Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56824
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳志毅(Chih-I Wu)
dc.contributor.authorPo-Chuan Wangen
dc.contributor.author王柏荃zh_TW
dc.date.accessioned2021-06-16T05:50:48Z-
dc.date.available2014-08-12
dc.date.copyright2014-08-12
dc.date.issued2014
dc.date.submitted2014-08-08
dc.identifier.citationReference
[1] T. Tsutsui , Progress in electroluminescent devices using molecular thin films , MRS Bull. 1997 , 22 , 39 .
[2] Y. J. Pu, G. Nakata, F. Satoh, H. Sasabe, D. Yokoyama, and J. Kido, Optimizing the charge balance of fluorescent organic light-emitting devices to achieve high external quantum efficiency beyond the conventional upper limit, Adv. Mater. 2012,
[3] S. R. Forrest, D. D. C. Bradley, M. E. Thompson, Measuring the efficiency of
organic light-emitting devices, Adv. Mater., 15 (2003) 1043.
[4] M. A. Baldo, D. F., O’Brien, M. E. Thompson, S. R. Forrest, Excitonic
singlet-triplet ratio in a semiconducting organic thin film, Phys. Rev. B, 60 (1999)
14422.
[5] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, Nearly 100% internal
phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys., 90
(2001) 5048.
[6] C. H. J. Round, A note on carborundum, Electrical World, 49 (1907) 309.
[7] A. Bernanose, M. Comte, P. Vouaux, Sur un nouveau mode demission lumineuse chez chertains composes organiques, Journal De Chimie Physique Et De Physico-Chimie Biologique, 50 (1953) 64.
[8] A. Bernanose, Elelctroluminescence of organic compounds, British Journal of
Applied Physics, (1955) S54.
[9] W. Helfrich, W. G. Schneider, Recombination Radiation in Anthracene Crystals,
Physical Review Letters, 14 (1965) 229.
[10] M. Pope, H. P. Kallmann, P. Magnante, Electroluminescence in Organic Crystals, The Journal of Chemical Physics, 38 (1963) 2042.
[11] N. V. Vityuk, V. V. Mikho, Asymmerty of Elelctric luminescence for thin
anthracene films, Izvestiya Vysshikh Uchebnykh Zavedenii Fizika, (1973) 11.
[12] G. G. Roberts, M. McGinnity, W. A. Barlow, P. S. Vincett, Elelctroluminescence, photo-luminescence and electroabsorption of a lighty substitued anthrancene Langmuir film, Solid State Communications, 32 (1979) 683.
[13] P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Roberts, Electrical-conduction and low-voltage blue elelctro-luminescence in vacuum-deposition organic films, Thin 162Solid Films, 94 (1982) 171.
[14] C. W. Tang, SA VanSlyke, Organic electroluminescent diodes, Applied Physics Letters 51 (12), 913-915
[15] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns & A. B. Holmes, Light-emitting diodes based on conjugated polymers, Nature. Vol 347.11 Octobor 1990
[16] L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, Y. Qiu, Solution processable small molecules for organic light-emitting diodes, Appl. Phys. Lett. 92,(2008) 263301.
[17] N. Rehmann, D. Hertel, K. Meerholz, H. Becker, S. Heun, Highly efficient solution-processed phosphorescent multilayer organic light-emitting diodes based on small-molecule hosts, Appl. Phys. Lett. 91 (2007) 103507.
[18] H. W Lin, W. C. Lin, J. H. Chang, C. I. Wu, Solution-processed hexaazatriphenylene hexacarbonitrile as a universal hole-injection layer for organic light-emitting diodes, Organic Electronics 14 (2013) 1204–1210
[19] J. Ding, B. Zhang, J. Lu, Z. Xie, L. Wang, X. Jing, and F. Wang, Solution-processable carbazole-based conjugated dendritic hosts for power-efficient blue-electrophosphorescent devices, Adv. Mater. 2009, 21, 4983–4986
[20] Grimsdale, A. C.; Chan, K. L. Martin, R. E. Jokisz, P. G. Holmes, A rapid and efficient synthetic route to terminal arylacetylenes by tetrabutylammonium hydroxide- and methanol-catalyzed cleavage of 4-aryl-2-methyl-3-butyn-2-ols, Chem. Rev. 2009, 109, 897–1091
[21] Lo, S.; Burn, P. L., Triplet harvesting in hybrid white organic light emitting diodes, Chem. Rev. 2007, 107, 1097–1116
[22] Y. Kawamura, S. Yanagida, S. R. Forrest, Energy transfer in polymerelectrophosphorescent light emitting devices with single and multiple dopedluminescent layers, J. Appl. Phys., 92 (2002) 87.
[23] S. Tokito, M. Suzuki, F. Sato, M. Kamachi, K. Shirane, High-efficiencyphosphorescent polymer light-emitting devices, Org. Electron., 4 (2003) 105.
[24] A. Nakamura, T. Tada, M. Mizukami, S. Yagyu, Efficient electrophosphorescentpolymer light-emitting devices using a Cs/Al cathode, Appl. Phys. Lett., 84 (2004)130.
[25] M. K. Mathai, V.-E. Choong, S. A. Choulis, B. Krummacher, F. So, Highly efficient solution processed blue organic electrophosphorescence with 14 lm/W luminous efficacy, Appl. Phys. Lett., 88 (2006) 243512.
[26] L. Duan, L. Hou, T.-W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, Y. Qiu, Solution processable small molecules for organic light-emitting diodes, J. Mater. Chem., 20 (2010) 6392.
[27] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials, Appl. Phys. Lett., 79 (2001) 2082.
[28] Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, C. Adachi, 100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films, Appl. Phys. Lett., 86 (2005) 071104.
[29] L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, Y. Qiu, Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host, Appl. Phys. Lett., 92 (2008) 263301.
[30] Tengling Ye, Shiyang Shao, Jiangshan Chen, Lixiang Wang, and Dongge Ma,Efficient phosphorescent polymer yellow-light-emitting diodes based on solution-processed small molecular electron transporting layer, ACS Appl. Mater. Interfaces 2011, 3, 410–416
[31] Q. Fu, J. Chen, C. Shi, and D. Ma, Solution-processed small molecules as mixed host for highly efficient blue and white phosphorescent organic light-emitting diodes, ACS Appl. Mater. Interfaces 2012, 4, 6579–6586
[32] N. Sun , Q. Wang , Y. Zhao , Y. Chen , D. Yang , F. Zhao , J. Chen ,and D. Ma, High-performance hybrid white organic light-emitting devices without interlayer between fluorescent and phosphorescent emissive regions, Adv. Mater. 2014, 26, 1617–1621
[33] F. Zhao , N. Sun , H. Zhang , J. Chen , D. Ma ,Hybrid white organic light-emitting diodes with a double light-emitting layer structure for high color-rendering index, J. Appl. Phys.2012 , 112 , 084504
[34] C. J. Zheng , J. Wang , J. Ye , M. F. Lo , X.-K. Liu , M.-K. Fung , X. H. Zhang , C.-S. Lee , Novel Efficient Blue Fluorophors with Small Singlet-Triplet Splitting: Hosts for Highly Efficient Fluorescence and Phosphorescence Hybrid WOLEDs with Simplified Structure, Adv. Mater. 2013 ,25 , 2205
[35] G. Schwartz , S. Reineke , T. C. Rosenow , K. Walzer , K. Leo , Triplet harvesting in hybrid white organic light emitting diodes, Adv. Funct. Mater. 2009 , 19 , 1319
[36] F. Wang, A Novel, Bipolar Polymeric Host for Highly Efficient Blue Electrophosphorescence: a Non-Conjugated Poly(arylether) Containing Triphenylphosphine Oxide Units in the Electron-Transporting Main Chain and Carbazole Units in Hole-Transporting Side Chains, Adv. Mater. 2011, 23, 3570–3574
[37] T. Forster, Transfer mechanisms of electronic excitation, Discuss. Faraday Soc. 27 (1959) 7–17.
[38] D.L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21 (1953) 836–850.
[39] R. F. Chen, JR Knutson, Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers, Analytical biochemistry, 1988 - Elsevier
[40] Y. Kawamura, K. Goushi, J. Brooks, J. Brown, H. Sasabe, C. Adachi, 100% phosphorescent quantum efficiency of Ir(III) complexes in organic semiconductor film, Appl. Phys. Lett. 86 (2005) 071104.
[41] V. Bulovi ́c, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, Weak microcavity effects in organic light-emitting devices, Phys. Rev. B 58, 3730 – Published 15 August 1998
[42] Y. T. Chang, S. W. Liu, C. H. Yuan, Y. H. Ho, K. Y. Chen, Y. T. Lee, M. F. Wu, C. C. Lee, P. K. Wei, C. T. Chen and C. I. Wu,Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts, J. Appl. Phys. 114 , 173106 (2013)
[43] Y. T. Chang, S. W. Liu, C. T. Chen, C. H. Yuan, L. A. Liu et al., A new model for optimization of organic light-emitting device by concurrent incorporation of electrical and optical simulations, J. Appl. Phys. 112, 084507 (2012); doi: 10.1063/1.4759257
[44] Su, S. J.; Chiba, T.; Takeda, T.; Kido, J. Pyridine Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs Adv. Mater. 2008, 20,2125
[45] L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, and Y. Qiua, Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host, Appl. Phys. Lett. 92, 263301 (2008); doi: 10.1063/1.2952483
[46] M. G. Helander, Z. B. Wang, L. Mordoukhovski and Z. H. Lu Comparison of alkali-metal fluoride/Al cathodes for organic electroluminescent devices, J. Appl. Phys. 104, 094510 (2008)
[47] Y. T. Lee, Y. T. Chang, C. T. Chen, C. T. Chen, Solution processable small molecular host materials for blue and white phosphorescence OLEDs, Proc. SPIE 8829, Organic Light Emitting Materials and Devices XVII, 88290V (September 27, 2013); doi:10.1117/12.2021451
[48] Huheey, J.E. Inorganic Chemistry ; Harper & Row: New York, 1983.24, 1765–1770
[49] B. Zhang , G. Tan , CS Lam , B. Yao , CL Ho , L. Liu , Z. Xie , WY Wong , J. Ding , and L. Wang High-efficiency single emissive layer white organic light-emitting diodes based on solution-processed dendritic host and new orange-emitting Iridium complex, Adv. Mater. 2012, 24, 1873–1877
[50] J. h. Lee, J. I. Lee, J. Y. Lee, H. Y. Chu, Stable efficiency roll-off in blue phosphorescent organic light-emitting diodes by host layer engineering, Organic Electronics Volume 10, Issue 8, December 2009, Pages 1529–1533
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56824-
dc.description.abstract本篇論文的主要研究著重於利用小分子有機材料當作主體材料應用在溼式製程之磷光有機電致發光元件(phospohorescent organic light-emitting device; PHOLED)。我們將分別先測試出藍色磷光元件的最佳化結構後(極簡化結構(單層)和多層的結構),以藍色磷光元件為基底,再進一步測試白光磷光元件。
本篇論文分為三大部份探討,第一部部份將之分為兩主題;前半部乃最佳化極簡化的單層結構和後半部為改善陰極介面的電子注入,以達到載子平衡以提高元件的效率。我們所使用的有機主體材料為小分子的Tris(4-carbazoyl-9-ylphenyl)amine (TCTA);此一主體材料為具有相當高的電洞遷移率特性、合適的能隙,並且較高的三重態能階(T1),因此TCTA適合當作藍色磷光的客體材料Bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III)
(FIrpic)之主體材料(電洞傳輸材料)。電子傳輸材料2,2'-(1,3-Phenylene)bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole] (OXD-7)的加入發光層內,以利於平衡TCTA的高電洞遷移率來平衡電洞和電子,讓複合的激子可以最大,且可以讓放光位置遠離陰極,減少激子淬熄的發生。極簡化結構且高效率實為溼式製程之有機電致發光元件的最終目標,元件結構為ITO/PEDOT:PSS/EML/CsF/Al。極簡化結構的藍色磷光最高效率可達16.6 cd/A和 9 lm/W。而後半部乃探討在陰極介面處的電子注入之修飾改善和物理機制,一般有機電致發光元件,絕大部分材料之電洞的遷移率遠大過電子的遷移率,在溼式製程之中此問題更為明顯。為了改善此問題,我們在陰極部分加入鹼土族金屬鋇(Ba)與氟化銫(CsF)進行比較。鋇為極易氧化的金屬且具有較高的活性和功函數,在有機電致發光元件中對陰極電子注入方面將會有很大的提升,實驗結果也證明使用鋇金屬當做電子注入層取代氟化銫可以大幅提高效率,此一藍色磷光最高效率可達18 cd/A(增幅8.5%)和11.5 lm/W(27.8%)。
第二部份將之分為三個主題;乃探討高效率的雙層結構、多層結構和使用雙主體材料的藍色磷光有機電致發光元件。為了更進一步提升OLED效率,我們將極簡化結構改變成雙層結構,將發光層內原本主體材料(TCTA)和電子傳輸(OXD-7)材料中的電子傳輸層材料獨立出來,並用載子遷移率和三重態能階更高的3,3'-[5'-[3-(3-Pyridinyl)phenyl][1,1':3',1'-terphenyl]-3,3'-diyl]bispyridine (TmPyPb)取代OXD-7。並再重新最佳化藍色磷光有機發光元件,重新調整藍色磷光摻雜物FIrpic的濃度,以及調整每一層的厚度和元件的總厚度達到適當的共振腔長度,以達出光最佳化(micro-cavity effect)和載子平衡(charge balance)。我們開發出的以小分子有機材料為主體材料之高效率的藍色磷光有機發光元件,不論單層或雙層,其元件效能甚至優於其他作相似研究的團隊。最高效率可達30.1 cd/A和 18.45 lm/W,比單層提高 76.4 %。另外我們嘗試了結構較為複雜的多層結構及雙主體材料系統有機發光元件,也可達到穩定的元件效能,未來可以再進一步研究,來突破雙層的最高效率。
第三部份為利用前面測試出來的極簡化結構(單層)和雙層藍色磷光元件為基底,製作白光磷光元件。藉由摻雜橘紅色的磷光材料Tris(2-phenylquinoline)iridium(III) (Ir(2-phq)3)製作白光元件,調整紅色磷光材料及藍色磷光材料的相對比例,並最佳化此極簡化和多層的白光元件。極簡化的白光元件,白光元件最佳效率為 12.5 cd/A和 4.7 lm/W, EQE為 2.2 %,CIE座標為(0.32, 0.41)。雙層結構的白光元件,白光元件最佳效率為30 cd/A和23 lm/W, EQE為 11.6 %,CIE座標為(0.30, 0.42)。
zh_TW
dc.description.abstractIn this study, the small molecule of organic materials would be applied to solution process for phosphorescent organic light-emitting device (PHOLED). The blue PHOLED of two structures, extremely simplified structure (single layer) and multilayer structure, would be optimized for the base of white PHOLED.
Our thesis is separated into three parts. In the front section of first part, we first demonstrate that how to optimize the extremely simplified structures step by step. In the latter section of first part, the device performance could be further improved by increasing the electron injection ability to reach more charge balance. The small molecule materials of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) that we choose is widely used as host material of blue phosphorescent system due to quite fast hole mobility, suitable energy bandgap, and high triplet state energy and the popular blue phosphorescent dye Bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic) would be used in our research. For the extremely simplified structure, the electron transport material 2,2'-(1,3-Phenylene)bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole] (OXD-7) would be mixed into the emissive layer and then the excitons will be greatly increased due to improving electron injection and transport to reach more charge balance. In addition, the recombination zone will be kept far away from the cathode to prevent the excitons quenching effect. Extremely simplified structure OLED having high efficiency is the objective of solution processed OLED and the device structure is ITO/PEDOT:PSS/EML/CsF/Al. For our experiment, the maximum efficiency in our blue PHOLED is achieved 17 cd/A and 9 lm/W. In the latter section of first part, we modify electron injection at the interface of cathode to investigate the interface of physical mechanism. For most of organic materials, the hole mobility is usually quite higher than electron mobility, and it would result in the device having series charge imbalance, especially occurring solution process. To solve such a problem, we utilize alkali metal Barium (Ba) in replace of CsF at the interface of cathode. The metal Ba has high work function and strong activity, and hence it easily cases oxidation-reduction reaction with other materials. This is why we use Ba to improve the electron injection of the device. The experiment results are also proved our concention and the device performance is enhanced again in comparison of CsF. Consequently, the maximum luminous and power efficiency of 18 cd/A (increasing 8.5%) and 11.5 lm/W (27.8%) are achieved.
In the second part of the research with including three topics, the double layer structure, multilayer structure and co-host system are investigated for achieving higher efficiency PHOLED. In order to improve the PHOLED performance further, the double layer structure PHOLED would be used to replace extremely simplified structure. Therefore, the electron transport layer are separated from emissive layer to substitute for mixing OXD-7 into the emissive layer and the electron transport material TmPyPb, which contains higher electron mobility and T1, are evaporated after emissive layer. By re-tuning the FIrpic doping ratio and the device structure, we could optimize the device performance due to better charge balance and optimal micro-cavity effect. No matter what single layer or double layer structures that we developed, our blue PHOLEDs performances are greatly higher than other groups. The maximum luminous of 30 cd/A and power efficiency of 18.45 lm/W are achieved and 76.4% enhancement is attained in comparison with single layered PHOLED. Moreover, we also devise triple layer structure and co-host system OLED even though it does not achieve the optimal performance. We will work on these topics in the future for pursuing higher PHOLED efficiency.
In the third part of the research, we fabricated white PHOLED of single layer and double layer structure according to the high efficiency bases of blue PHOLED, that we devised in the previous part. The red phosphorescent dye Tris(2-phenylquinoline)iridium(III) (Ir(2-phq)3) would be used in our experiment. By tuning the relative ratios of red and blue dopant materials, we could optimize the white PHOLED. Therefore, the maximum luminous efficiency of 12.5 cd/A, power efficiency of 4.7 lm/W, and maximum external quantum efficiency (EQE) of 2.2%, CIE coordinate of (0.32, 0.41) are achieved for the single layered structure of white PHOLED and the maximum luminous efficiency of 30 cd/A, power efficiency of 23 lm/W, and EQE of 11.6%, and CIE coordinate of (0.30, 0.42) are achieved for the double layered structure of white PHOLED.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:50:48Z (GMT). No. of bitstreams: 1
ntu-103-R01941106-1.pdf: 8791457 bytes, checksum: 0751f1c19d3a4f3edaed6ee185689014 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContent
口試委員審定書 i
致謝 ii
摘要 iii
Abstract vi
Content x
List of Figures xii
List of Tables xvi
Chapter 1 Introduction of organic light-emitting devices 1
1.1 OLED structure and operational model 1
1.2 Introduction of optimizing OLED devices 3
1.3 Introduction of OLEDs and PLEDs 5
1.4 Review of the polymer-based and small molecule-based device in solution process 10
1.5 Introduction of white-light organic light-emitting devices 15
1.6 Motivation 17
Chapter 2 Experimental equipment and fabrication process 19
2.1 Fabrication process 19
2.1.1 Photolithography process 19
2.1.2 Solution process fabrication 21
2.1.3 Thermal evaporation fabrication 23
2.2 Measurement systems 24
2.2.1 BIV measurement 25
2.2.2 External quantum efficiency measurement 26
2.2.3 UV-PL measurement system 27
2.2.4 Photoelectron spectrometer AC-2 28
Chapter 3 Enhancement of the carrier-transporting characteristic of TCTA host by an extremely simplified structure OLED based on the solution process and the test of Ba for electron injection layer 30
3.1 Introduction 30
3.2 Experiments 33
3.2.1 Materials 33
3.2.2 Device structure and fabrication process 34
3.3 Experimental results 35
3.3.1 Optimized mixing ratio of OXD-7 in EML 36
3.3.2 Optimized the FIrpic ratio in EML with variable OXD-7 mixing ratios 40
3.3.3 Alkaline earth metal (Ba) applied on the electron injection layer of the cathode 47
3.4 Conclusion 53
Chapter 4 Highly efficient small-molecule-based blue-phosphorescence OLEDs for multi-layered structure by separated vacuum deposited electron transport layer 55
4.1 Introduction 55
4.2 Experiments 58
4.2.1 Materials 58
4.2.2 Device structure and fabrication 60
4.3 Experimental results 62
4.3.1 Optimization of double layer blue PHOLED 62
4.3.2 The use of solution-processed HTL (triple-layer PHOLED) 73
4.3.3 The use of a mixed-host system in a double-layer PHOLED 77
4.4 Conclusion 81
Chapter 5 Highly efficient two-color white phosphorescent OLEDs for single-layered and double-layered structure 83
5.1 Introduction 83
5.2 Experiment 86
5.2.1 Materials 87
5.2.2 Device structure and fabrication 88
5.3 Experimental results 90
5.3.1 Single- layered white PHOLED 91
5.3.2 Double-layered white PHOLED 98
5.4 Conclusion 102
Chapter 6 Conclusion and future studies 104
6.1 Conclusion 104
6.2 Future studies 107
Reference 109
dc.language.isoen
dc.subject磷光有機電致發光二極體zh_TW
dc.subject濕式製程zh_TW
dc.subject白光有機電致發光二極體zh_TW
dc.subjectwhite organic light emitting diodeen
dc.subjectsolution processen
dc.subjectphosphorescent organic light emitting diodeen
dc.title濕式製程應用於磷光有機電致發光元件效能提升和物理特性之研究zh_TW
dc.titleImprovement of the device performance of phosphorescence organic light-emitting devices and physical characteristics for solution-processed fabricationen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳錦地(Chin-Ti Chen),張永亭(Yung-Ting Chang),張怡鳴
dc.subject.keyword磷光有機電致發光二極體,濕式製程,白光有機電致發光二極體,zh_TW
dc.subject.keywordphosphorescent organic light emitting diode,solution process,white organic light emitting diode,en
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2014-08-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
Appears in Collections:光電工程學研究所

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
8.59 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved