;6(2):607-616. 36. H S. Differential expression of a and b globin genes during differentiation of cultured erythroleukemic cells. THE JOIJRNAL OF BIOLOGICAL CHEMISTRY. 1975;250(NOV.25):8853-8760. 37. Arnaud Jacquel MH, Laurence Legros. Imatinib induces mitochondria-dependent apoptosis of the Bcr-Abl positive K562 cell line and its differentiation towards the erythroid lineage. The FASEB Journal. 2003;10:0300-0322. 38. Garcon L, Lacout C, Svinartchouk F, et al. Gfi-1B plays a critical role in terminal differentiation of normal and transformed erythroid progenitor cells. Blood. 2005;105(4):1448-1455. 39. Nagata Y, Todokoro K. Requirement of activation of JNK and p38 for environmental stress-induced erythroid differentiation and apoptosis and of inhibition of ERK for apoptosis. Blood. 1999;94(3):853-863. 40. Ana Cuenda JRa, Yair N. Doza. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS. 1995;364:229-233. 41. Kumar S, Jiang MS, Adams JL, Lee JC. Pyridinylimidazole compound SB 203580 inhibits the activity but not the activation of p38 mitogen-activated protein kinase. Biochem Biophys Res Commun. 1999;263(3):825-831. 42. Gharbi SI, Zvelebil MJ, Shuttleworth SJ, et al. Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J. 2007;404(1):15-21. 43. Zheng L, Gong W, Liang P, et al. Effects of AFP-activated PI3K/Akt signaling pathway on cell proliferation of liver cancer. Tumour Biol. 2014. 44. Schwartz GK, Shah MA. Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol. 2005;23(36):9408-9421. 45. Munoz-Alonso MJ, Acosta JC, Richard C, Delgado MD, Sedivy J, Leon J. p21Cip1 and p27Kip1 induce distinct cell cycle effects and differentiation programs in myeloid leukemia cells. J Biol Chem. 2005;280(18):18120-18129. 46. Andreu EJ, Lledo E, Poch E, et al. BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells. Cancer Res. 2005;65(8):3264-3272. 47. Gesbert F, Sellers WR, Signoretti S, Loda M, Griffin JD. BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor p27Kip1 through the phosphatidylinositol 3-Kinase/AKT pathway. J Biol Chem. 2000;275(50):39223-39230. 48. Gomez-Casares MT, Garcia-Alegria E, Lopez-Jorge CE, et al. MYC antagonizes the differentiation induced by imatinib in chronic myeloid leukemia cells through downregulation of p27(KIP1.). Oncogene. 2013;32(17):2239-2246. 49. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med. 2001;7(6):680-686. 50. Petrie K, Zelent A, Waxman S. Differentiation therapy of acute myeloid leukemia: past, present and future. Curr Opin Hematol. 2009;16(2):84-91. 51. Yoon MK, Mitrea DM, Ou L, Kriwacki RW. Cell cycle regulation by the intrinsically disordered proteins p21 and p27. Biochem Soc Trans. 2012;40(5):981-988. 52. Tsolmon S, Nakazaki E, Han J, Isoda H. Apigetrin induces erythroid differentiation of human leukemia cells K562: proteomics approach. Mol Nutr Food Res. 2011;55 Suppl 1:S93-s102. 53. Clerk A, Sugden PH. The p38-MAPK inhibitor, SB203580, inhibits cardiac stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs). FEBS Lett. 1998;426(1):93-96. 54. K A Lord AA, B Hoffman-Liebermann, D A Liebermann. Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation. Mol Cell Biol. 1993;13: 841–851. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56854 | - |
| dc.description.abstract | 大部分慢性骨髓性白血病(chronic myeloid leukemia, CML)的病人體內會存在第 9 對及第 22 對染色體轉位所產生的 BCR-ABL 融合蛋白,此融合蛋白會不斷啟動下游訊息傳遞蛋白造成細胞不斷增生、並且阻止細胞分化。因此,利用酪胺酸激酶抑制劑抑制BCR-ABL融合蛋白酪胺酸激酶的活性為治療辦法之一。Cabozantinib(XL184,N-(4-((6,7-Dimethoxyquinolin-4-yl)oxy)phenyl)-N-(4-fluorophenyl) cyclopropane-1, 1-dicarboxamide)為一多重酪酸胺激酶抑制劑,此藥物經美國FDA核准用於治療腎上腺髓質癌,建議每日用量與每日最大用量分別為140毫克與175毫克。根據藥物動力學研究顯示此藥物在每日用量175毫克時,人體血漿濃度可達2.8uM。本實驗室先前利用cabozantinib 進行實驗時,發現cabozantinib處理 K562 細胞放置數天後,細胞會變成紅色,故推論 cabozantinib 具有誘導K562細胞分化走向紅血球系列之能力,因此,我們主要目的是探討其中的機制。
首先,我們證實在小於血漿可達濃度之1uM cabozantinib處理K562細胞4天後,細胞會走向紅血球系列分化而非血小板系列。我們發現經1uM cabozantinib處理之K562細胞利用二胺基聯苯胺鹽酸(benzidine dihydrochloride)試驗與流式細胞儀,偵測細胞內血色素與細胞表面抗原CD71以及CD235a的表現量,證實經由cabozantinib處理之K562細胞,其紅血球系列分化相關之蛋白表現上升。而qRT-PCR 分析cabozantinib處理之K562細胞與紅血球分化相關之基因表現,例如:r-globin、transferrin receptor(TfR、CD71)、glycoforin A(GPA、CD235a)等基因,也呈現顯著上升的趨勢。我們發現cabozantinib可抑制K562細胞生長速率,而利用流式細胞儀分析細胞週期發現有細胞周期停滯的現象。進一步探討cabozantinib調控K562細胞分化之機制,我們發現cabozantinib處理K562細胞6小時後,細胞中BCR-ABL及其下游蛋白ERK, STAT5,AKT磷酸化之情形會隨著藥物濃度上升而下降。實驗結果亦顯示cabozantinib處理K562細胞48小時後,可造成c-myc蛋白表現下降,伴隨著p27蛋白表現上升。根據以上結果我們認為cabozantinib可藉由負調控AKT磷酸化使得p27蛋白表現增加,進而刺激K562細胞往紅血球系列分化。另外,我們也發現cabozantinib處理K562細胞6小時後,細胞中JNK及其下游分子磷酸化情形上升,並且利用JNK抑制劑可有效中和cabozantinib所刺激之分化現象,故我們認為cabozantinib亦可能透過JNK路徑調控K562細胞進行分化。 | zh_TW |
| dc.description.abstract | Chronic myeloid leukemia (CML) is a pluripotent hematopoietic stem cell disease which arises from the bcr-abl oncogene. The Bcr-Abl oncoprotein, as a constitutively activated tyrosine kinase, could activate multiple signaling pathways for the malignant transformation. Therefore, specific inhibitors of tyrosine kinases are attractive therapeutic agents. Cabozantinib (XL184, N-(4-((6, 7-Dimethoxyquinolin-4-yl) oxy) phenyl)-N-(4-fluorophenyl) cyclopropane-1, 1-dicarboxamide), a multiple tyrosine kinase inhibitor, has recently been approved by US FDA for the treatment of medullary thyroid cancer (MTC). The recommended daily dose and the maximum-tolerated dose (MTD) of cabozantinib are 140mg and 175 mg, respectively. Pharmacokinetics study revealed that the steady-state plasma levels were 2.8μM when administrating MTC patients with 175mg daily. In our preliminary results revealed that treating K562 cells harboring bcr-abl oncogene with 1μM cabozantinib after a few days demonstrated an erythroid differentiation phenotype.
Treatment with plasma-reachable dose (1μM) of cabozantinib in K562 leukemia cells for 96 hrs induced erythroid differentiation but not megakaryocytic maturation. We observed a significant population of cells with cytological features of early erythroid differentiation and significantly increased benzidine-positive cells (up to 50%) accompanying with significant accumulation of γ-globin. Expression of transferrin receptor (TfR, CD71) and glycophorin A (GPA, CD235a), both well documented erythroid-specific gene, were induced 3 to 4-fold relative to untreated control cells. We found that cabozantinib could inhibit cell growth of K562 cells, and cell cycle analysis revealed that cabozantinib could also result in G0/G1 cell cycle arrest in K562 cells. Signaling pathway analysis revealed that cabozantinib could decrease phosphorylation of BCR-ABL, ERK, STAT5 and AKT at 6 hours in a dose-dependent manner. Further analysis revealed that cabozantinib treatment could decrease c-myc with a concomitant induction of p27 at 48 hours in a concentration- dependent manner. Taken together, we proposed that cabozantinib could induce K562 cell differentiation toward erythroid lineage through inhibiting PI3K/AKT pathway, of which, p27 was involved. In addition, we found that cabozantinib treatment could up-regulate phosphorylation of JNK and its downstream protein and JNK inhibitor could reduce the cabozantinib-induced erythroid differention on K562 cells. We considered that cabozantinib could also induce K562 cell differentiation toward erythroid lineage through JNK pathway. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:30:22Z (GMT). No. of bitstreams: 1 ntu-103-R01424005-1.pdf: 2829869 bytes, checksum: ed9fdc5d88a5a47a6cdf4dbe75c0e505 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 I
目錄 II 圖目錄 IV 表目錄 IV 附圖目錄 V 附表目錄 V 縮寫表 VI 中文摘要 VII 英文摘要 IX 第一章 緒論 1 一.慢性骨髓性白血病(chronic myeloid leukemia, CML) 1 二.Cabozantinib (XL184) 4 三.分化 5 四.訊息傳遞 6 第二章 研究目的 7 第三章 材料與方法 8 一.材料 8 二.方法 15 第四章 實驗結果 21 一. Cabozantinib對K562細胞之影響 21 二. Cabozantinib刺激K562細胞分化為紅血球系列細胞 21 三. p38抑制劑中和cabozantinib刺激K562細胞分化之影響 23 四. Cabozantinib對K562細胞中p38 MAPK路徑之影響 24 五. Cabozantinib對K562細胞中BCR-ABL表現之影響 24 六. Cabozantinib對K562細胞週期之影響 24 七. Cabozantinib對K562細胞週期相關蛋白表現之影響 25 第五章 討論 27 第六章.結論 30 圖 31 表 59 參考文獻 60 附錄 67 一. 附圖 68 二. 附表 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | BCR-ABL融合蛋白 | zh_TW |
| dc.subject | 紅血球系列分化 | zh_TW |
| dc.subject | carbozantinib | zh_TW |
| dc.subject | cabozantinib | en |
| dc.subject | erythroid differentiation | en |
| dc.subject | BCR-ABL fushion protein | en |
| dc.title | cabozantinib 誘導K562細胞株進行紅血球系列分化之機制的探討 | zh_TW |
| dc.title | Study on the molecular mechanism of cabozantinib-induced erythroid differentiation of K562 erythroleukemia cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡忠怡(Chung-Yi Hu),郭遠燁(Yuan-Yeh Kuo),毆大諒(Da-Liang Ou),顧雅真(Ya-Chen Ko) | |
| dc.subject.keyword | carbozantinib,紅血球系列分化,BCR-ABL融合蛋白, | zh_TW |
| dc.subject.keyword | cabozantinib,erythroid differentiation,BCR-ABL fushion protein, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-08 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
