請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56832
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳榮凱 | |
dc.contributor.author | Yu-Hsiang Liu | en |
dc.contributor.author | 劉宇翔 | zh_TW |
dc.date.accessioned | 2021-06-16T05:51:20Z | - |
dc.date.available | 2014-08-16 | |
dc.date.copyright | 2014-08-16 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-08 | |
dc.identifier.citation | [AFSW13] Jarod Alper, Maksym Fedorchuk, David Ishii Smyth, and Frederick van der Wyck, Log minimal model program for the moduli space of stable curves: The second flip. 2013.
[CMJL13] Sebastian Casalaina-Martin, David Jensen, and Radu Laza, Log canonical models and variation of GIT for genus four canonical curves. 2013. [DM69] Pierre Deligne and David Mumford, The irreducibility of the space of curves of given genus. 1969. [EH86] David Eisenbud and Joe Harris, Limit linear series: basic theory. 1986. [Fab96] Carel Faber, Intersection-theoretical computations on Mg. 1996. [Fed11] Maksym Fedorchuk, The final log canonical model of the moduli space of stable curves of genus four. 2011. [FS13] Maksym Fedorchuk and David Ishii Smyth, Stability of genus five canonical curves. 2013. [GKM02] Angela Gibney, Sean Keel, and Ian Morrison, Towards the ample cone of Mg,n. 2002. [HH06] Brendan Hassett and Donghoon Hyeon, Log canonical models for the moduli space of curves: the first divisorial contraction. 2006. [HH08] Brendan Hassett and Donghoon Hyeon, Log minimal models for the moduli space of curves: the first flip. 2008. [HL07] Donghoon Hyeon and Yongnam Lee, Log minimal model program for the moduli space of stable curves of genus three. 2007. [HL10] Donghoon Hyeon and Yongnam Lee, Birational contraction of genus two tails in the moduli space of genus four curves I. 2010. [HM82] Joe Harris and David Mumford, On the Kodaira dimension of the moduli space of curves. 1982. [KM98] Janos Kollar and Shigefumi Mori, Birational geometry of algebraic varieties. 1998. [Sch91] David Schubert, A new compactification of the moduli space of curves. 1991. [Mor98] Atsushi Moriwaki, Relative Bogomolov’s inequality and the cone of positive divisors on the moduli space of stable curves. 1998. [Far06] Gavril Farkas, The global geometry of the moduli space of curves. 2006. [Rei89] Zinovy Reichstein, Stability and equivariant maps. 1989. [Vei95] Eckart Viehweg, Quasi-projective moduli for polarized manifolds. 1995. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56832 | - |
dc.description.abstract | 本文的目標是探討Brendan Hassett、Donghoon Hyeon 和Yongnam
Lee 關於曲線模空間上的極小模型理論的工作。他們使用幾何不變理 論來描述了幾個曲線模空間Mg上的log canonical model,並給予它們 在模空間上的意義。 | zh_TW |
dc.description.abstract | This paper aims to study B. Hassett, D. Hyeon and Y. Lee’s works on
log canonical models of Mg. They described certain log canonical models Mg( ) of Mg via studying GIT of canonically embedded curves, and gave their modular interpretations as compactifications of Mg. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:51:20Z (GMT). No. of bitstreams: 1 ntu-103-R01221008-1.pdf: 858587 bytes, checksum: 1c999e81abbd239027b3e08096294857 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv Contents 1 1. Introduction 2 2. Birational geometry 6 2.1. Preliminaries 6 2.2. Birational geometry of Mg 7 3. Stabilities of curves 9 3.1. Stabilities of curves 9 3.2. GIT interpretation 11 3.3. GIT for Chow varieties and Hilbert schemes 12 3.4. Application to Mg 14 4. First divisorial contraction 16 4.1. Main theorem 17 4.2. Proof of the theorem 20 4.3. Mpsg as log canonical model 26 5. First flip 29 5.1. The small contraction 29 5.2. The flip 31 6. Log canonical models for M3 34 7. Recent development 37 References 40 | |
dc.language.iso | en | |
dc.title | 曲線模空間上的極小模型理論 | zh_TW |
dc.title | Minimal Model Program for the Moduli Space of Stable Curves | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳俊成,章源慶 | |
dc.subject.keyword | 曲線模空間,幾何不變理論,極小模型理論, | zh_TW |
dc.subject.keyword | moduli space of stable curves,geometry invariant theory,minimal model program., | en |
dc.relation.page | 41 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-08 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 838.46 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。