請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56851
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 熊怡(Yee Bob Hsiung) | |
dc.contributor.author | Po-An Chen | en |
dc.contributor.author | 陳柏安 | zh_TW |
dc.date.accessioned | 2021-06-16T06:30:20Z | - |
dc.date.available | 2020-08-24 | |
dc.date.copyright | 2020-08-24 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-17 | |
dc.identifier.citation | [1] J. Chadwick. Intensitätsverteilung im magnetischen Spectrum der β-Strahlen von radium B + C. Berichte der Deutschen Physikalischen Gesellschaft, 16, 1914. [2] F. A. Scott. Improved Half-life Measurement of 224Bi(18O, 3n)224Pa Production Cross Section. PHYSICAL REVIEW C, 56(1626), 1997. [3] P. A. Wilk et al. Energy Spectrum of Beta-Rays of Radium E. PHYSICAL REVIEW, 48(391), 1935. [4] L. M. Brown. The Idea of the Neutrino. PHYSICS TODAY,31(9), 1978. [5] E. Fermi. Versuch einer Theorie der β-Strahlen. I. Zeitschrift fur Physik, 88(3-4):161–177, 1934. [6] Kan-Chang Wang. A Suggestion on the Detection of the Neutrino. PHYSICAL REVIEW, 61(97), 1942. [7] C. L. Cowan et al. Detection of the Free Neutrino: A Confirmation. SCIENCE, 124(3212):103–104, 1956. [8] J. C. Street and E. C. Stevenson. New Evidence for the Existence of a Particle of Mass Intermediate Between the Proton and Electron. PHYSICAL REVIEW, 52(1003), 1937. [9] G. Danby et al. Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos. PHYSICAL REVIEW LETTERS, 9(1), 1962. [10] John N. Bahcall and Raymond Davis Jr. Solar Neutrinos: A Scientific Puzzle. SCIENCE, 191(4224), 1976. [11] B. Pontecorvo. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. SOVIET PHYSICS JETP, 53(5):1717, 1967. [12] Q. R. Ahmad et al. Measurement of the Rate of ν + d → p + p + e . Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory. PHYSICAL REVIEW LETTERS, 87(7):071301, 2001. [13] Y. Fukuda et al. Evidence for Oscillation of Atmospheric Neutrinos. PHYSICAL REVIEW LETTERS, 81(8):1562, 1998. [14] A. A. Hahn, F. Von Feilitzsch and K. Schreckenbach. Experimental Beta-spectra from 239Pu and 235U Thermal Neutron Fission Products and their Correlated Anti-neutrino Spectra. PHYSICS LETTERS B, 118(1-3):162–166, 1982. [15] K. Schreckenbach et al. Determination of the Anti-neutrino Spectrum from 235U Thermal Neutron Fission Products up to 9.5MeV . PHYSICS LETTERS B, 160(4-5):325330, 1985. [16] A. A. Hahn et al. Anti-neutrino Spectra from 241Pu and 239Pu Thermal Neutron Fission Products. PHYSICS LETTERS B, 218(3):365368, 1989. [17] P. Vogel et al. Reactor Anti-neutrino Spectra and their Applications with Anti-neutrino-induced Reactions. PHYSICS REVIEW C, 24(4):1543, 1981. [18] Patrick Huber. Determination of Anti-neutrino Spectra from Nuclear Reactors. PHYSICAL REVIEW C, 84:024617, 2011. [19] Th. A. Mueller et al. Improved Predictions of Reactor Anti-neutrino Spectra. PHYSICAL REVIEW C, 83:054615, 2011. [20] D. Adey et al. Extraction of the 235U and 239Pu Antineutrino Spectra at Daya Bay. PHYSICAL REVIEW LETTERS, 123(11):111801, 2019. [21] A. Gando et al.Reactor On-off Anti-neutrino Measurement with KamLAND. PHYSICAL REVIEW D, 88(3):033001, 2013. [22] M. Apollonio et al. Search for Neutrino Oscillations on a Long Base-line at the CHOOZ Nuclear Power Station. The European Physical Journal C, 27:331–374, 2003. [23] F. Boehm et al. Final Results from the Palo Verde Neutrino Oscillation Experiment. PHYSICAL REVIEW D, 64:112001, 2001. [24] X. Guo et al. A Precision Measurement of the Neutrino Mixing Angle θ13 Using Reactor Antineutrinos At Daya Bay. hep-ex/0701029,2007. [25] F. Ardellier et al. Double Chooz, A Search for the Neutrino Mixing Angle θ13. hepex/0606025, 2006. [26] J. K. Ahn et al. RENO: An Experiment for Neutrino Oscillation Parameter θ13 Using Reactor Neutrinos at Yongwang. arXiv:1003.1391, 2010. [27] F. P. An et al. Observation of Electron-anti-neutrino Disappearance at Daya Bay. PHYSICAL REVIEW LETTERS, 108:171803, 2012. [28] Y. Abe et al. Indication of Reactor ν¯ e Disappearance in the Double Chooz Experiment. PHYSICAL REVIEW LETTERS, 108:131801, 2012. [29] J. K. Ahn et al. Observation of Reactor Electron Antineutrinos Disappearance in the RENO Experiment. PHYSICAL REVIEW LETTERS, 108:191802, 2012. [30] F.P.An et al. Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay. PHYSICAL REVIEW LETTERS,121(24):241805, 2018. [31] H. de Kerret et al. First Double Chooz θ13 Measurement via Total Neutron Capture Detection. arXiv:1901.09445, 2019. [32] G. Bak et al. Measurement of Reactor Anti-neutrino Oscillation Amplitude and Frequency at RENO. PHYSICAL REVIEW LETTERS, 121:201801, 2018. [33] F. P. An et al. New Measurement of θ13 via Neutron Capture on Hydrogen at Daya Bay. PHYSICAL REVIEW D, 93:072011, 2016. [34] D. G. Michael et al. Observation of Muon Neutrino Disappearance with the MINOS Detectors in the NuMI Neutrino Beam. PHYSICAL REVIEW LETTERS, 97:191801,2006. [35] P. Adamson et al. Measurement of the Neutrino Mass Splitting and Flavor Mixing by MINOS. PHYSICAL REVIEW LETTERS,106:181801, 2011. [36] P. Adamson et al. Improved Measurement of Muon Antineutrino Disappearance in MINOS. PHYSICAL REVIEW LETTERS, 108:191801, 2012. [37] P. Adamson et al. Constraints on Oscillation Parameters from νe Appearance and νμ Disappearance in NOνA. PHYSICAL REVIEW LETTERS, 118:231801, 2017. [38] M. A. Acero et al. New Constraints on Oscillation Parameters from ν Appearance and νμ Disappearance in NOνA experiment. PHYSICAL REVIEW D, 98:232012, 2018. [39] M. A. Acero et al. First Measurement of Neutrino Oscillation Parameters Using Neutrinos and Anti-neutrinos by NOνA. PHYSICAL REVIEW LETTERS, 123:151803,2019. [40] K. Abe et al. Indication of Electron Neutrino Appearance from an Accelerator Produced Off-Axis Muon Neutrino Beam.PHYSICAL REVIEW LETTERS,107:041801, 2011. [41] K. Abe et al. Constraint on Matter-Antimatter Symmetry-Violating Phase in Neutrino Oscillation. NATURE, 580:339–344, 2020. [42] F. P. An et al. Measurement of Electron Anti-neutrino Oscillation Based on 1230 Days of Operation of the Daya Bay Experiment. PHYSICAL REVIEW D, 95(7):072006, 2017. [43] C. Radhakrishna Rao. Information and Accuracy Attainable in the Estimation of Statistical Parameters. Bulletin of the Calcutta Mathematical Society, 37(3):81–91, 1945. [44] Joel Heinrich and Louis Lyons. Systematic Errors. Annual Review of Nuclear and Particle Science, 57:145–169, 2007. [45] F. P. An et al. Improved Measurement of Reactor Anti-nuetrino Flux and Spectrum at Daya Bay. Chinese Physics C, 41(1):013002, 2017. [46] X.B.Ma, W.L.Zhong, L.Z.Wang, Y.X.Chen, and J.Cao. Improved Calculation of the Energy Release in Neutron-induced Fission. PHYSICAL REVIEW C,88:014605, 2013. [47] V. L. Kopeikin. Flux and Spectrum of Reactor Anti-neutrinos. Physics of Atomic Nuclei, 75:143-152, 2012. [48] M. Tanabashi and others(Particle Data Group). Neutrino Masses, Mixing, and Oscillations. PHYSICAL REVIEW D, 98:030001, 2019. [49] Rene Brun and Fons Rademakers. ROOT-An Object Oriented data Analysis Framework. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,389(1),1997. [50] F. P. An et al. TECHNICAL REPORT -Neutrino Physics with JUNO. Journal of Physics G: Nuclear and Particle Physics, 43:030401, 2016. [51] E. H. Bellamy et al. Absolute Calibration and Monitoring of a Spectrometric Channel using a Photomultiplier. NUCLEAR INSTRUMENTS METHODS IN PHYSICS RESEARCH, 339:468–476, 1994. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56851 | - |
dc.description.abstract | 本論文分為兩個部分,一部份在於以不同以往的分析信號在大亞灣實驗中量測微中子震盪混合角θ13,另一部份著重在江門微中子觀測站之三吋光電倍增管的建製與測試。 大亞灣微中子震盪實驗在2012 年發表了第一個統計上信心水準大於5 σ 的微中子震盪混合角θ13 量測結果,確信了θ13 非零值。而大亞灣實驗在2018 的最新發表結果依舊是目前最精準之θ13 量測,此量測是依靠逆β 衰變產物中的中子-釓捕捉信號來完成。異於前述分析,本文中的θ13 量測是利用中子-釓, 中子-氫, 及微量中子-碳捕捉信號,而量測結果sin2 2θ13 = 0.077 ± 0.0070(Stat) ± 0.0047(Syst)以9.1 σ 的信心水準再次佐證了θ13 的非零值假設。此結果與日前大亞灣最精準的量測結果差距為1.02 σ, 因此在統計上兩結果具有一致性。 江門微中子震盪實驗計畫在2021 年底開始採計數據,並預期五至六年的數據量能夠以3 到4 σ 的信心水準決定微中子質量順序。論文第二部分介紹26,000 隻已生產之三吋光電倍增管的工廠量測及合作組抽樣結果,其中因後脈衝而導致的抽樣不合格率達到了1%(3% 抽樣率),而其餘較基本參數所導致的抽樣不合格率約為0.1%(10% 抽樣率)。為了與最終光電倍增管與數據採集電子學系統的整合測試相互對比,我們仍在研究之獨立測試平台目前能成功的測量增益對高壓曲線,量測單光電子解析度,以及單光電子的時間傳遞飄移。對比光電倍增管工廠所給出的出廠參數,測試平台給出的結果並無相互牴觸。 | zh_TW |
dc.description.abstract | There’re two parts in this thesis, one is using a channel different from the past to analyize neutrino oscillation mixing angle θ13 in DayaBay experiment, the other focus on characterizations of 3 inches photomultiplier tubes in Jiangmen Underground Neutrino Observatory(JUNO) experiment. In 2012, DayaBay collaboration published the first 5 σ measurement of neutrino oscillation mixing angle θ13, which established the truth of non-zero value of θ13. The updated results in 2018 is still the most precise measurement so far, this measurement was done by using inverse β decay followed by neutron-Gadolinium capture signal. Distinct with previous analysis, we’re doing the measurement of θ13 by using the same decay but followed by neutron-Gadolinium, neutron-Hydrogen, and trace neutron-Carbon capture signal, the result sin2 2θ13 = 0.077±0.0070(Stat)±0.0047(Syst) again shows non-zero value of θ13 in 9.1 σ of confidence level. The 1.02 σ difference between our result and current precisest result are consistent with each other in statistics. JUNO experiment plans to start taking data in late 2021, and expects to determine the mass hierarchy in 3 or 4 σ of confidence level with five or six years amount of data. The second part of thesis introduces the vendor qualities and acceptance sampling test of 26,000 3 inches photomultiplier tubes which already been produced. Among the sampling, there’re 1% failure rate due to large after pulses (in 3% sampling rate), and 0.1% failure rate for the other basic quantities (in 10% sampling rate). To cross check the final integration test of tubes and data acquisition electronics combined together, the independent test bench, developed in National Taiwan University, now can successfully measure the gain curve, single photo-electron resolution, and single photo-electron transit time spread. These results are quite promising in compare with the data sheets provided by company. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:30:20Z (GMT). No. of bitstreams: 1 U0001-2307202016213600.pdf: 19556251 bytes, checksum: b405c8676354dd1b47d9f70d4086dba5 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝iii 摘要v Abstract vii 1 Introduction 1 1.1 Brief history of neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Idea and discovery of neutrinos . . . . . . . . . . . . . . . . . . 1 1.1.2 Confirmation of neutrino oscillation . . . . . . . . . . . . . . . . 5 1.2 Neutrino oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Physics behind neutrino oscillation . . . . . . . . . . . . . . . . 7 1.2.2 Neutrino survival probability . . . . . . . . . . . . . . . . . . . . 8 1.3 Oscillation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.1 Solar neutrino experiments . . . . . . . . . . . . . . . . . . . . . 10 1.3.2 Atmosphere neutrino experiments . . . . . . . . . . . . . . . . . 11 1.3.3 Reactor neutrino experiments . . . . . . . . . . . . . . . . . . . 12 1.3.4 Accelerator neutrino experiments . . . . . . . . . . . . . . . . . 16 2 DayaBay experiment 21 2.1 DayaBay experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.2 Experiment layout . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.3 Strategy of θ13 measurement . . . . . . . . . . . . . . . . . . . . 23 2.2 Anti-Neutrino detector system . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1 Anti-neutrino detector . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.2 Muon veto system . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.3 Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3 Calibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.1 Timing calibration . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.2 Energy calibration . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.3 Energy resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3.4 Absolute anti-neutrino energy . . . . . . . . . . . . . . . . . . . 42 3 Unified analysis in DayaBay 47 3.1 Inverse β decay(IBD) event . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1 IBD events in unified analysis . . . . . . . . . . . . . . . . . . . 47 3.1.2 Construction of detection efficiency . . . . . . . . . . . . . . . . 54 3.1.3 Muon veto efficiency ϵμ . . . . . . . . . . . . . . . . . . . . . . 56 3.1.4 Multiplicity cut efficiency ϵm . . . . . . . . . . . . . . . . . . . 57 3.1.5 Prompt energy cut efficiency ϵEp . . . . . . . . . . . . . . . . . . 59 3.1.6 Capture time efficiency ϵdT . . . . . . . . . . . . . . . . . . . . . 61 3.1.7 Delayed energy cut efficiency ϵEd . . . . . . . . . . . . . . . . . 65 3.1.8 Distance cut efficiency ϵdr . . . . . . . . . . . . . . . . . . . . . 69 3.2 Backgrounds estimations . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2.1 Accidental pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2.2 Cosmogenic isotopes: 9Li 8He . . . . . . . . . . . . . . . . . . 78 3.2.3 Fast Neutron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.2.4 241Am13C neutron background . . . . . . . . . . . . . . . . . . . 94 4 Statistical estimation of oscillation mixing angle θ13 101 4.1 Construction and validation of θ13 estimator . . . . . . . . . . . . . . . . 101 4.1.1 χ2 fitter construction . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.2 Predicted νe rate calculation . . . . . . . . . . . . . . . . . . . . 103 4.1.3 Fitter validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.2 Final results of θ13 estimation in unified analysis . . . . . . . . . . . . . 118 4.2.1 Summary of signal candidates, background, and efficiencies . . . 118 4.2.2 Summary of systematics . . . . . . . . . . . . . . . . . . . . . . 119 4.2.3 Results of θ13, Anorm(reactor neutrino anomaly) . . . . . . . . . . 121 4.3 Appendix: List of fitted parameters . . . . . . . . . . . . . . . . . . . . 126 4.3.1 θ13 fitter validation by using the numbers of nGd analysis in PRD paper[42] . . . . . . 126 4.3.2 θ13 fitting in unified analysis . . . . . . . . . . . . . . . . . . . . 129 5 Characterization of 3 inches photomultiplier tubes(sPMT) in Jiangmen Underground Neutrino Observatory(JUNO) 133 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.1.1 Motivation of JUNO experiment . . . . . . . . . . . . . . . . . . 133 5.1.2 Experiment site . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.1.3 JUNO detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.2 3 inches photomultiplier tubes(sPMT) in JUNO . . . . . . . . . . . . . . 140 5.2.1 sPMT production and bare tubes acceptance test . . . . . . . . . 140 5.2.2 Build up of sPMT fine test bench . . . . . . . . . . . . . . . . . 147 5.3 JUNO status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6 Conclusions and prospects 161 Bibliography167 | |
dc.language.iso | en | |
dc.title | 以大亞灣實驗之中子捕捉信號量測微中子震盪混合角θ13 江門微中子實驗中心探測器之三吋光電倍增管的特性測試 | zh_TW |
dc.title | Measurement of neutrino oscillation mixing angle θ13 via unified neutron capture in DayaBay experiment Characterization of 3 inches photomultiplier tubes in JUNO central detector | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張寶棣(Pao-Ti Chang),林貴林(Guey-Lin Lin),王正祥(Cheng-Hsiang Wang) | |
dc.subject.keyword | 大亞灣實驗,江門地下微中子觀測站,微中子,微中子震盪,震盪混合角θ13,微中子質量順序,光電倍增管, | zh_TW |
dc.subject.keyword | DayaBay experiment,JUNO experiment,neutrino,neutrino oscillation,oscillation mixing angle θ13,neutrino mass hierarchy,photomultiplier tube, | en |
dc.relation.page | 171 | |
dc.identifier.doi | 10.6342/NTU202001790 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2307202016213600.pdf 目前未授權公開取用 | 19.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。