Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 職能治療學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56846
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林克忠(Keh-Chung Lin)
dc.contributor.authorHsiao-Ju Chengen
dc.contributor.author鄭筱儒zh_TW
dc.date.accessioned2021-06-16T05:52:14Z-
dc.date.available2015-10-09
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-08
dc.identifier.citationArya, K. N., Pandian, S., Verma, R., & Garg, R. K. (2011). Movement therapy induced neural reorganization and motor recovery in stroke: a review. Journal of Bodywork and Movement Therapies, 15(4), 528-537. doi: 10.1016/j.jbmt.2011.01.023
Bakhtiary, A. H., & Fatemy, E. (2008). Does electrical stimulation reduce spasticity after stroke? A randomized controlled study. Clinical Rehabilitation, 22(5), 418-425. doi: 10.1177/0269215507084008
Benaim, C., Froger, J., Cazottes, C., Gueben, D., Porte, M., Desnuelle, C., & Pelissier, J. Y. (2007). Use of the Faces Pain Scale by left and right hemispheric stroke patients. Pain, 128(1), 52-58. doi: 10.1016/j.pain.2006.08.029
Bode, R. K., Heinemann, A. W., Semik, P., & Mallinson, T. (2004). Relative importance of rehabilitation therapy characteristics on functional outcomes for persons with stroke. Stroke, 35(11), 2537-2542. doi: 10.1161/01.STR.0000145200.02380.a3
Bohannon, R. W., & Smith, M. B. (1987). Interrater reliability of a modified Ashworth scale of muscle spasticity. Physical Therapy, 67(2), 206-207.
Bond, M. J., & Clark, M. S. (1998). Clinical applications of the Adelaide activities profile. Clinical Rehabilitation, 12(3), 228-237. doi: 10.1191/026921598676962688
Carey, L. M. (1995). Somatosensory loss after stroke. Critical Reviews™ in Physical and Rehabilitation Medicine, 7(1). 51-91
Carod-Artal, F. J., Coral, L. F., Trizotto, D. S., & Moreira, C. M. (2008). The stroke impact scale 3.0: evaluation of acceptability, reliability, and validity of the Brazilian version. Stroke, 39(9), 2477-2484. doi: 10.1161/strokeaha.107.513671
Carroll, D. (1965). A quantitative test of upper extremity function. Journal of Chronic Diseases, 18(5), 479-491. doi: 10.1016/0021-9681(65)90030-5
Casadio, M., Giannoni, P., Morasso, P., & Sanguineti, V. (2009). A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients. Clinical Rehabilitation, 23(3), 217-228. doi: 10.1177/0269215508096759
Chen, H. F., Lin, K. C., Wu, C. Y., & Chen, C. L. (2012). Rasch validation and predictive validity of the action research arm test in patients receiving stroke rehabilitation. Archives of Physical Medicine and Rehabilitation, 93(6), 1039-1045. doi: 10.1016/j.apmr.2011.11.033
Christensen, D., Johnsen, S. P., Watt, T., Harder, I., Kirkevold, M., & Andersen, G. (2008). Dimensions of post-stroke fatigue: a two-year follow-up study. Cerebrovascular Diseases, 26(2), 134-141. doi: 10.1159/000139660
Chuang, L. L., Wu, C. Y., Lin, K. C., & Hsieh, C. J. (2014). Relative and Absolute Reliability of a Vertical Numerical Pain Rating Scale Supplemented With a Faces Pain Scale After Stroke. Physical Therapy, 94(1), 129-138. doi: 10.2522/ptj.20120422
Clark, M. S., & Bond, M. J. (1995). The Adelaide Activities Profile: A measure of the lifestyle activities of elderly people. Aging Clinical and Experimental Research, 7(4), 174-184. doi: 10.1007/BF03324332
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. (2nd Ed.) New Jersey: Lawrence Erlbaum Associates.
Daly, J. J., Hogan, N., Perepezko, E. M., Krebs, Hermano I., Rogers, J. M., Goyal, K. S., Ruff, R. L. (2005). Response to upper-limb robotics and functional neuromuscular stimulation following stroke. Journal of Rehabilitation Research and Development, 42(6), 723-736. doi: 10.1682/JRRD.2005.02.0048
de Kroon, J. R., van der Lee, J. H., MJ, I. Jzerman, & Lankhorst, G. J. (2002). Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clinical Rehabitationl, 16(4), 350-360. doi: 10.1191/0269215502cr504oa
de Kroon, J. R., IJzerman, M. J., Chae, J., Lankhorst, G. J., & Zilvold, G. (2005). Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke. Journal of Rehabilitation Medicine, 37(2), 65-74. doi: 10.1080/16501970410024190
Doucet, B. M., Lam, A., & Griffin, L. (2012) Neuromuscular electrical stimulation for skeletal muscle funcion. Yale Journal of Biology and Medicine, 85, 201-215.
Doyle, S., Bennett, S., Fasoli, S., & McKenna, K. (2011). Interventions for sensory impairment in the upper limb after stroke. Stroke, 42(2), e18-e18. doi: 10.1161/STROKEAHA.110.604348
Duncan, P. W., Bode, R. K., Min Lai, S., & Perera, S. (2003). Rasch analysis of a new stroke-specific outcome scale: the Stroke Impact Scale. Archives of Physical Medicine and Rehabilitation, 84(7), 950-963. doi: 10.1016/S0003-9993(03)00035-2
Fugl-Meyer, A. R., Jaasko, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scandinavian Journal of Rehabilitation Medicine, 7(1), 13-31.
Govender, P., & Kalra, L. (2007). Benefits of occupational therapy in stroke rehabilitation. Expert Review of Neurothereutics, 7(8), 1013-1019. doi: 10.1586/14737175.7.8.1013
Graham, J. V., Eustace, C., Brock, K., Swain, E., & Irwin-Carruthers, S. (2009). The Bobath concept in contemporary clinical practice. Topics in Stroke Rehabilitation, 16(1), 57-68. doi: 10.1310/tsr1601-57
Gregson, J. M., Leathley, M., Moore, A. P., Sharma, A. K., Smith, T. L., & Watkins, C. L. (1999). Reliability of the Tone Assessment Scale and the modified Ashworth scale as clinical tools for assessing poststroke spasticity. Archieves of Physical Medicine and Rehabilitation, 80(9), 1013-1016. doi: 10.1016/S0003-9993(99)90053-9
Gurcay, E., Bal, A., & Cakci, A. (2009). Health-related quality of life in first-ever stroke patients. Annals of Saudi Medicine, 29(1), 36-40. doi: 10.4103/0256-4947.51814
Hammer, A. M., & Lindmark, B. (2010). Responsiveness and validity of the Motor Activity Log in patients during the subacute phase after stroke. Disability and Rehabilitation, 32(14), 1184-1193. doi: 10.3109/09638280903437253
Hara, Y. (2014) Reply to “ The effects of functional electrical stimulation on upper extremity function and cortical plasticity in chronic stroke patients”. Clinical Neurophysiology, 125, 1709-1714. doi: 10.1016/j.clinph.2013.12.106
Harvey, R. L., Macko, R. .F, Stein, J., Zorowitz, R. D., & Macko, R. (2008). Stroke Recovery and Rehabilitation: Demos Medical Publishing.
Hayward, K., Barker, R., & Brauer, S. (2010). Interventions to promote upper limb recovery in stroke survivors with severe paresis: a systematic review. Disability and Rehabilitation, 32(24), 1973-1986. doi: 10.3109/09638288.2010.481027
Hesse, S, Werner, C, Pohl, M, Rueckriem, S, Mehrholz, J, & Lingnau, ML. (2005). Computerized Arm Training Improves the Motor Control of the Severely Affected Arm After Stroke A Single-Blinded Randomized Trial in Two Centers. Stroke, 36(9), 1960-1966. doi: 10.1161/01.STR.0000177865.37334.ce
Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A., & Werner, C. (2003). Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Archives of Physical Medicine and Rehabilitation, 84(6), 915-920. doi: 10.1016/S0003-9993(02)04954-7
Hsieh, C. L., Hsueh, I. P., Chiang, F. M., & Lin, P. H. (1998). Inter-rater reliability and validity of the action research arm test in stroke patients. Age and Ageing, 27(2), 107-113. doi: 10.1093/ageing/27.2.107
Hsieh, Y. W., Wu, C. Y., Lin, K. C., Yao, G., Wu, K. Y., & Chang, Y. J. (2012). Dose–response relationship of robot-assisted stroke motor rehabilitation: the impact of initial motor status. Stroke, 43(10), 2729-2734. doi: 10.1161/STROKEAHA.112.658807
Hu, X. L., Tong, K. Y., Li, R., Chen, M., Xue, J. J., Ho, S. K., & Chen, P. N. (2010). Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke. Proceedings of the 2010 Annual International Conference of the IEEE, 5819-5812. doi: 10.1109/IEMBS.2010.5627471
Hu, X. L., Tong, K. Y., Li, R., Xue, J. J., Ho, S. K., & Chen, P. (2012). The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation. Journal of Electromyography and Kinesiology, 22(3), 431. doi: 10.1016/j.jelekin.2011.12.010
Hu, X. L., Tong, K Y., Wei, X. J., Rong, W., Susanto, E. A., & Ho, S. K. (2013). The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. Journal of Electromyography and Kinesiology, 23(5), 1065-1074. doi: 10.1016/j.jelekin.2013.07.007
Hughes, A. M., Freeman, C. T., Burridge, J. H., Chappell, P. H., Lewin, P.L., & Rogers, E. (2009). Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. Neurorehabilitation and neural repair, 23(6), 559-568. doi: 10.1177/1545968308328718
Kimberley, T. J., Lewis, S. M., Auerbach, E. J., Dorsey, L. L., Lojovich, J. M., & Carey, J. R. (2004). Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Experimantal Brain Research, 154(4), 450-460. doi: 10.1007/s00221-003-1695-y
Kleim, J. A., Jones, T. A. (2008). Principles of experience-dependent neural plasiticity: implications for rehabilitation after brain damage. Journal of Speech, Language, and Hearing Research, 51, S225-239. doi: 10.1044/1092-4388(2008/018)
Koh, C. L., Hsueh, I. P., Wang, W. C., Sheu, C. F., Yu, T. Y., Wang, C. H., & Hsieh, C. L. (2006). Validation of the action research arm test using item response theory in patients after stroke. Journal of Rehabilitation Medicine, 38(6), 375-380. doi: 10.1080/16501970600803252
Krebs, H. I., & Hogan, N. (2012). Robotic therapy: the tipping point. [Review]. American Journal of Physical Medicine, 91(3), S290-7. doi: 10.1097/PHM.0b013e31826bcd80
Krebs, H. I., Mernoff, S., Fasoli, S. E., Hughes, R., Stein, J., & Hogan, N. (2008). A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. NeuroRehabilitation, 23(1), 81-87.
Kwakkel, G., Kollen, B. J., & Wagenaar, R. C. (2002). Long term effects of intensity of upper and lower limb training after stroke: a randomised trial. Journal of Neurology, Neurosurgery and Psychiatry, 72(4), 473-479. doi: 10.1136/jnnp.72.4.473
Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabilitation and Neural Repair, 22(2), 111-121. doi: 10.1177/1545968307305457
Kwok, T., Lo, R. S., Wong, E., Wai-Kwong, T., Mok, V., & Kai-Sing, W. (2006). Quality of life of stroke survivors: a 1-year follow-up study. Archieves of Physical Medicine and Rehabilitation, 87(9), 1177-82.
Lai, S. M., Studenski, S., Duncan, P. W., & Perera, S. (2002). Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke, 33(7), 1840-1844. doi: 10.1161/01.STR.0000019289.15440.F2
Laible, M., Grieshammer, S., Seidel, G., Rijntjes, M., Weiller, C., & Hamzei, F. (2012). Association of activity changes in the primary sensory cortex with successful motor rehabilitation of the hand following stroke. Neurorehabilitation and Neural Repair, 26(7), 881-888. doi: 10.1177/1545968312437939
Lang, C. E., Edwards, D. F., Birkenmeier, R. L., & Dromerick, A. W. (2008). Estimating minimal clinically important differences of upper-extremity measures early after stroke. Archives of Physical Medicine and Rehabilitation, 89(9), 1693-1700. doi: 10.1016/j.apmr.2008.02.022
Leonard, C. T., Stephens, J. U., & Stroppel, S. L. (2001). Assessing the spastic condition of individuals with upper motoneuron involvement: validity of the myotonometer. Archives of Physical Medicine and Rehabilitation, 82(10), 1416-1420. doi: 10.1053/apmr.2001.26070
Lin, J. H., Hsu, M. J., Sheu, C. F., Wu, T. S., Lin, R. T., Chen, C. H., & Hsieh, C. L. (2009). Psychometric comparisons of 4 measures for assessing upper-extremity function in people with stroke. Physical Therapy, 89(8), 840-850. doi: 10.2522/ptj.20080285
Lincoln, N. B., Jackson, J. M., & Adams, S. A. (1998). Reliability and revision of the Nottingham Sensory Assessment for stroke patients. Physiotherapy, 84(8), 358-365. doi: 10.1016/S0031-9406(05)61454-X
Lyle, R. C. (1981). A performance test for assessment of upper limb function in physical rehabilitation treatment and research. International Journal of Rehabilitation Research, 4(4), 483-492. doi: 10.1097/00004356-198112000-00001
Malhotra, S., Rosewilliam, S., Hermens, H., Roffe, C., Jones, P., & Pandyan, A. D. (2013). A randomized controlled trial of surface neuromuscular electrical stimulation applied early after acute stroke: effects on wrist pain, spasticity and contractures. Clinical Rehabilitation, 27(7), 579-590. doi: 10.1177/0269215512464502
Mayo, N, E. , Wood-Dauphinee, S. , Ahmed, S. , Gordon, C. , Higgins, J. , McEwen, S., & Salbach, N. (1999). Disablement following stroke. Disability and Rehabilitation, 21, 258-268. doi: 10.1080/096382899297684
Meadmore, K. L., Hughes, A. M., Freeman, C. T., Cai, Z., Tong, D., Burridge, J. H., & Rogers, E. (2012). Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke. Journal of NeuroEngineering and Rehabilitation, 9(1), 1-11. doi: 10.1186/1743-0003-9-32
Medical Councial Research. (1976). Aids to the examination of the peripheral nervous system. Memorandum no.45 London: Her Majesty’s Stationery Office, London, United Kingdom.
Mehrholz, J., Platz, T., Kugler, J., & Pohl, M. (2009). Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Stroke, 40(5), e392-e393. doi: 10.1161/STROKEAHA.108.536219
Ministry of Health and Welfare. (2013). Causes of death in Taiwan, 2012. Retrieved from http://www.mohw.gov.tw/EN/Ministry/Statistic.aspx?f_list_no=474&fod_list_no=3523.
Motta-Oishi, A. A., Magalhaes, F. H., & Micolis de Azevedo, F. (2013). Neuromuscular electrical stimulation for stroke rehabilitation: is spinal plasticity a possible mechanism associated with diminished spasticity? Med Hypotheses, 81(5), 784-788. doi: 10.1016/j.mehy.2013.08.013
Norouzi-Gheidari, N., Archambault, P. S., & Fung, J. (2012). Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. Journal of Rehabilitation Research and Development, 49, 479-496. doi: 10.1682/JRRD.2010.10.0210
Nudo, R. J. (2003). Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. Journal of Rehabilitation Medicine, 41, 7-10. doi: 10.1080/16501960310010070
Oujamaa, L, Relave, I, Froger, J, Mottet, D, & Pelissier, J-Y. (2009). Rehabilitation of arm function after stroke. Literature review. Annals of Physical and Rehabilitation Medicine, 52(3), 269-293. doi: 10.1016/j.rehab.2008.10.003
Radomski, M. V.& Trombly Latham, C. A. (2014). Occupational therapy for physical dysfunction (7 ed.). Baltimore: Lippincott Wiiliams & Wilkins.
Paternostro-Sluga, T., Grim-Stieger, M., Posch, M., Schuhfried, O., Vacariu, G., Mittermaier, C., Fialka-Moser, V. (2008). Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. Journal of Rehabilitation Medicine, 40(8), 665-671. doi: 10.2340/16501977-0235
Peter, O., Fazekas, G., Zsiga, K., & Denes, Z. (2011). Robot-mediated upper limb physiotherapy: review and recommendations for future clinical trials. International Journal of Rehabilitation Research, 34(3), 196-202. doi: 10.1097/MRR.0b013e328346e8ad
Pomeroy, V. M., King, L., Pollock, A., Baily-Hallam, A., & Langhorne, P. (2006). Electrostimulation for promoting recovery of movement or functional ability after stroke. Cochrane Database of Systematic Review, 2. doi: 10.1002/14651858.CD003241.pub2
Pulman, J., & Buckley, E. (2013). Assessing the efficacy of different upper limb hemiparesis interventions on improving health-related quality of life in stroke patients: a systematic review. [Review]. Topics in Stroke Rehabilitation, 20(2), 171-88. doi: 10.1310/tsr2002-171
Rong, W., Tong, K. Y., Hu, X. L., & Ho, S. K. (2013). Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Disability and Rehabilittion: Assistive Technology. doi: 10.3109/17483107.2013.873491
Rosewilliam, S., Malhotra, S., Roffe, C., Jones, P., & Pandyan, A. D. (2012). Can surface neuromuscular electrical stimulation of the wrist and hand combined with routine therapy facilitate recovery of arm function in patients with stroke? Archives of Physical Medicine and Rehabilitation, 93(10), 1715-1721. doi: 10.1016/j.apmr.2012.05.017
Sahin, N., Ugurlu, H., & Albayrak, I. (2012). The efficacy of electrical stimulation in reducing the post-stroke spasticity: a randomized controlled study. Disability and Rehabilitation, 34(2), 151-156. doi: 10.3109/09638288.2011.593679
Scalha, T. B., Miyasaki, E., Lima, N. M. F. V., & Borges, G. (2011). Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke. Arquivos de Neuro-Psiquiatria, 69(4), 624-629.
Schwartz, A. L., Meek, P. M., Nail, L. M., Fargo, J., Lundquist, M., Donofrio, M., & Mateo, M. (2002). Measurement of fatigue: determining minimally important clinical differences. Journal of Clinical Epidemiology, 55(3), 239-244.
Sheffler, L. R., & Chae, J. (2007). Neuromuscular electrical stimulation in neurorehabilitation. Muscle and Nerve, 35(5), 562-590.
Sloan, R. L., Sinclair, E., Thompson, J., Taylor, S., & Pentland, B. (1992). Inter-rater reliability of the modified Ashworth Scale for spasticity in hemiplegic patients. International Journal of Rehabilitation Research, 15(2), 158-161. doi: 10.1080/09593980802278959
Smania, N., Montagnana, B., Faccioli, S., Fiaschi, A., & Aglioti, S. M. (2003). Rehabilitation of somatic sensation and related deficit of motor control in patients with pure sensory stroke. Archives of Physical Medicine and Rehabilitation, 84(11), 1692-1702.
Takahashi, C. D., Der-Yeghiaian, L., Le, V., Motiwala, R. R., & Cramer, S. C. (2008). Robot-based hand motor therapy after stroke. Brain, 131(2), 425-437.
Taub, E., Miller, N. E., Novack, T. A., Cook 3rd, E. W., Fleming, W. C., Nepomuceno, C. S., Crago, J. E. (1993). Technique to improve chronic motor deficit after stroke. Archives of Physical Medicine and Rehabilitation, 74(4), 347-354.
Teasell, R. W. (1992). Long-Term Sequelae of Stroke. Canadian Family Physician, 38, 381-382, 385-388.
Torre, K., Hammami, N., Metrot, J., van Dokkum, L., Coroian, F., Mottet, D., & Laffont, I. (2013). Somatosensory-related limitations for bimanual coordination after stroke. Neurorehabilitation and Neural Repair, 27(6), 507-515. doi: 10.1177/1545968313478483
Underwood, J., Clark, P. C., Blanton, S., Aycock, D. M., & Wolf, S. L. (2006). Pain, fatigue, and intensity of practice in people with stroke who are receiving constraint-induced movement therapy. Physical Therapy, 86(9), 1241-1250.
Van der Lee, J. H., Beckerman, H., Knol, D. L., De Vet, H. C. W., & Bouter, L. M. (2004). Clinimetric properties of the motor activity log for the assessment of arm use in hemiparetic patients. Stroke, 35(6), 1410-1414.
van Vliet, P., Pelton, T. A., Hollands, K. L., Carey, L., & Wing, A. M. (2013). Neuroscience findings on coordination of reaching to grasp an object: implications for research. Neurorehabilitation and Neural Repair, 27(7), 622-635. doi: 10.1177/1545968313483578
Waldner, A., Tomelleri, C., & Hesse, S. (2009). Transfer of scientific concepts to clinical practice: recent robot-assisted training studies. Functional Neurology, 24(4), 173-177.
Watkins, M. P., & Portney, L. G. (2009). Foundations of clinical research: applications to practice. London, Unite Kingdom: Pearson/Prentice Hall.
Williamson, A., & Hoggart, B. (2005). Pain: a review of three commonly used pain rating scales. Journal of Clinical Nursing, 14(7), 798-804.
Wu, C. Y., Yang, C. L., Chuang, L. L., Lin, K. C., Chen, H. C., Chen, M. D., & Huang, W. C. (2012). Effect of therapist-based versus robot-assisted bilateral arm training on motor control, functional performance, and quality of life after chronic stroke: a clinical trial. Physical Therapy, 92(8), 1006-1016. doi: 10.2522/ptj.20110282
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56846-
dc.description.abstract目的:探究機器輔助療法合併神經肌肉電刺激、機器輔助療法合併安慰性電刺激及劑量配對的職能治療對於慢性中風患者感覺動作功能、日常生活功能及生活品質之療效。
設計:單盲隨機分派、前後測之安慰劑控制組試驗
環境:五醫學中心
介入:29名慢性中風個案,隨機分派至機器輔助療法合併神經肌肉電刺激組(robot-assisted therapy combined with neuro-muscular electrical stimulation, RTES)、機器輔助療法合併安慰性電刺激組(robot-assisted therapy combined with placebo-controlled stimulation, RTPS)或劑量配對的職能治療組(control treatment, CT),接受每日90至100分鐘、每週五天、持續四週共20次的介入。
成效評量:主要成效評量工具包含手臂動作調查測試表(Action Research Arm Test, ARAT)、動作活動日誌(Motor Activities Log, MAL)及中風影響量表(Stroke Impact Scale, SIS);次要成效評量工具包含修訂版諾丁漢感覺評估量表(revised Nottingham Sensory Assessment, RNSA)、上肢肌力量表(Medical Research Council scale, MRC)、修訂版艾許沃斯量表(Modified Ashworth Scale, MAS)及艾德萊德活動量表(Adelaide Activities Profile, AAP)。針對疼痛及疲勞之不良反應,採用視覺類比量表(Visual Analogue Scale, VAS)。
結果:於MAL中的動作品質(quality of movement, QOM) (F2, 26 = 5.243, P = .013, partial η2 = .295)、SIS中的日常生活活動(activities of daily living, ADL) (F2, 26 = 3.779, P = .037, partial η2 = .232)及MAS中的遠端動作(distal subscore) (F2, 26 = 3.374, P = .050, partial η2 = .213)及手腕屈肌(wrist flexors) (F2, 26 = 4.319, P = .024, partial η2 = .257)分數達統計上顯著及高度效果值,後設分析結果顯示RTES組較RTPS組及CT組有較大的改善效果。ARAT量表中的捏(pinch)次量表(F2, 26 = 2.124, P = .141, partial η2 = .145)及粗大動作(gross motor)次量表(F2, 26 = 2.226, P = .129, partial η2 = .151)、及MAS中的手指屈肌(finger flexors) (F2, 26 = 2.491, P = .103, partial η2 = .166)未達顯著但達高度效果值,同樣顯示RTES組較RTPS組及CT組具較大效果。此外,RTES組在ARAT總分達中度效果值(F2, 26 = 1.261, P = .301, partial η2 = .092)。而RTES組及RTPS組相較於CT組在ARAT抓握(grip)次量表(F2, 26 = 1.038, P = .369, partial η2 = .077)及MAL的使用量(amount of use, AOU)次量表(F2, 26 = 1.526, P = .237, partial η2= .109)達中度效果值。RTPS組相較RTES組及CT組於SIS (F2, 26 = 2.272, P=.124, partial η2 = .154)達高度效果值;於SIS的移行(mobility)次量表(F2, 26 = 1.616, P = .219, partial η2 = .114)、AAP (F2, 26 = 1.433, P = .258, partial η2 = .103)及疲勞程度(F2, 26 = 1.496, P = .243, partial η2 = .107)達中度效果值。然而,於RNSA的觸覺(tactile)次量表中,CT組較RTES組及RTPS組具較好療效,達中度效果值(F2, 22 = 1.383, P = .273, partial η2 = .116);另於MAS的近端分數達高度效果值(F2, 26 = 3.374, P = .050, partial η2 = .213)。
結論:本研究支持合併機器輔助療法及神經肌肉電刺激於慢性中風病人的精細動作功能、日常生活功能及生活品質有正向療效;但於感覺功能方面,劑量配對的職能治療組則呈現較好療效。但本研究中各組樣本數過小,須仔細解釋結果,建議未來研究擴大樣本數進一步探討療效。
zh_TW
dc.description.abstractPurpose. This study aimed to investigate the differential effects of robot-assisted therapy combined with neuro-muscular electrical stimulation (RTES), robot-assisted therapy combined with placebo-controlled stimulation (RTPS), and control treatment (CT) on sensorimotor function, daily function, and quality of life in patients with chronic stroke.
Design. A single-blinded, randomized, placebo-controlled pilot trial, with pretest and posttest measures.
Settings. Rehabilitation units in five medical centers.
Interventions. Twenty-nine participants received one of RTES, RTPS, or CT for 90-100 minutes per day, five days per week, lasting for four weeks.
Outcome measures. Primary outcomes were Action Research Arm Test (ARAT), Motor Activity Log (MAL), and Stroke Impact Scale (SIS). Secondary outcomes were revised Nottingham Sensory Assessment (RNSA), Medical Research Council scale (MRC), modified Ashworth scale (MAS), and Adelaide Activities Profile (AAP). Outcome measures for the adverse effects were Visual Analogue Scale (VAS) on pain and fatigue.
Results. There were statistically significant differences and large effects on quality of movement subscale for the ARAT (F2, 26 = 5.243, P = .013, partial η2 = .295), activities of daily living domain for the SIS (F2, 26 = 3.779, P = .037, partial η2 = .232), the MAS distal subscore (F2, 26 = 3.374, P = .050, partial η2 = .213), and the wrist flexors (F2, 26 = 4.319, P = .024, partial η2 = .257); post hoc analysis showed the RTES group was superior to the RTPS and CT groups. Despite there was no significant difference between three groups, there were large effects on ARAT pinch (F2, 26 = 2.124, P = .141, partial η2 = .145) and gross motor subscale (F2, 26 = 2.226, P = .129, partial η2 = .151), and finger flexors score of the MAS (F2, 26 = 2.491, P = .103, partial η2 = .166); it revealed that the RTES group was superior to the RTPS and CT groups. Additionally, there was moderate effects on ARAT score (F2, 26 = 1.261, P = .301, partial η2 = .092) and represented that the RTES group was superior to the RTPS and CT groups. On the other hand, there were moderate effects on ARAT grip subscale (F2, 26 = 1.038, P = .369, partial η2 = .077) and amount of use subscale for the MAL (F2, 26 = 1.526, P = .237, partial η2= .109), and it suggested that the RTES and RTPS groups were superior to the CT group. There was large effect on the SIS (F2, 26 = 2.272, P=.124, partial η2 = .154) but revealed the RTPS group improved quality of life mostly. Also, there were moderate effects on mobility subscale for the SIS (F2, 26 = 1.616, P = .219, partial η2 = .114), the AAP (F2, 26 = 1.433, P = .258, partial η2 = .103), and the degree of fatigue (F2, 26 = 1.496, P = .243, partial η2 = .107); revealed that the RTPS group had the best improvement. Surprisingly, the CT group had the best effect on tactile subscale for the RNSA (F2, 22 = 1.383, P = .273, partial η2 = .116) and proximal subscore of the MAS (F2, 26 = 3.374, P = .050, partial η2 = .213).
Conclusion. This study supports the positive effects of RT combined with NMES on fine motor function, daily function, and quality of life. For the sensory function, the CT group has the best effect than RTES and RTPS groups. Due to the small sample size in each group, the results should be interpreted carefully and need further studies to investigate.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:52:14Z (GMT). No. of bitstreams: 1
ntu-103-R01429009-1.pdf: 4750311 bytes, checksum: 20f3f24fd3b5818ccb66a6f3c010dbb2 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 I
Acknowledgement II
中文摘要 IV
ABSTRACT VI
Table of Contents VIII
List of Figures X
List of Tables XI
CHAPTER 1. INTRODUCTION 1
1.1 Background 1
1.2 Study Purposes and Hypotheses 5
CHAPTER 2. METHODS 6
2.1 Study Design and Procedures 6
2.2 Participants 7
2.3 Apparatus and Settings 8
2.3.1 Bi-Manu-Track (BMT) 8
2.3.2 Neuro-muscular electrical stimulation (NMES) 8
2.3.3 Settings 9
2.4 Interventions 10
2.4.1 Robot-assisted Therapy with Neuro-muscular Electrical Stimulation (RTES) group 10
2.4.2 Robot-assisted Therapy with Placebo-controlled Stimulation (RTPS) group 11
2.4.3 Control Treatment (CT) group 12
2.5 Outcome Measures 13
2.5.1 Primary Outcomes 14
2.5.2 Secondary Outcomes 15
2.5.3 Outcomes for Adverse Effects 17
2.6 Data Analysis 18
CHAPTER 3. RESULTS 19
3.1 Study Participation and Baseline Characteristics of the Participants 19
3.2 Effects of Interventions on Primary Outcomes 20
3.3 Effects of Interventions on Secondary Outcomes 22
3.4 Adverse Effects 24
CHAPTER 4. DISCUSSION 25
4.1 Summary of the Study Results 25
4.2 Superior Effects of the RTES to RTPS or CT 27
4.3 Effects of RTES and RTPS relative to CT 30
4.4 Tantamount Effects of RTES, RTPS, and CT 32
4.5 Implication of This Study 34
4.6 Study Limitations and Recommendation for Further Studies 35
CHAPTER 5. CONCLUSIONS 36
REFERENCES 37
dc.language.isoen
dc.title機器輔助療法合併神經肌肉電刺激於中風病人感覺動作功能、日常生活功能及生活品質之療效:隨機控制試驗zh_TW
dc.titleCombining Robot-Assisted Therapy With Neuro-muscular Electrical Stimulation on Sensorimotor Function, Daily Function, and Quality of Life in Patients With Stroke: A Randomized Controlled Trialen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳菁宜(Ching-Yi Wu),張雅如(Ya-Ju Chang)
dc.subject.keyword機器輔助療法,電刺激,中風神經復健,感覺動作功能,日常生活功能,生活品質,zh_TW
dc.subject.keywordrobot-assisted therapy,electrical stimulation,stroke neurorehabilitation,sensorimotor function,daily function,quality of life,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2014-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept職能治療研究所zh_TW
顯示於系所單位:職能治療學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
4.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved