Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56830
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林立德(Li-Deh Lin)
dc.contributor.authorTong-Mei Wangen
dc.contributor.author王東美zh_TW
dc.date.accessioned2021-06-16T05:51:12Z-
dc.date.available2014-10-15
dc.date.copyright2014-10-15
dc.date.issued2014
dc.date.submitted2014-08-08
dc.identifier.citationAdell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surgery 1981;10:387-416.
Al-Dwairi ZN, El Masoud BM, Al-Afifi SA, Borzabadi-Farahani A, Lynch E.
Awareness, attitude, and expectations toward dental implants among removable prostheses wearers. J Prosthodont 2014;23(3):192-7.
Atieh MA, Alsabeeha NH, Payne AG. Can resonance frequency analysis predict failure risk of immediately loaded implants? Int J Prosthodont 2012; 25:326‐339.
Atsumi M, Park SH, Wang HL. Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants 2007;22:743–754.
Blanco J, Alvarez E, Munoz F, Linares A, Cantalapiedra A. Influence on early osseointegration of dental implants installed with two different drilling protocols: a histomorphometric study in rabbit. Clin Oral Implants Res 2011;22:92–99.
Bornstein MM1, Cionca N, Mombelli A. Systemic conditions and treatments as risks for implant therapy. Int J Oral Maxillofac Implants 2009;24 Suppl:12-27.
Ceramic Industry. Dental Implants and Prosthetics Market Continues Growth. Available at: http://www.ceramicindustry.com/articles/92515-dental-implants-and-prosthetics-market-continues-growth [September 15, 2012].
Chang SWC, Trappey CV, Trappey AJC, Wu SCY. Forecasting dental implant technologies using patent analysis. PICMET '14 Conference, July 27-31, 2014, Kanazawa, Japan.
Choel L, Duboeuf F, Bourgeois D, Briguet A, Lissac M. Trabecular alveolar bone in the human mandible: A dual-energy x-ray absorptiometry study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:364–370.
Da Cunha HA, Francischone CE, Filho HN, De Oliveira RC. A comparison between cutting torque and resonance frequency in the assessment of primary stability and final torque capacity of standard and TiUnite single‐tooth implants under immediate loading. Int J Oral Maxillofac Implants2004;19:578–585.
DeCoster J. Meta-analysis Notes. 2004 Available at: http://www.stat-help.com/notes.html [December 12, 2012]
Degidi M, Daprile G, Piattelli, A. Primary stability determination by means of insertion torque and RFA in a sample of 4,135 implants. Clin Implant Dent Relat Res2012;14:501‐507.
Degidi M, Daprile G, Piattelli A, Iezzi G. Development of a new implant primary stability parameter: Insertion torque revisited. Clin Implant Dent Relat Res2013;15:637‐644.
Devlin H, Horner K, Ledgerton DA. A comparison of maxillary and mandibular bone mineral densities. JProsthet Dent 1998;79:323‐327.
Engquist B, Bergendal T, Kallus T, et al. A retrospective multicenter evaluation of osseointegrated implants supporting overdentures. Int J Oral Maxillofac Implants 1988;3:129–134.
Freitas ACJr, Bonfante EA, Giro G, Janal MN, Coelho PG. The effect of implant design on insertion torque and immediate micromotion. Clin Oral Implants Res 2012;23:113–118.
Friberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively placed Branemark dental implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 1991;6:142–146.
Friberg B, Sennerby L, Roos J, Lekholm U. Identification of bone quality in conjunction with insertion of titanium implants. A pilot study in jaw autopsy specimens. Clin Oral Implants Res 1995; 6:213‐219.
Friberg B, Sennerby L, Grondahl K, Bergstrom C, Back T, Lekholm U. On cutting torque measurements during implant placement: A 3-year clinical prospective study. Clin Implant Dent Relat Res 1999a;1:75–83.
Friberg B, Sennerby L, Meredith N, Lekholm U. A comparison between cutting torque and resonance frequency measurements of maxillary implants. A 20-month clinical study. Int J Oral Maxillofac Surg 1999b;28:297–303.
Greenstein G, Cavallaro J, Greenstein B, Tarnow D. Treatment planning implant dentistry with a 2-mm twist drill. Compend Contin Educ Dent 2010; 31:126-8.
Gruber T. Toward principles for the design of ontologies used for knowledge sharing. Int J Hum Comput Stud 1993;43:907–928.
Ho DSW, Yeung SCH, Zee KY, Curtis B, Hell P, Tumuluri V. Clinical and radiographic evaluation of NobelActiveTM dental implants. Clin Oral Implants Res 2013;24:297–304
Hsu FC, Trappey AJC, Trappey CV, Hou JL, Liu SJ. Technology and knowledge document cluster analysis for enterprise R&D strategic planning. Int J Tech Manag 2006;36:336-353.
Hsu JT, Fuh LJ, Tu MG, Li YF, Chen KT, Huang HL. The effects of cortical bone thickness and trabecular bone strength on noninvasive measures of the implant primary stability using synthetic bone models. Clin Implant Dent Relat Res 2013;15:251‐261.
Jaffin RA, Berman CL. The excessive loss of Branemark fixtures in type IV bone: A 5-year analysis. J Periodontol 1991; 62:2–4.
Johansson P, Strid KG. Assessment of bone quality from cutting resistance during implant surgery. Int J Oral Maxillofac implants 1994;9:279–288.
Khan KS, Kunz R, Kleijnen J, Antes G. Five steps to conducting a systematic review. J R Soc Med 2003;96:118-121.
Lee S, Yoon B, Park Y. An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation 2009;29:481–497.
Lekholm U, Zarb GA. Patient selection and preparation. In Branemark PI, Zarb GA, Albrektsson T (eds). Tissue‐Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago: Quintessence, 1985:199–209.
Levin RP, Judy KWM. Trends in implant dentistry. Available at http://www.dentaleconomics.com/articles/print/volume-100/issue-12/features/trends-in-implant-dentistry.html (retrieved 14.06.14)
Lindh C, Nilsson M, Klinge B, Petersson A. Quantitative computed tomography of trabecular bone in the mandible. Dentomaxillofac Radiol 1996a;25:146–150.
Lindh C, Petersson A, Rohlin M.Assessment of the trabecular pattern before endosseous implant treatment: Diagnostic outcome of periapical radiography in the mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996b;82:335–343.
Lindh C, Petersson A, Klinge B, Nilsson M. Trabecular bone volume and bone mineral density in the mandible. Dentomaxillofac Radiol 1997;26:101–106.
Lindh C, Oliveira GHC, Leles CR, Freire MCM, Ribeiro-Rotta RF. Bone quality assessment in routine dental implant treatment among Brazilian and Swedish specialists. Clin. Oral Impl. Res. 2013. doi: 10.1111/clr.12221
Manresa C, Bosch M, Echeverrıa JJ. The comparison between implant stability quotient and bone‐implant contact revisited: an experiment in Beagle dog. Clin Oral Implants Res 2013; doi: 10.1111/clr.12256 [Epub ahead of print].
Marković A, Calvo‐Guirado JL, Lazić Z, Gomez‐Moreno G, Ćalasan D, Guardia J, Čolic S, Aguilar‐Salvatierra A, Gačić B, Delgado‐Ruiz R, Janjić B, Mišić T. Evaluation of primary stability of self‐tapping and non‐self‐tapping dental implants. A 12‐week clinical study. Clin Implant Dent Relat Res2013; 15:341‐349.
Martin W, Lewis E, Nicol A. Local risk factors for implant therapy. Int J Oral Maxillofac Implants. 2009;24 Suppl:28-38.
Menicucci G, Pachie E, Lorenzetti M, Migliaretti G, Carossa S. Comparison of primary stability of straight‐walled and tapered implants using an insertion torque device. Int J Prosthodont 2012;25:465‐471.
Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11:491–501.
Misch CE. Density of bone: Effect on treatment plans, surgical approach, healing and progressive bone loading. Int J Oral Maxillofac Implants 1990;6:23–31.
Nkenke E, Hahn M,Weinzierl K, Radespiel-Troger M, Neukam FW, Engelke K. Implant stability and histomorphometry: A correlation study in human cadavers using stepped cylinder implants. Clin Oral Implants Res 2003;14:601–609.
Ostman PO, Hellman M, Wendelhag I, Sennerby L. Resonance frequency analysis measurements of implants at placement surgery. Int J Prosthodont 2006;19:77‐83.
O'Sullivan D, Sennerby L, Meredith N. Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. Clin Implant Dent Relat Res 2000;2:85‐92.
O'Sullivan D, Sennerby L, Jagger D, Meredith N. A comparison of two methods of enhancing implant primary stability. Clin Implant Dent Relat Res 2004;6:48‐57.
Rabel A, Kohler SG, Schmidt‐Westhausen AM. Clinical study on the primary stability of two dental implant systems with resonance frequency analysis. Clin Oral Investig 2007;11:257–265.
Park KJ, Kwon JY, Kim SK, Heo SJ, Koak JY, Lee JH, Lee SJ, Kim TH, Kim MJ. The relationship between implant stability quotient values and implant insertion variables: a clinical study. J Oral Rehabil 2012;39:151–159.
Peng HY. Using patent analysis and clinical trial analysis to analyze dental implant technology development advancement. Master thesis 2013.
Ribeiro-Rotta RF, Lindh C, Rohlin, M. Efficacy of clinical methods to assess jawbone tissue prior to and during endosseous dental implant placement: a systematic literature review. Int J Oral Maxillofac Implants 2007;22:289–300.
Ribeiro-Rotta RF, Pereira AC, Oliveira GHC, Freire MCM, Leles CR, Lindh C. An exploratory survey of diagnostic methods for bone quality assessment used by brazilian dental implant specialists. J Oral Rehabil 2010;37: 698–703.
Ribeiro-Rotta RF, Lindh C, Pereira AC, Rohlin M. Ambiguity in bone tissue characteristics as presented in studies on dental implant planning and placement: a systematic review. Clin Oral Implants Res 2011;22:789–801.
Ribeiro-Rotta RF, de Oliveira RCG, Dias DR, Lindh C, Leles CR. Bone tissue microarchitectural characteristics at dental implant sites part 2: correlation with bone classification and primary stability. Clin Oral Implants Res 2014;25:e47-53.
Romanos GE, Basha-Hijazi A, Gupta B, Ren YF, Malmstrom H. Role of clinician’s experience and implant design on implant stability. An ex vivo study in artificial soft bones. Clin Implant Dent Relat Res 2014;16:166-171.
Sennerby L, Meredith N. Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontol 2000 2008;47:51–66.
Tabassum A, Meijer GJ, Wolke JG, Jansen JA. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clin Oral Implants Res 2010;21:213‐220.
Taguchi A,Tanimoto K, Akagawa Y, Suei Y, Wada T, Rohlin M. Trabecular bone pattern of the mandible. Comparison of panoramic radiography with computed tomography. Dentomaxillofac Radiol 1997;26:85–89.
Toyoshima T, Wagner W, Klein MO, Stender E, Wieland M, Al‐Nawas B. Primary stability of hybrid self‐tapping implant compared to a cylindrical non‐self‐tapping implant with respect to drilling protocols in an ex vivo model. Clin Implant Dent Relat Res 2011;13:71–78.
Trappey CV, Trappey AJC, Peng HY, Lin LD, Wang TM. A knowledge centric methodology for dental implant technology assessment using ontology based patent analysis and clinical meta-analysis. Adv Eng Informat 2014;28:153-165.
Trappey CV, Wang TM, Hoanga S, Trappey AJC. Constructing a dental implant ontology for domain specific clustering and life span analysis. Adv Eng Informat 2013;27:346–357.
Trisi P, Rao W. Bone classification: Clinical-histomorphometric comparison. Clin Oral Implants Res 1999;10:1–7.
Trisi P, Perfetti G, Baldoni E, Berardi D, Colagiovanni M, Scogna G. Implant micromotion is related to peak insertion torque and bone density. Clin Oral Implants Res 2009;20:467–471.
Trisi P, De Benedittis S, Perfetti G, Berardi D. Primary stability, insertion torque and bone density of cylindric implant ad modum Branemark: is there a relationship? An in vitro study. Clin Oral Implants Res2011;22:567–570.
Tseng YH, Wang YM, Juang DW, Lin CJ. Text mining for patent map analysis. In Proceedings, IACIS Pacific 2005 Conference, April 16-17, 2005, Taipei, Taiwan
Tu C‐Y, Wang T‐M, Kok S‐H, Wang J‐S, Lin L‐D. (2013) Drilling protocols and insertion torque for 2.1 mm diameter MDI implants in simulated bone of different qualities. 16th ICP Biennial Meeting, September 18‐21, 2013, Turin, Italy.
Turkyilmaz I, Aksoy U, McGlumphy EA. Two alternative surgical techniques for enhancing primary implant stability in the posterior maxilla: a clinical study including bone density, insertion torque, and resonance frequency analysis data. Clin Implant Dent Relat Res 2008;10:231‐237.
van Steenberghe D, Jacobs R, Desnyder M, Maffei G, Quirynen M. The relative impact of local and endogenous patient-related factors on implant failure up to the abutment stage. Clin Oral Implant Res 2002;13:617–622.
Wang T‐M, Lin L‐D, Kok S‐H, Wang J‐S. Factors affect the insertion torque of a 2.1 mm diameter MDI implant. 7th Biennial Meeting of Asian Academy of Prosthodontics, Oct. 8‐30, 2011, Shanghai, China.
Wheeljet. IPDSS System. 2012, Available at: http://www.wheeljet.com.tw/IPDSS/Login.aspx [December 1, 2012].
World Health Organization, Oral health, 2012. Available at http://www.who.int/mediacentre/factsheets/fs318/en/ (retrieved 14.06.14)
Wu SW, Lee CC, Fu PY, Lin SC. The effects of flute shape and thread profile on the insertion torque and primary stability of dental implants. Med Eng Phys 2012;34:797–805.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56830-
dc.description.abstract簡介:
從Branemark教授發現”骨整合” (osseointegration) 以來,使用牙科人工植體(dental implant)來修補口腔內的缺牙區已經有四十多年的歷史, 並在最近二十年間有突飛猛進的發展。由於高齡人口增加與生活水準的提升,使得牙科人工植體的需求日益提高。舉凡植體材質、形狀、表面處理、連接處設計、支台的設計與材質、以及相關的手術步驟、輔助工具、影像分析軟體、補骨所用的材料、併發症的處理… 等等,都有許多學者與廠商投入其中的研發與改良。在這塊競爭性很高的領域中,有兩個重要的問題被提出並且尋求解答:
1. 如何用有效率的方法來研究並分析近年快速發表出來的論文與專利,以獲得完整的專業知識、預測植體製造業未來的發展趨勢、並且結合臨床與研發上的發現以期解決更多問題。
2. 目前對於改良牙科人工植體成功率方面的評估方式仍有爭議。一直以來植牙區的骨質(bone quality) 被認為是影響植體成功率的重要因子,因此有許多植體設計與手術流程的改良,希望能改善不良骨質區的植體成功率。然而文獻中這些改良未必有效,我們發現其癥結點有二:
首先是對於要被改善的對象欠缺一個通用且可靠的分類法則。若無法客觀篩選想改善的對象的話,就無法確認其效果是否有效。臨床上鑑定骨質不良的方式有四種:使用放射線影像、取下骨塊以組織切片觀察、手術醫師鑽骨時的手感、以及用特定廠牌植牙手機感應回饋輸出鑽骨時的扭力值。其中最常被使用的是”手術醫師鑽骨的手感”。然而手術醫師彼此之間並無明確的標準來界定手感所代表的骨質,使得骨質分類的客觀性與可信度存疑,進而可能影響相關研究結果。
其二就是不確定哪一種評估改善結果的方式最具代表性。植體植入時的初始穩定度(initial stability) 被認為是預測植體是否成功的重要指標。臨床上被認為可代表植體穩定度而且屬於非侵入性的評估方法有兩種:植體植入時的扭力(insertion torque, IT) 以及使用自然頻率分析所得出的植體穩定商值(implant stability quotient, ISQ)。但是由於影響這兩項數值的因子除了手術程序之外,還包含了植體的設計與之前所提到”欠缺客觀評估標準”的骨質。使得這兩種評估方法孰優孰劣以及是否能真正代表植體穩定度尚有爭議。
目的、材料與方法:
本論文將分為三個部份來探討以上所述之兩個重要問題。
1. 採用工程資訊學的方法來建構一個快速統整牙科植體專利以獲得專業資訊的程序,並結合臨床統合分析結果來預測牙科人工植體發展的未來趨勢。本論文中利用建構牙科人工植體本體論(ontology)的方式,先收集註冊於美國國家專利與商標局(United State Patent and Trademark Office)的牙科人工植體專利,然後由牙科植體專家(implant specialist)篩選出有關人工植體連接處設計 (implant connection design)的專利,進行文字探勘(text mining),篩選出關鍵詞並以此來分群(clustering),以分析與連接處設計有關的專利發展趨勢。並且也搜尋有關人工植體連接處的臨床試驗(clinical trial)文獻,來探討連接處設計與植體成功率的相關性。
2. 以客觀的測試塊來測試手術醫師鑽骨時的手感,探討不同醫師骨質評估的差異性以及是否能由經驗來累積手感的準確度。論文中以不同密度的聚氨酯(polyurethane)所做的生物力學測試塊 (biomechanical test block)來模擬不同硬度的齒槽骨,邀請有經驗的植牙手術醫師與一般開業牙醫師以直徑2mm 的前導鑚針 (pilot drill) 在不同測試塊上鑽洞,並依照鑽骨時的手感來判定該測試塊的硬度與骨質類別。然後分別看這兩群醫師是否能夠準確的判定出測試塊的硬度順序。
3. 以客觀的測試塊來評估植體形狀、手術程序、以及測試塊硬度對於植體植入扭力(IT)與植體穩定商值(ISQ) 產生何種影響。採用如上述第二部分所使用的聚氨酯生物力學測試塊共四種骨質,將四種不同形狀或直徑的牙科人工植體分別依照廠商建議的手術步驟植入測試塊,在植入過程中每隔0.5mm植入深度連續測量IT、最大植入扭力(peak insertion torque, PIT) 與ISQ,並且依IT隨時間的變化計算出該植入過程的植入能量(insertion energy, IE)。
結果、討論與結論:
1. 搜尋出20篇有提到牙科人工植體連接處設計的專利,使用Normalized Term Frequency-Inverse Document Frequency (NTF-IDF)的分法擷取出關鍵詞(key phrases),並據此將專利分為四群。以便找出值得分析比較的設計。並且將這些關鍵詞用來搜尋臨床試驗。找到六篇與植體連接處相關的臨床試驗,並發現支台內縮(platform switching) 這個詞為最常被提及的關鍵詞。因此以這個設計與其他設計來做統合分析相比較,探討支台內縮是否影響植體成功率(implant survival rate)與邊緣骨吸收量(marginal bone loss)。發現到植體成功率方面,支台內縮與一般的連接設計無明顯差異;而在邊緣骨吸收量方面,支台內縮似乎比其他連接設計要少,雖然減少量在臨床是否能達到顯著的影響還有待商榷。
2. 不同的牙醫師在診斷測試塊的硬度時有不同的標準。受試者當中六位較有經驗的口腔外科醫師能夠正確的排列出測試塊硬度的順序,而五十九位一般牙醫師中只有二十四位能夠正確診斷。顯示在進行這類與分類骨質有關的研究或臨床試驗時,必須能夠教育手術醫師正確診斷出骨質。此外,或許必須發展一套更客觀的評估骨質方式。
3. 當植體能夠完全植入測試塊時,邊緣皮質骨的有無與植體形狀比較容易影響連續紀錄植入扭力的數據圖(insertion torque profile),而ISQ 數值受到的影響較小。鑽孔步驟在某些測試塊中會影響到植體是否能在適當扭力下完全被植入。因此依此方法可以在未來繼續探討如何使牙科人工植體能在適當的扭力下植入並且得到高ISQ值,以提高有意義的植體穩定度。而研究中也發現植體的設計會影響植入時植入扭力的變化。不同植體可在相同測試塊上得到相近的最終ISQ值卻有完全不同的最終扭力值(final insertion torque)。未來應進一步探討不同植體在不同骨質的ISQ與IT值與植體受力時微移動(micromotion)之間的關係,以釐清ISQ與IT是否真能代表植體初始穩定度。
zh_TW
dc.description.abstractIntroduction:
Dental implants have been used to replace missing teeth and many developments have been introduced over the last two decades. Both academic and industry researchers have invested substantial amounts in research and development to improve the implant materials, designs, surface treatments, implant-abutment connections, and related surgical procedures. In this highly competitive field, there are two important issues to be analyzed and evaluated:
1. More efficient methods are needed to analyze the fast increasing publications and patents in order to predict the R&D trends of the implant industry and promote more advanced clinical solutions including methods, materials, and devices.
2. Many implant designs and surgical protocols claimed to improve implant survival rate or implant stability at the implant site without adequate evaluation of bone quality. Effectiveness of these claims are questionable due to controversies in defining the bone quality and implant stability. Many clinicians evaluate bone quality by using tactile feedback while drilling the bone. Evaluation discrepancy between clinicians has become a confounding factor across clinical trials. Implant initial stability is an important predictor of implant survival. Two non-invasive clinical methods are frequently used to evaluate implant stability: insertion torque (IT) during implant placement and natural frequency analysis or “implant stability quotient” (ISQ) after implant placement. There is no research demonstration which method best represents “true implant initial stability.”
Purposes, Materials and Methods
1. Using a cooperative study including researchers of engineering informatics and dental implant specialist (domain experts), a knowledge centric methodology for dental implant technology assessment was introduced to speed the process of patent analysis. This study included a domain specific ontology-based patent analysis of dental implant connections and a meta‐analysis of the related clinical trials. Text mining, extracting key phrases, creating the domain ontology, and analyzing clusters of patents related to implant connection were reviewed. Relations between implant connections and survival rate and marginal bone loss were evaluated using a meta-analysis of related clinical trials retrieved using the patent key phrases.
2. Six oral surgeons and 59 general dentists were invited to evaluate the bone quality of artificial bone blocks fabricated from polyurethane foam blocks (SawbonesR) consisting of different densities. The bone density and quality was evaluated using the tactile feedback obtained by drilling with a 2mm twist drill. A visual analog scale value of bone density and bone quality classification were recorded for each test block.
3. The effects of implant design and bone quality on insertion torque, implant stability quotient, and insertion energy (IE) were studied. Test blocks were used to simulate low or low-to-medium density cancellous bone with and without a thin cortical layer. Four different implants were placed in accordance with the manufacturer’s instructions. The IT and ISQ were recorded for every 0.5-mm of inserted length during implant insertion, and the IE was calculated.
Results, Discussions and Conclusions
1. Twenty patents related to implant connection were collected from USPTO and divided into four technology clusters. The key phrases from the patents were used for clustering and to search for related clinical trials and research publications. Platform switching was the key phrase with the highest frequency in related clinical trials. Six trials were included for meta-analysis to evaluate the effect of platform switching on implant survival rate and marginal bone loss. This methodology can be applied to a wide variety of medical and dental devices to link successful clinical trials and their effectiveness to patent designs and innovations in order to provide a new means to qualify patent value.
2. Discrepancy in evaluating bone quality exists among clinicians. Experienced oral surgeons evaluate bone quality more accurately than general dentists. Therefore, it is necessary to develop a calibration system to decrease the measurement discrepancy between dental professionals.
3. The presence of cortical bone and implant designs significantly affect dynamic IT profiles during implant insertion, while not similarly affecting ISQ. Future studies are needed to explore parameters representing implant stability and to modify surgical protocols to improve the ISQ and IT.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:51:12Z (GMT). No. of bitstreams: 1
ntu-103-D92422002-1.pdf: 17951623 bytes, checksum: 12d4de6b9e60812df45dfed76ef05876 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsChapter 1. Literature Review, Statement of the Problems, and Aims of the Study
1.1 Literature review -----------------------------1
1.1.1 Engineering informatics in the dental implant industry ----------------------------------------------2
1.1.2 Bone quality assessment and classification ----4
1.1.3 Primary stability of implants in bone of poor quality -----------------------------------------------6
1.2 Statement of problems -------------------------8
1.3 Aims of the study -----------------------------9
Chapter 2. Dental implant ontology based patent analysis and clinical meta‐analysis:A knowledge centric methodology for dental implant technology assessment using ontology based patent analysis and clinical meta‐analysis
2.1 Introduction ----------------------------------10
2.2 Methodology and results -----------------------11
2.3 Conclusions -----------------------------------16
Chapter 3. Bone quality assessment by implant specialists and general practitioners with a 2‐mm twist drill in artificial bone blocks
3.1 Introduction ----------------------------------17
3.2 Materials and methods -------------------------18
3.3 Results ---------------------------------------21
3.4 Discussion ------------------------------------23
Tables and figures ------------------------------------25
Chapter 4. The effect of implant design and bone quality on insertion torque, resonance frequency analysis, and insertion energy during implant placement in low, or low‐to‐medium density bone
4.1 Introduction ----------------------------------33
4.2 Materials and methods -------------------------35
4.3 Results ---------------------------------------37
4.4 Discussion-------------------------------------38
Tables and figures ------------------------------------42
Chapter 5. General discussion and conclusion ---------49
References --------------------------------------------53
Appendix ----------------------------------------------60
dc.language.isoen
dc.title從工程資訊學到實驗來探討提高植牙可靠性、穩定性與存活率的技術創新zh_TW
dc.titleTechnical Innovation for Improving the Reliability, Stability and Survival Rates of Dental Implants: From Engineering Informatics to Experimentsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee張力元(Charles V. Trappey),王若松(Juo-Song Wang),郭生興(Sang-Heng Kok),王震乾(Jen-Chyan Wang)
dc.subject.keyword牙科人工植體,工程資訊學,本體論,統合分析,植體支台連接,骨質,植入扭力,植體穩定商值 (ISQ),zh_TW
dc.subject.keyworddental implant,engineering informatics,ontology,meta-analysis,implant-abutment connection,bone quality,insertion torque,implant stability quotient (ISQ),en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2014-08-08
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
17.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved