Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56832
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮凱
dc.contributor.authorYu-Hsiang Liuen
dc.contributor.author劉宇翔zh_TW
dc.date.accessioned2021-06-16T05:51:20Z-
dc.date.available2014-08-16
dc.date.copyright2014-08-16
dc.date.issued2014
dc.date.submitted2014-08-08
dc.identifier.citation[AFSW13] Jarod Alper, Maksym Fedorchuk, David Ishii Smyth, and Frederick van der Wyck, Log minimal model program for the moduli space of stable curves: The second flip. 2013.
[CMJL13] Sebastian Casalaina-Martin, David Jensen, and Radu Laza, Log canonical models and variation of GIT for genus four canonical curves. 2013.
[DM69] Pierre Deligne and David Mumford, The irreducibility of the space of curves of given genus. 1969.
[EH86] David Eisenbud and Joe Harris, Limit linear series: basic theory. 1986.
[Fab96] Carel Faber, Intersection-theoretical computations on Mg. 1996.
[Fed11] Maksym Fedorchuk, The final log canonical model of the moduli space of stable curves of genus four. 2011.
[FS13] Maksym Fedorchuk and David Ishii Smyth, Stability of genus five canonical curves. 2013.
[GKM02] Angela Gibney, Sean Keel, and Ian Morrison, Towards the ample cone of Mg,n. 2002.
[HH06] Brendan Hassett and Donghoon Hyeon, Log canonical models for the moduli space of curves: the first divisorial contraction. 2006.
[HH08] Brendan Hassett and Donghoon Hyeon, Log minimal models for the moduli space of curves: the first flip. 2008.
[HL07] Donghoon Hyeon and Yongnam Lee, Log minimal model program for the moduli space of stable curves of genus three. 2007.
[HL10] Donghoon Hyeon and Yongnam Lee, Birational contraction of genus two tails in the moduli space of genus four curves I. 2010.
[HM82] Joe Harris and David Mumford, On the Kodaira dimension of the moduli space of curves. 1982.
[KM98] Janos Kollar and Shigefumi Mori, Birational geometry of algebraic varieties. 1998.
[Sch91] David Schubert, A new compactification of the moduli space of curves. 1991.
[Mor98] Atsushi Moriwaki, Relative Bogomolov’s inequality and the cone of positive divisors on the moduli space of stable curves. 1998.
[Far06] Gavril Farkas, The global geometry of the moduli space of curves. 2006.
[Rei89] Zinovy Reichstein, Stability and equivariant maps. 1989.
[Vei95] Eckart Viehweg, Quasi-projective moduli for polarized manifolds. 1995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56832-
dc.description.abstract本文的目標是探討Brendan Hassett、Donghoon Hyeon 和Yongnam
Lee 關於曲線模空間上的極小模型理論的工作。他們使用幾何不變理
論來描述了幾個曲線模空間Mg上的log canonical model,並給予它們
在模空間上的意義。
zh_TW
dc.description.abstractThis paper aims to study B. Hassett, D. Hyeon and Y. Lee’s works on
log canonical models of Mg. They described certain log canonical models
Mg( ) of Mg via studying GIT of canonically embedded curves, and gave
their modular interpretations as compactifications of Mg.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:51:20Z (GMT). No. of bitstreams: 1
ntu-103-R01221008-1.pdf: 858587 bytes, checksum: 1c999e81abbd239027b3e08096294857 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents 1
1. Introduction 2
2. Birational geometry 6
2.1. Preliminaries 6
2.2. Birational geometry of Mg 7
3. Stabilities of curves 9
3.1. Stabilities of curves 9
3.2. GIT interpretation 11
3.3. GIT for Chow varieties and Hilbert schemes 12
3.4. Application to Mg 14
4. First divisorial contraction 16
4.1. Main theorem 17
4.2. Proof of the theorem 20
4.3. Mpsg as log canonical model 26
5. First flip 29
5.1. The small contraction 29
5.2. The flip 31
6. Log canonical models for M3 34
7. Recent development 37
References 40
dc.language.isoen
dc.title曲線模空間上的極小模型理論zh_TW
dc.titleMinimal Model Program for the Moduli Space of Stable Curvesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊成,章源慶
dc.subject.keyword曲線模空間,幾何不變理論,極小模型理論,zh_TW
dc.subject.keywordmoduli space of stable curves,geometry invariant theory,minimal model program.,en
dc.relation.page41
dc.rights.note有償授權
dc.date.accepted2014-08-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
838.46 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved