請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56847
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林克忠(Keh-Chung Lin) | |
dc.contributor.author | Yu-Fen Huang | en |
dc.contributor.author | 黃玉芬 | zh_TW |
dc.date.accessioned | 2021-06-16T05:52:18Z | - |
dc.date.available | 2015-10-09 | |
dc.date.copyright | 2014-10-09 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-08 | |
dc.identifier.citation | Andriacchi, T. P., Ogle, J. A., & Galante, J. O. (1977). Walking speed as a basis for normal and abnormal gait measurements. Journal of Biomechanics, 10(4), 261-268. doi: 10.1016/0021-9290(77)90049-5
Balaban, B., & Tok, F. (2014). Gait Disturbances in Patients With Stroke. Pm r. doi: 10.1016/j.pmrj.2013.12.017 Balter, J. E., & Zehr, E. P. (2007). Neural coupling between the arms and legs during rhythmic locomotor-like cycling movement. Journal of Neurophysiology, 97(2), 1809-1818. doi: 10.1152/jn.01038.2006 Bonita, R., & Beaglehole, R. (1988). Recovery of motor function after stroke. Stroke, 19(12), 1497-1500. doi: 10.1161/01.STR.19.12.1497 Bovonsunthonchai, S., Hiengkaew, V., Vachalathiti, R., Vongsirinavarat, M., & Tretriluxana, J. (2012). Effect of speed on the upper and contralateral lower limb coordination during gait in individuals with stroke. Kaohsiung Journal of Medical Sciences, 28(12), 667-672. doi: 10.1016/j.kjms.2012.04.036 Broeks, J. G., Lankhorst, G. J., Rumping, K., & Prevo, A. J. H. (1999). The long-term outcome of arm function after stroke: results of a follow-up study. Disability and Rehabilitation, 21(8), 357-364. doi: doi:10.1080/096382899297459 Chang, J. J., Tung, W. L., Wu, W. L., Huang, M. H., & Su, F. C. (2007). Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Archives of Physical Medicine and Rehabilitation, 88(10), 1332-1338. doi: 10.1016/j.apmr.2007.07.016 Chen, G., Patten, C., Kothari, D. H., & Zajac, F. E. (2005). Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait and Posture, 22(1), 51-56. doi: 10.1016/j.gaitpost.2004.06.009 Chuang, L. L., Wu, C. Y., Lin, K. C., & Hsieh, C. J. (2014). Relative and absolute reliability of a vertical numerical pain rating scale supplemented with a faces pain scale after stroke. Physical Therapy, 94(1), 129-138. doi: 10.2522/ptj.20120422 Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences: L. Erlbaum Associates. de Kroon, J. R., van der Lee, J. H., MJ, I. J., & Lankhorst, G. J. (2002). Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clinical Rehabilitation, 16(4), 350-360. doi: 10.1191/0269215502cr504oa Flansbjer, U. B., Holmback, A. M., Downham, D., Patten, C., & Lexell, J. (2005). Reliability of gait performance tests in men and women with hemiparesis after stroke. Journal of Rehabilitation Medicine, 37(2), 75-82. doi: 10.1080/16501970410017215 Fugl-Meyer, A. R., Jaasko, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scandinavian Journal of Rehabilitation Medicine, 7(1), 13-31. Gladstone, D. J., Danells, C. J., & Black, S. E. (2002). The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabilitation and Neural Repair, 16(3), 232-240. doi: 10.1177/154596802401105171 Hesse, S., Werner, C., Pohl, M., Rueckriem, S., Mehrholz, J., & Lingnau, M. L. (2005). Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke, 36(9), 1960-1966. doi: 10.1161/01.STR.0000177865.37334.ce Hsieh, Y. W., Wu, C. Y., Liao, W. W., Lin, K. C., Wu, K. Y., & Lee, C. Y. (2011). Effects of treatment intensity in upper limb robot-assisted therapy for chronic stroke: a pilot randomized controlled trial. Neurorehabilitation and Neural Repair, 25(6), 503-511. doi: 10.1177/1545968310394871 Hsieh, Y. W., Wu, C. Y., Lin, K. C., Chang, Y. F., Chen, C. L., & Liu, J. S. (2009). Responsiveness and validity of three outcome measures of motor function after stroke rehabilitation. Stroke, 40(4), 1386-1391. doi: 10.1161/strokeaha.108.530584 Hu, X. L., Tong, K. Y., Li, R., Chen, M., Xue, J. J., Ho, S. K., & Chen, P. N. (2010). Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke. Conference Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, 5819-5822. doi: 10.1109/iembs.2010.5627471 Hu, X. L., Tong, K. Y., Li, R., Xue, J. J., Ho, S. K., & Chen, P. (2012). The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation. Journal of Electromyography and Kinesiology, 22(3), 431-439. doi: 10.1016/j.jelekin.2011.12.010 Hubbard, I. J., Parsons, M. W., Neilson, C., & Carey, L. M. (2009). Task-specific training: evidence for and translation to clinical practice. Occupational Therapy International, 16(3-4), 175-189. doi: 10.1002/oti.275 Hughes, A. M., Freeman, C. T., Burridge, J. H., Chappell, P. H., Lewin, P. L., & Rogers, E. (2009). Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. Neurorehabilitation and Neural Repair, 23(6), 559-568. doi: 10.1177/1545968308328718 Ikuno, K., Kawaguchi, S., Kitabeppu, S., Kitaura, M., Tokuhisa, K., Morimoto, S., . . . Shomoto, K. (2012). Effects of peripheral sensory nerve stimulation plus task-oriented training on upper extremity function in patients with subacute stroke: a pilot randomized crossover trial. Clinical Rehabilitation, 26(11), 999-1009. doi: 10.1177/0269215512441476 Kim, E. J., & Buschmann, M. T. (2006). Reliability and validity of the Faces Pain Scale with older adults. International Journal of Nursing Studies, 43(4), 447-456. doi: 10.1016/j.ijnurstu.2006.01.001 Kimberley, T. J., Lewis, S. M., Auerbach, E. J., Dorsey, L. L., Lojovich, J. M., & Carey, J. R. (2004). Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Experimental Brain Research, 154(4), 450-460. doi: 10.1007/s00221-003-1695-y Kutner, N. G., Zhang, R., Butler, A. J., Wolf, S. L., & Alberts, J. L. (2010). Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial. Physical Therapy, 90(4), 493-504. doi: 10.2522/ptj.20090160 Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabilitation and Neural Repair, 22(2), 111-121. doi: 10.1177/1545968307305457 Levin, M. F., Michaelsen, S. M., Cirstea, C. M., & Roby-Brami, A. (2002). Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis. Experimental Brain Research, 143(2), 171-180. doi: 10.1007/s00221-001-0976-6 Liao, W. W., Wu, C. Y., Hsieh, Y. W., Lin, K. C., & Chang, W. Y. (2012). Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clinical Rehabilitation, 26(2), 111-120. doi: 10.1177/0269215511416383 Lin, K. C., Huang, P. C., Chen, Y. T., Wu, C. Y., & Huang, W. L. (2014). Combining afferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke. Neurorehabilitation and Neural Repair, 28(2), 153-162. doi: 10.1177/1545968313508468 Lin, K. C., Wu, C. Y., Wei, T. H., Lee, C. Y., & Liu, J. S. (2007). Effects of modified constraint-induced movement therapy on reach-to-grasp movements and functional performance after chronic stroke: a randomized controlled study. Clinical Rehabilitation, 21(12), 1075-1086. doi: 10.1177/0269215507079843 Meadmore, K., Hughes, A. M., Freeman, C. T., Cai, Z., Tong, D., H., B. J., & Rogers, E. (2012). Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke. Journal of Neuroengineering and Rehabilitation, 9. doi: 10.1186/1743-0003-9-32 Ministry of Health and Welfare. (2013). Causes of death in Taiwan, 2012. Retrieved from http://www.mohw.gov.tw/EN/Ministry/Statistic.aspx?f_list_no=474&fod_list_no=3523 Nakamura, R., Handa, T., Watanabe, S., & Morohashi, I. (1988). Walking cycle after stroke. Tohoku Journal of Experimental Medicine, 154(3), 241-244. doi: 10.1620/tjem.154.241 Page, S. J., Harnish, S. M., Lamy, M., Eliassen, J. C., & Szaflarski, J. P. (2010). Affected arm use and cortical change in stroke patients exhibiting minimal hand movement. Neurorehabilitation and Neural Repair, 24(2), 195-203. doi: 10.1177/1545968309360501 Peurala, S. H., Pitkanen, K., Sivenius, J., & Tarkka, I. M. (2002). Cutaneous electrical stimulation may enhance sensorimotor recovery in chronic stroke. Clinical Rehabilitation, 16(7), 709-716. doi: 10.1191/0269215502cr543oa Platz, T., Pinkowski, C., van Wijck, F., Kim, I. H., di Bella, P., & Johnson, G. (2005). Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study. Clinical Rehabilitation, 19(4), 404-411. doi: 10.1191/0269215505cr832oa Rensink, M., Schuurmans, M., Lindeman, E., & Hafsteinsdottir, T. (2009). Task-oriented training in rehabilitation after stroke: systematic review. Journal of Advanced Nursing, 65(4), 737-754. doi: 10.1111/j.1365-2648.2008.04925.x Richards, L. G., Stewart, K. C., Woodbury, M. L., Senesac, C., & Cauraugh, J. H. (2008). Movement-dependent stroke recovery: a systematic review and meta-analysis of TMS and fMRI evidence. Neuropsychologia, 46(1), 3-11. doi: 10.1016/j.neuropsychologia.2007.08.013 Ring, H., & Rosenthal, N. (2005). Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. Journal of Rehabilitation Medicine, 37(1), 32-36. doi: 10.1080/16501970410035387 Roby-Brami, A., Feydy, A., Combeaud, M., Biryukova, E. V., Bussel, B., & Levin, M. F. (2003). Motor compensation and recovery for reaching in stroke patients. Acta Neurologica Scandinavica, 107(5), 369-381. doi: 10.1034/j.1600-0404.2003.00021.x Rong, W., Tong, K. Y., Hu, X. L., & Ho, S. K. (2013). Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Disability and rehabilitation: Assistive technology. doi: 10.3109/17483107.2013.873491 Sabes, P. N. (2000). The planning and control of reaching movements. Current Opinion in Neurobiology, 10(6), 740-746. doi: 10.1016/S0959-4388(00)00149-5 Sommerfeld, D. K., Eek, E. U., Svensson, A. K., Holmqvist, L. W., & von Arbin, M. H. (2004). Spasticity after stroke: its occurrence and association with motor impairments and activity limitations. Stroke, 35(1), 134-139. doi: 10.1161/01.str.0000105386.05173.5e Tyson, S., & Connell, L. (2009). The psychometric properties and clinical utility of measures of walking and mobility in neurological conditions: a systematic review. Clinical Rehabilitation, 23(11), 1018-1033. doi: 10.1177/0269215509339004 Wagner, J. M., Rhodes, J. A., & Patten, C. (2008). Reproducibility and minimal detectable change of three-dimensional kinematic analysis of reaching tasks in people with hemiparesis after stroke. Physical Therapy, 88(5), 652-663. doi: 10.2522/ptj.20070255 Wall, J. C., & Turnbull, G. I. (1986). Gait asymmetries in residual hemiplegia. Archives of Physical Medicine and Rehabilitation, 67(8), 550-553. Williamson, A., & Hoggart, B. (2005). Pain: a review of three commonly used pain rating scales. Journal of Clinical Nursing, 14(7), 798-804. doi: 10.1111/j.1365-2702.2005.01121.x Wu, C. Y., Chen, C. L., Tang, S. F., Lin, K. C., & Huang, Y. Y. (2007). Kinematic and clinical analyses of upper-extremity movements after constraint-induced movement therapy in patients with stroke: a randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 88(8), 964-970. doi: 10.1016/j.apmr.2007.05.012 Wu, C. Y., Liiang, R. J., Chen, H. C., Chen, C. L., & Lin, K. C. (2014). Arm and Trunk Movement Kinematics During Seated Reaching Within and Beyond Arm's Length in Patients With Stroke: A Validity Study. Physical Therapy. doi: 10.2522/ptj.20130101 Wu, C. Y., Yang, C. L., Chuang, L. L., Lin, K. C., Chen, H. C., Chen, M. D., & Huang, W. C. (2012). Effect of therapist-based versus robot-assisted bilateral arm training on motor control, functional performance, and quality of life after chronic stroke: a clinical trial. Physical Therapy, 92(8), 1006-1016. doi: 10.2522/ptj.20110282 Young, J. A., & Tolentino, M. (2011). Neuroplasticity and its applications for rehabilitation. American Journal of Therapeutics, 18(1), 70-80. doi: 10.1097/MJT.0b013e3181e0f1a4 Zehr, E. P., & Loadman, P. M. (2012). Persistence of locomotor-related interlimb reflex networks during walking after stroke. Clinical Neurophysiology, 123(4), 796-807. doi: 10.1016/j.clinph.2011.07.049 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56847 | - |
dc.description.abstract | 目的:比較機器輔助治療合併功能性電刺激、機器輔助治療合併安慰性電刺激及劑量配對之控制介入對慢性中風病人上肢動作功能與移行能力之療效。
方法:本研究為隨機控制試驗,29名受試者接受每天90-100分鐘、每週5天、共20次之治療。療效評量包含-梅爾評估量表上肢次量表(Upper Extremities of Fugl-Meyer Assessment, FMA-UE)、運動學分析及十公尺行走測驗(10-Meter Walking Test, 10MWT)。 結果:與其他兩組相比,機器輔助治療合併功能性電刺激可減少及物動作中肩關節(partial η2=.080)及軀幹(partial η2=.074)之代償動作,並改善行走時患側上肢與健側下肢的協調(partial η2=.077)。機器輔助治療合併安慰性電刺激亦可減少及物時軀幹(partial η2=.087)之代償動作,並減少健側上肢與患側下肢於行走時擺動的時間差(partial η2=.182)。機器輔助治療合併功能性電刺激或安慰性電刺激皆可改善及物時肩關節與肘關節之協調性(partial η2=.147)、行走速度(partial η2=.086)及步距(partial η2=.188)。控制介入組較其他兩組可改善上肢動作功能(P<.05)、較可使用前饋機制(partial η2=.105)及伸直肘關節(partial η2=.100)執行及物動作。控制介入亦可改善行走時健側上肢與對側下肢擺動之時間差(partial η2=.076)。 結論:機器輔助治療合併功能性電刺激或安慰性電刺激可提升及物時肩肘關節之協調並減少代償動作,亦可改善中風病人之移行能力。控制介入可改善動作功能損傷,但無法減少肩關節或軀幹之代償動作。 | zh_TW |
dc.description.abstract | Objectives: To compare the effects of robot-assisted therapy combined with functional electrical stimulation (RTES), robot-assisted therapy combined with placebo stimulation (RTPS) and control intervention (CI) on upper-limb motor functions and mobility in patients with chronic stroke.
Methods: This research was a randomized controlled trial. 29 participants received one of the three treatment program for 90-100 minutes per day, 5 days per week, for four weeks. Fugl-Meyer Assessment of Upper Extremity (FMA-UE), movement kinematics and 10-meter Walk Test (10MWT) were outcome measures. FMA-UE and goal-directed reaching kinematics were used for upper-limb motor function assessment. 10MWT and waking kinematics were used to assess mobility. Adverse effects were measured with Visual Analogue Scale (VAS) in pain and fatigue rating. Results: The RTES group showed less compensatory movement of shoulder (partial η2=.080), less trunk compensation in the middle part of reaching (partial η2=.074) and the better arm-leg coordination of the affected shoulder and the contralateral hip (partial η2=.077) than the two other groups. The RTPS group showed partially similar outcomes to the RTES. The RTPS could reduce the trunk compensation during the end part of reaching (partial η2=.087) and reduce the time lag between the unaffected shoulder and the affected hip swing (partial η2=.182). Both RTES and RTPS could enhance the coordination of the joint angle of shoulder flexion and the elbow extension in reaching (partial η2=.147), walking speed (partial η2=.086) and stride length (partial η2=.188). The CI could significantly improve the scores of FMA-UE (P<.05) and had large effect on the proximal part of FMA-UE (partial η2=.183). The CI group also showed preplanned motor strategy (partial η2=.105), improvement in elbow extension (partial η2=.100) during reaching, and less time lag between the affected shoulder and the unaffected hip (partial η2=.076). Conclusions: Compared with the CI group, the RTES and the RTPS group performed less compensatory movement during reaching, better coordination of the shoulder and the elbow joint and better walking performance. CI could reduce motor impairment but could not prevent compensatory movement during reaching task. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:52:18Z (GMT). No. of bitstreams: 1 ntu-103-R01429012-1.pdf: 2423347 bytes, checksum: ad0d08dcd304d0e242df99fdd4b50980 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv List of Figures ix List of Tables x Chapter 1 Introduction 1 1.1 Background 1 1.2 Study Purpose and Hypotheses 5 Chapter 2 Methods 6 2.1 Study Design 6 2.2 Participants 6 2.3 Apparatus 7 2.3.1 Bi-Manu-Track 8 2.3.2 OG Low Frequency Therapy Equipment 8 2.4 Interventions 9 2.4.1 Robot-Assisted Therapy Combined with Functional Electrical Stimulation (RTES) 9 2.4.2 Robot-Assisted Therapy Combined with Placebo Stimulation (RTPS) 10 2.4.3 Control Intervention (CI) 11 2.5 Outcome Measures 11 2.5.1 Fugl-Meyer Assessment of Upper Extremity (FMA-UE) 11 2.5.2 Kinematic Analysis for Reaching Task and Walking Task 12 2.5.3 10-meter Walk Test (10MWT) 16 2.6 Measures of Adverse Effects 16 2.7 Data Analysis 17 Chapter 3 Results 18 3.1 Participants 18 3.2 Effects of Treatments in Upper-limb Motor Function 18 3.2.1 Fugl-Meyer Assessment of Upper Extremity (FMA-UE) 18 3.2.2 Kinematic Analysis for Reaching Task 19 3.3 Effects of Treatments in Mobility 20 3.3.1 10-meter Walk Test (10MWT) 20 3.3.2 Kinematic Analysis for Walking Task 20 3.4 Adverse Effects 21 Chapter 4 Discussion 22 4.1 Benefits of RTES over Other Interventions 23 4.1.1 Upper-limb Motor Functions 23 4.1.2 Mobility 24 4.2 Benefits of RTPS over Other Interventions 25 4.2.1 Upper-limb Motor Functions 25 4.2.2 Mobility 25 4.3 Benefits of RTES and RTPS over CI 25 4.3.1 Upper-limb Motor Functions 25 4.3.2 Mobility 26 4.4 Benefits of CI over Other Interventions 26 4.4.1 Upper-limb Motor Functions 26 4.4.2 Mobility 28 4.5 Implications of This Study 28 4.6 Study Limitations and Recommendations for Further Studies 29 Chapter 5 Conclusions 30 References 31 | |
dc.language.iso | en | |
dc.title | 機器輔助療法合併功能性電刺激於慢性中風病人動作控制及移行能力之療效 | zh_TW |
dc.title | Effects of Robot-assisted Therapy Combined with Functional Electrical Stimulation on Motor Control and Mobility in Patients with Chronic Stroke | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳菁宜(Ching-Yi Wu),張雅如(Ya-Ju Chang) | |
dc.subject.keyword | 機器輔助治療,功能性電刺激,上肢復健,移行能力,中風, | zh_TW |
dc.subject.keyword | robot-assisted therapy,functional electrical stimulation,upper-limb rehabilitation,mobility,stroke, | en |
dc.relation.page | 58 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-08 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 職能治療研究所 | zh_TW |
顯示於系所單位: | 職能治療學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。