請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56800完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭浩明(Hao-Ming Hsiao) | |
| dc.contributor.author | Yi-Yu Wu | en |
| dc.contributor.author | 吳奕郁 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:49:16Z | - |
| dc.date.available | 2019-07-01 | |
| dc.date.copyright | 2014-09-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-08 | |
| dc.identifier.citation | [1] D. L. Hoyert and J. Xu, 'Deaths: preliminary data for 2011,' National vital statistics reports, vol. 61, pp. 1-51, 2012.
[2] D. Lloyd-Jones, R. Adams, M. Carnethon, G. De Simone, T. B. Ferguson, K. Flegal, et al., 'Heart disease and stroke statistics—2009 update a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,' Circulation, vol. 119, pp. e21-e181, 2009. [3] I. Pericevic, C. Lally, D. Toner, and D. J. Kelly, 'The influence of plaque composition on underlying arterial wall stress during stent expansion: The case for lesion-specific stents,' Medical Engineering & Physics, vol. 31, pp. 428-433, May 2009. [4] A. Gallino, M. Stuber, F. Crea, E. Falk, R. Corti, J. Lekakis, et al., '“In vivo” imaging of atherosclerosis,' Atherosclerosis, vol. 224, pp. 25-36, 2012. [5] L. National Heart, and Blood Institude. What Is Atherosclerosis? [Online]. Available: https://www.nhlbi.nih.gov/health/health-topics/topics/atherosclerosis/ [6] V. Fuster, 'Lewis A. Conner Memorial Lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology,' Circulation, vol. 90, pp. 2126-2146, Oct 1994. [7] M. J. Thubrikar, Vascular mechanics and pathology: Springer, 2007. [8] M. Naghavi, P. Libby, E. Falk, S. W. Casscells, S. Litovsky, J. Rumberger, et al., 'From vulnerable plaque to vulnerable patient a call for new definitions and risk assessment strategies: part I,' Circulation, vol. 108, pp. 1664-1672, 2003. [9] A. C. Akyildiz, L. Speelman, H. van Brummelen, M. A. Gutierrez, R. Virmani, A. van der Lugt, et al., 'Effects of intima stiffness and plaque morphology on peak cap stress,' Biomed Eng Online, vol. 10, p. 25, 2011. [10] D. L. Fischman, M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn, et al., 'A Randomized Comparison of Coronary-Stent Placement and Balloon Angioplasty in the Treatment of Coronary Artery Disease,' New England Journal of Medicine, vol. 331, pp. 496-501, 1994. [11] J. E. Sousa, P. W. Serruys, and M. A. Costa, 'New Frontiers in Cardiology: Drug-Eluting Stents: Part I,' Circulation, vol. 107, pp. 2274-2279, May 6, 2003 2003. [12] J. B. Hermiller, A. Raizner, L. Cannon, P. A. Gurbel, M. A. Kutcher, S. C. Wong, et al., 'Outcomes with the polymer-based paclitaxel-eluting TAXUS stent in patients with diabetes mellitusThe TAXUS-IV trial,' Journal of the American College of Cardiology, vol. 45, pp. 1172-1179, 2005. [13] R. Waksman and R. Pakala, 'Biodegradable and bioabsorbable stents,' Current pharmaceutical design, vol. 16, pp. 4041-4051, 2010. [14] P. W. Serruys, J. A. Ormiston, Y. Onuma, E. Regar, N. Gonzalo, H. M. Garcia-Garcia, et al., 'A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods,' The Lancet, vol. 373, pp. 897-910, 2009. [15] Boston-Scientific. Angioplasty and Stent Implantation [Online]. Available: http://www.bostonscientific.com/lifebeat-online/cardiac-procedures/angioplasty-and-stents.html? [16] J.-P. Becquemin, 'Endovascular Treatment of Carotid Disease,' in Comprehensive Vascular and Endovascular Surgery J. L. Mills, J. Earnshaw, J. A. Reekers, and T. Rooke, Eds., Second Edition ed: Elsevier Health Sciences, 2009. [17] A. K. Mitra and D. K. Agrawal, 'In stent restenosis: bane of the stent era,' J Clin Pathol, vol. 59, pp. 232-239, Mar. 2006. [18] P. H. Grewe, T. Deneke, A. Machraoui, J. Barmeyer, and K. M. Muller, 'Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen,' J Am Coll Cardiol, vol. 35, pp. 157-163, Jan 2000. [19] A. S. Go, D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, et al., 'Heart Disease and Stroke Statistics—2014 Update: A Report From the American Heart Association,' Circulation, vol. 129, pp. e28-e292, Jan. 2014. [20] E. Falk, 'Why do plaques rupture?,' Circulation, vol. 86, pp. III30-42, 1992. [21] J. B. Herrick, 'Clinical features of sudden obstruction of the coronary arteries,' Journal of the American Medical Association, vol. 59, pp. 2015-2022, 1912. [22] W. Koch and L. C. Kong, 'Uber die Formen des Coronarverschlusses. Die Anderung im Coronarkreislauf und die Beziehung zur Angina pectoris,' Beitr Pathol Anat, vol. 90, pp. 21-84, 1932. [23] M. Friedman and G. J. Van den Bovenkamp, 'The pathogenesis of a coronary thrombus,' Am J Pathol, vol. 48, pp. 19-44, Jan 1966. [24] P. Constantinides, 'Plaque fissures in human coronary thrombosis,' Journal of Atherosclerosis Research, vol. 6, pp. 1-17, 1966. [25] E. Clark, I. Graef, and H. Chasis, 'Thrombosis of the aorta and coronary arteries with special reference to the fibrinoid lesions,' Arch. path, vol. 22, p. 183, 1936. [26] T. Leary, 'Pathology of coronary sclerosis,' American Heart Journal, vol. 10, pp. 328-337, 1935. [27] W. B. Wartman, 'Occlusion of the coronary arteries by hemorrhage into their walls,' American Heart Journal, vol. 15, pp. 459-470, 1938. [28] M. C. Winternitz, R. M. Thomas, and P. M. LeCompte, 'Studies in the pathology of vascular disease,' American Heart Journal, vol. 14, pp. 399-404, 1937. [29] W. C. Roberts, 'Coronary arteries in fatal acute myocardial infarction,' Circulation, vol. 45, pp. 215-230, 1972. [30] M. A. DeWood, J. Spores, R. Notske, L. T. Mouser, R. Burroughs, M. S. Golden, et al., 'Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction,' N Engl J Med, vol. 303, pp. 897-902, Oct. 16, 1980. [31] W. F. Fulton and D. G. Sumner, 'Proceedings: I-Labelled fibrinogen, autoradiography, and stereoarteriography in identification of coronary thrombotic occlusion in fatal myocardial infarction,' Br Heart J, vol. 38, p. 880, Aug. 1976. [32] M. J. Davies and A. Thomas, 'Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death,' N Engl J Med, vol. 310, pp. 1137-1140, May 1984. [33] J. E. Muller, G. H. Tofler, and P. H. Stone, 'Circadian variation and triggers of onset of acute cardiovascular disease,' Circulation, vol. 79, pp. 733-743, Apr. 1989. [34] E. Falk, P. K. Shah, and V. Fuster, 'Coronary plaque disruption,' Circulation, vol. 92, pp. 657-671, 1995. [35] R. Virmani, F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz, 'Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions,' Arterioscler Thromb Vasc Biol, vol. 20, pp. 1262-1275, May 2000. [36] F. D. Kolodgie, A. P. Burke, A. Farb, H. K. Gold, J. Yuan, J. Narula, et al., 'The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes,' Curr Opin Cardiol, vol. 16, pp. 285-292, Sep. 2001. [37] R. T. Lee, H. M. Loree, G. C. Cheng, E. H. Lieberman, N. Jaramillo, and F. J. Schoen, 'Computational structural analysis based on intravascular ultrasound imaging before in vitro angioplasty: prediction of plaque fracture locations,' Journal of the American College of Cardiology, vol. 21, pp. 777-782, 1993. [38] J. G. Kips, P. Segers, and L. M. Van Bortel, 'Identifying the vulnerable plaque: A review of invasive and non-invasive imaging modalities,' Artery Research, vol. 2, pp. 21-34, 2008. [39] Z. Fayad and V. Fuster, 'Clinical imaging of the high-risk or vulnerable atherosclerotic plaque,' Circulation research, vol. 89, pp. 305-316, 2001. [40] N. Salunke, L. Topoleski, J. Humphrey, and W. Mergner, 'Compressive stress‐relaxation of human atherosclerotic plaque,' Journal of biomedical materials research, vol. 55, pp. 236-241, 2001. [41] J. S. Vanepps and D. A. Vorp, 'Mechano-pathobiology of atherogenesis: a review,' J Surg Res, vol. 142, pp. 202-217, Sep. 2007. [42] R. Virmani, A. P. Burke, A. Farb, and F. D. Kolodgie, 'Pathology of the vulnerable plaque,' J Am Coll Cardiol, vol. 47, pp. C13-8, Apr. 2006. [43] V. Fuster, Z. A. Fayad, P. R. Moreno, M. Poon, R. Corti, and J. J. Badimon, 'Atherothrombosis and high-risk plaque: Part II: approaches by noninvasive computed tomographic/magnetic resonance imaging,' J Am Coll Cardiol, vol. 46, pp. 1209-1218, Oct. 2005. [44] P. D. Richardson, 'Biomechanics of plaque rupture: progress, problems, and new frontiers,' Ann Biomed Eng, vol. 30, pp. 524-536, Apr. 2002. [45] R. K. Kumar and K. R. Balakrishnan, 'Influence of lumen shape and vessel geometry on plaque stresses: possible role in the increased vulnerability of a remodelled vessel and the 'shoulder' of a plaque,' Heart, vol. 91, pp. 1459-1465, Nov. 2005. [46] J. Ohayon, G. Finet, A. M. Gharib, D. A. Herzka, P. Tracqui, J. Heroux, et al., 'Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture,' Am J Physiol Heart Circ Physiol, vol. 295, pp. H717-H727, Aug. 2008. [47] H. Gao and Q. Long, 'Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques,' Journal of biomechanics, vol. 41, pp. 3053-3059, 2008. [48] G. Finet, J. Ohayon, and G. Rioufol, 'Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability,' Coron Artery Dis, vol. 15, pp. 13-20, Feb. 2004. [49] A. M. Varnava, P. G. Mills, and M. J. Davies, 'Relationship between coronary artery remodeling and plaque vulnerability,' Circulation, vol. 105, pp. 939-943, Feb. 2002. [50] O. Smedby, 'Geometrical risk factors for atherosclerosis in the femoral artery: a longitudinal angiographic study,' Ann Biomed Eng, vol. 26, pp. 391-397, 1998. [51] G. C. Cheng, H. M. Loree, R. D. Kamm, M. C. Fishbein, and R. T. Lee, 'Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation,' Circulation, vol. 87, pp. 1179-1187, Apr. 1993. [52] H. Huang, R. Virmani, H. Younis, A. P. Burke, R. D. Kamm, and R. T. Lee, 'The impact of calcification on the biomechanical stability of atherosclerotic plaques,' Circulation, vol. 103, pp. 1051-1056, 2001. [53] P. D. Richardson, M. Davies, and G. Born, 'Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques,' The Lancet, vol. 334, pp. 941-944, 1989. [54] H. C. Groen, F. J. Gijsen, A. van der Lugt, M. S. Ferguson, T. S. Hatsukami, A. F. van der Steen, et al., 'Plaque Rupture in the Carotid Artery Is Localized at the High Shear Stress Region A Case Report,' Stroke, vol. 38, pp. 2379-2381, 2007. [55] J. Ohayon, G. Finet, F. Treyve, G. Rioufol, and O. Dubreuil, 'A three dimensional finite element analysis of stress distribution in a coronary atherosclerotic plaque: in-vivo prediction of plaque rupture location,' Biomechanics applied to computer assisted surgery, vol. 37, pp. 225-241, 2005. [56] D. Tang, C. Yang, J. Zheng, P. K. Woodard, J. E. Saffitz, J. D. Petruccelli, et al., 'Local maximal stress hypothesis and computational plaque vulnerability index for atherosclerotic plaque assessment,' Annals of biomedical engineering, vol. 33, pp. 1789-1801, 2005. [57] D. Tang, C. Yang, J. Zheng, J. E. Saffitz, G. A. Sicard, T. K. Pilgram, et al., 'Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models,' Journal of biomechanical engineering, vol. 127, pp. 1185-1194, 2005. [58] A. Versluis, A. J. Bank, and W. H. Douglas, 'Fatigue and plaque rupture in myocardial infarction,' Journal of biomechanics, vol. 39, pp. 339-347, 2006. [59] A. Bank, A. Versluis, S. Dodge, and W. Douglas, 'Atherosclerotic plaque rupture: a fatigue process?,' Medical hypotheses, vol. 55, pp. 480-484, 2000. [60] N. V. Joshi, A. T. Vesey, M. C. Williams, A. S. V. Shah, P. A. Calvert, F. H. M. Craighead, et al., '18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial,' The Lancet, 2013. [61] D. Vancraeynest, A. Pasquet, V. Roelants, B. L. Gerber, and J. L. Vanoverschelde, 'Imaging the vulnerable plaque,' J Am Coll Cardiol, vol. 57, pp. 1961-1979, May 2011. [62] P. R. Moreno, 'Vulnerable plaque: definition, diagnosis, and treatment,' Cardiol Clin, vol. 28, pp. 1-30, Feb. 2010. [63] M. Aikawa and P. Libby, 'The vulnerable atherosclerotic plaque Pathogenesis and therapeutic approach,' Cardiovascular Pathology, vol. 13, pp. 125-138, 2004. [64] B. M. Scirica, D. A. Morrow, C. P. Cannon, K. K. Ray, M. S. Sabatine, P. Jarolim, et al., 'Intensive statin therapy and the risk of hospitalization for heart failure after an acute coronary syndrome in the PROVE IT-TIMI 22 study,' J Am Coll Cardiol, vol. 47, pp. 2326-2331, Jun. 2006. [65] J. A. Ambrose and D. J. D'Agate, 'Classification of systemic therapies for potential stabilization of the vulnerable plaque to prevent acute myocardial infarction,' Am J Cardiol, vol. 95, pp. 379-382, Feb. 2005. [66] R. Waksman, I. M. Leitch, J. Roessler, H. Yazdi, R. Seabron, F. Tio, et al., 'Intracoronary photodynamic therapy reduces neointimal growth without suppressing re-endothelialisation in a porcine model,' Heart, vol. 92, pp. 1138-1144, Aug. 2006. [67] E. Braunwald, 'Noninvasive detection of vulnerable coronary plaques: Locking the barn door before the horse is stolen,' J Am Coll Cardiol, vol. 54, pp. 58-59, Jun. 2009. [68] H. M. Loree, R. D. Kamm, R. G. Stringfellow, and R. T. Lee, 'Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels,' Circulation Research, vol. 71, pp. 850-858, 1992. [69] K. M. Hallow, W. R. Taylor, A. Rachev, and R. P. Vito, 'Markers of inflammation collocate with increased wall stress in human coronary arterial plaque,' Biomechanics and modeling in mechanobiology, vol. 8, pp. 473-486, 2009. [70] J. Ohayon, O. Dubreuil, P. Tracqui, S. Le Floc'h, G. Rioufol, L. Chalabreysse, et al., 'Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture,' Am J Physiol Heart Circ Physiol, vol. 293, pp. H1987-H1996, Sep. 2007. [71] J. Zheng, I. El Naqa, F. E. Rowold, T. K. Pilgram, P. K. Woodard, J. E. Saffitz, et al., 'Quantitative assessment of coronary artery plaque vulnerability by high‐resolution magnetic resonance imaging and computational biomechanics: A pilot study ex vivo,' Magnetic resonance in medicine, vol. 54, pp. 1360-1368, 2005. [72] S. D. Williamson, Y. Lam, H. F. Younis, H. Huang, S. Patel, M. R. Kaazempur-Mofrad, et al., 'On the sensitivity of wall stresses in diseased arteries to variable material properties,' J Biomech Eng, vol. 125, pp. 147-55, Feb. 2003. [73] D. Beattie, C. Xu, R. Vito, S. Glagov, and M. Whang, 'Mechanical analysis of heterogeneous, atherosclerotic human aorta,' Journal of biomechanical engineering, vol. 120, pp. 602-607, 1998. [74] A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftimia, G. J. Tearney, et al., 'Mechanical analysis of atherosclerotic plaques based on optical coherence tomography,' Annals of biomedical engineering, vol. 32, pp. 1494-1503, 2004. [75] Z. Teng, U. Sadat, Z. Li, X. Huang, C. Zhu, V. E. Young, et al., 'Arterial luminal curvature and fibrous-cap thickness affect critical stress conditions within atherosclerotic plaque: an in vivo MRI-based 2D finite-element study,' Annals of biomedical engineering, vol. 38, pp. 3096-3101, 2010. [76] D. Tang, Z. Teng, G. Canton, T. S. Hatsukami, L. Dong, X. Huang, et al., 'Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study,' Biomed Eng Online, vol. 8, p. 15, 2009. [77] R. A. Trivedi, Z.-Y. Li, U. Jean, M. J. Graves, P. J. Kirkpatrick, and J. H. Gillard, 'Identifying vulnerable carotid plaques in vivo using high resolution magnetic resonance imaging–based finite element analysis,' J Neurosurg, vol. 107, pp. 536-542, Sep. 2007. [78] M. Cilla, E. Pena, M. A. Martinez, and D. J. Kelly, 'Comparison of the vulnerability risk for positive versus negative atheroma plaque morphology,' J Biomech, vol. 46, pp. 1248-1254, Apr. 2013. [79] A. Karimi, M. Navidbakhsh, S. Faghihi, A. Shojaei, and K. Hassani, 'A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries,' Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 227, pp. 148-161, 2012. [80] M. Cilla, E. Pena, and M. A. Martinez, '3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses,' Biomech Model Mechanobiol, vol. 11, pp. 1001-1013, Sep. 2012. [81] T. Hoshino, L. A. Chow, J. J. Hsu, A. A. Perlowski, M. Abedin, J. Tobis, et al., 'Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability,' American Journal of Physiology-Heart and Circulatory Physiology, vol. 297, pp. H802-H810, 2009. [82] K. Imoto, T. Hiro, T. Fujii, A. Murashige, Y. Fukumoto, G. Hashimoto, et al., 'Longitudinal structural determinants of atherosclerotic plaque vulnerability: a computational analysis of stress distribution using vessel models and three-dimensional intravascular ultrasound imaging,' J Am Coll Cardiol, vol. 46, pp. 1507-1515, Oct. 2005. [83] T. C. Gasser and G. A. Holzapfel, 'Modeling plaque fissuring and dissection during balloon angioplasty intervention,' Ann Biomed Eng, vol. 35, pp. 711-723, May 2007. [84] M. Auer, R. Stollberger, P. Regitnig, F. Ebner, and G. A. Holzapfel, '3-D reconstruction of tissue components for atherosclerotic human arteries using ex vivo high-resolution MRI,' Medical Imaging, IEEE Transactions on, vol. 25, pp. 345-357, 2006. [85] G. A. Holzapfel, M. Stadler, and C. A. J. Schulze-Bauer, 'A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty using Magnetic Resonance Imaging and Mechanical Testing,' Annals of Biomedical Engineering, vol. 30, pp. 753-767, 2002. [86] A. A. Alsheikh-Ali, G. D. Kitsios, E. M. Balk, J. Lau, and S. Ip, 'The Vulnerable Atherosclerotic Plaque: Scope of the Literature,' Annals of Internal Medicine, vol. 153, pp. 387-395, 2010. [87] H. Gao and Q. Long, 'Atherosclerosis Plaque Stress Analysis: A Review,' in Multi-Modality Atherosclerosis Imaging and Diagnosis, ed: Springer, 2014, pp. 81-93. [88] A. V. Finn, M. Nakano, J. Narula, F. D. Kolodgie, and R. Virmani, 'Concept of vulnerable/unstable plaque,' Arterioscler Thromb Vasc Biol, vol. 30, pp. 1282-1292, Jul. 2010. [89] H.-M. Hsiao, Y.-H. Chiu, K.-H. Lee, and C.-H. Lin, 'Computational modeling of effects of intravascular stent design on key mechanical and hemodynamic behavior,' Computer-Aided Design, vol. 44, pp. 757-765, 8// 2012. [90] H.-M. Hsiao, 'Why similar stent designs cause new clinical issues,' JACC: Cardiovascular Interventions, vol. 5, pp. 362-362, 2012. [91] H. Zahedmanesh and C. Lally, 'Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis,' Med Biol Eng Comput, vol. 47, pp. 385-393, Apr. 2009. [92] G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, 'Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling,' Am J Physiol Heart Circ Physiol, vol. 289, pp. H2048-H2058, Nov 2005. [93] H. M. Loree, A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee, 'Static circumferential tangential modulus of human atherosclerotic tissue,' J Biomech, vol. 27, pp. 195-204, Feb. 1994. [94] M. J. Davies, 'Stability and instability: two faces of coronary atherosclerosis The Paul Dudley White Lecture 1995,' Circulation, vol. 94, pp. 2013-2020, 1996. [95] D. Bluestein, Y. Alemu, I. Avrahami, M. Gharib, K. Dumont, J. J. Ricotta, et al., 'Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling,' J Biomech, vol. 41, pp. 1111-1118, 2008. [96] J. Ohayon, P. Teppaz, G. Finet, and G. Rioufol, 'In-vivo prediction of human coronary plaque rupture location using intravascular ultrasound and the finite element method,' Coron Artery Dis, vol. 12, pp. 655-663, Dec. 2001. [97] ABAQUS UMAT for Superelasticity and Plasticity of Shape Memory Alloys document. [98] F. Auricchio and R. L. Taylor, 'Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior,' Computer Methods in Applied Mechanics and Engineering, vol. 143, pp. 175-194, Apr. 1997. [99] F. Auricchio, 'A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model,' International Journal of Plasticity, vol. 17, pp. 971-990, Jul. 2001. [100] T. Pham, M. DeHerrera, and W. Sun, 'Analysis and Simulation of PTMA Device Deployment into the Coronary Sinus: Impact of Stent Strut Thickness,' in Mechanics of Biological Systems and Materials, Volume 2, T. Proulx, Ed., ed: Springer New York, 2011, pp. 1-10. [101] F. Auricchio, M. Conti, S. Morganti, and A. Reali, 'Shape Memory Alloys: Material Modeling and Device Finite Element Simulations,' in IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials. vol. 24, M. Kuna and A. Ricoeur, Eds., ed: Springer Netherlands, 2011, pp. 33-42. [102] U. Food and D. Administration, 'Guidance for Industry and FDA Staff-Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems,' ed, 2010. [103] M. Grujicic, B. Pandurangan, A. Arakere, and J. S. Snipes, 'Fatigue-Life Computational Analysis for the Self-Expanding Endovascular Nitinol Stents,' Journal of Materials Engineering and Performance, vol. 21, pp. 2218-2230, Nov. 2012. [104] A. R. Pelton, V. Schroeder, M. R. Mitchell, X. Y. Gong, M. Barney, and S. W. Robertson, 'Fatigue and durability of Nitinol stents,' J Mech Behav Biomed Mater, vol. 1, pp. 153-164, Apr. 2008. [105] J. Ge, R. Erbel, T. Gerber, G. Gorge, L. Koch, M. Haude, et al., 'Intravascular ultrasound imaging of angiographically normal coronary arteries: a prospective study in vivo,' Br Heart J, vol. 71, pp. 572-578, Jun. 1994. [106] Z. Lin, H. M. Hsiao, D. Mackiewicz, B. Anukhin, and K. Pike, 'Anisotropic Behavior of Radiopaque NiTiPt Hypotube for Biomedical Applications,' Advanced Engineering Materials, vol. 11, pp. B189-B193, 2009. [107] Z. Lin and A. Denison, 'Nitinol fatigue resistance—a strong function of surface quality,' in Medical Device Materials II: Proceedings of the Materials and Medical Devices Conference, 2004, pp. 205-208. [108] C. L. Lendon, M. J. Davies, G. V. Born, and P. D. Richardson, 'Atherosclerotic plaque caps are locally weakened when macrophages density is increased,' Atherosclerosis, vol. 87, pp. 87-90, Mar. 1991. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56800 | - |
| dc.description.abstract | 急性心肌梗塞是一種嚴重的心血管疾病,其急性症狀主要是因為大量血栓堆積於原有的硬化斑塊上,造成血管阻塞,使得人體血液無法順利流通所引起。其中與急性心肌梗塞相關的急性冠狀動脈病症多數主要是由易破損硬化斑塊的破裂所致,此種易破損硬化斑塊的組織含有肥大的脂質核心、薄纖維帽、鈣化組織以及發炎細胞浸潤;易破損硬化斑塊的破裂對於造成急性冠狀動脈病症有相當大的影響力,而易破損硬化斑塊的破裂主要受到其本身的組織形態與生物力學環境引起的應力集中現象所影響。以生物力學角度來說,在硬化斑塊上的應力,如拉伸應力,是影響硬化斑塊破裂的重要因素,因此在探討易破損硬化斑塊的易破性時,必須將生物力學環境納入考量。雖然現今醫療技術已在心血管疾病的預測與治療上有所進步,但因易破損硬化斑塊破裂而引起的急性心肌梗塞仍有相當高的發生機率。本研究目的為分析並評估自動擴張式血管支架對易破損硬化斑塊上之薄纖維帽破裂的影響性,進而提出一心血管支架的設計概念,能有效的降低薄纖維帽上的峰值應力。本研究建立含有易破損硬化斑塊的冠狀動脈之有限元素模型,此模型中包含血管內膜、中膜、外膜以及脂質核心,且其形態均依據組織學上的理想幾何形狀建構;在組織材料方面,以等向性、高彈性之材料模擬之。模型建構後,使用有限元素分析軟體模擬自動擴張式血管支架部署於含有易破損硬化斑塊的冠狀動脈內,並探討在纖維帽上的應力分布情況。研究結果顯示,以較多Crown數量的自動擴張式血管支架部署於易破損硬化斑塊時,薄纖維帽上之應力分布較為均勻;在薄纖維帽的峰值應力方面,含有較多Crown數量的血管支架所造成的應力值遠小於Crown數量較少的血管支架,而本研究中的24-Crown血管支架相對於標準血管支架,降低峰值應力之幅度高達18%。本研究提出增加自動擴張式血管支架Crown數量的血管支架設計概念,此設計方式能有效平均分散血管支架部署時對薄纖維帽產生的應力並降低其峰值應力,避免易破損硬化斑塊的破裂,提供作為新一代血管支架的設計參考。 | zh_TW |
| dc.description.abstract | Acute myocardial infarction (AMI) is one of the most serious condition of cardiovascular disease. Most commonly, the acute syndromes of acute myocardial infarction are caused by a local arterial occlusion with a thrombus overlying a pre-existing atherosclerotic plaque which could restrict blood supply to the downstream arteries. Further, some acute coronary syndromes defined by acute myocardial infarction result from rupture-prone or so-called vulnerable plaque consisting of an accumulation of cells, large lipid, thin-fibrous cap, calcium, and inflammatory infiltrates. Plaque rupture has represented important influences on the majority of acute coronary syndromes. Generally, rupture has mainly been associated with stress concentration, which is affected by both plaque morphology and biomechanical environment. In terms of biomechanical factors, stresses, for example plaque wall tensile stress, are regarded as important factors in plaque rupture process and have to be taken into account for plaque vulnerability assessment. Nowadays, despite major advances in prevention and treatment of cardiovascular disease, rupture of vulnerable plaque which causes acute myocardial infarction remains in high probability. The aim of this study is to evaluate the influence of endovascular self-expanding stent on the risk of the rupture of a vulnerable plaque, also on proposing a novel design concept of an intravascular stent to effectively reduce the peak stress of a fibrous cap. For this purpose, a finite element model of a coronary artery with vulnerable plaque was developed. The constructed model with idealized geometries based on histology images of human coronary arteries contained intima, media, adventitia and lipid core section. For the tissue properties, isotropic and hyperelastic material models were used. Afterward, the deployment of self-expanding stent in coronary artery with vulnerable plaque was modeled by finite element analysis and the stress distribution on fibrous cap was investigated. Results indicated the stresses induced by the increased crown of a self-expanding stent were more uniformly distributed on the fibrous cap of a vulnerable plaque. Moreover, the computed peak stress for fibrous cap was much higher with more crowns stent in comparison to that with less; also, the reduction of peak stress between 24-crown stent and standard stent was up to 18 percentage points. This study demonstrates that the new concept of stent design, that is, to increase the number of crowns of a self-expanding stent, which could be both efficient and effective, distributes stress uniformly and lowers the peak stress on the fibrous cap, avoiding the rupture of a vulnerable plaque; it also develops value-added approach to the optimization of future stent design. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:49:16Z (GMT). No. of bitstreams: 1 ntu-103-R01522807-1.pdf: 29759532 bytes, checksum: 0f0473bde4627f96d3bb57758967f3bb (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 目錄 vi 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 研究目的 6 1.3 研究內容 7 第二章 文獻回顧 9 第三章 研究方法 13 3.1 自動擴張式血管支架設計與參數化 13 3.1.1 血管支架幾何與結構 13 3.1.2 血管支架參數化設計 14 3.2 易破損硬化斑塊模型 15 3.2.1 易破損硬化斑塊之二維模型 16 3.2.2 二維模型的材料性質與邊界條件 18 3.2.3 易破損硬化斑塊之三維模型 20 3.2.4 三維模型的材料性質與邊界條件 22 3.3 自動擴張式血管支架模型 23 3.3.1 鎳鈦合金材料設定 27 3.3.2 網格分割與邊界條件設定 29 3.4 自動擴張式血管支架部署 31 3.4.1 部署模型設定 31 3.4.2 邊界條件設定 33 3.5 機械性質分析與指標 35 3.5.1 疲勞安全係數 (Fatigue Safety Factor, FSF) 35 3.5.2 徑向支撐強度 (Radial Strength, RS) 37 3.5.3 易破性指標 (Vulnerability Factor, VF) 38 第四章 研究結果與討論 39 4.1 易破損硬化斑塊分析 39 4.2 自動擴張式血管支架與易破損硬化斑塊分析 42 4.2.1 纖維帽的應力分布 42 4.2.2 易破損硬化斑塊的易破性分析 46 4.3 其它重要臨床性質比較 47 4.3.1 血管支架徑向支撐強度分析 47 4.3.2 血管支架疲勞安全係數分析 48 4.3.3 Profile 分析 55 4.3.4 血管覆蓋率分析 (Scaffolding Analysis) 55 4.4 結果討論 56 第五章 結論與未來展望 59 參考文獻 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 易破損硬化斑塊 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 冠狀動脈粥狀硬化 | zh_TW |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | 自動擴張式血管支架 | zh_TW |
| dc.subject | 纖維帽 | zh_TW |
| dc.subject | Cardiovascular disease | en |
| dc.subject | Atherosclerosis | en |
| dc.subject | Vulnerable plaque | en |
| dc.subject | Fibrous cap | en |
| dc.subject | Self-expanding stent | en |
| dc.subject | Finite element analysis | en |
| dc.title | 血管支架設計對易破損動脈粥狀硬化斑塊之纖維帽應力影響 | zh_TW |
| dc.title | Effects of Intravascular Stent Design on Cap Stress of Vulnerable Atherosclerotic Plaque | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊馥菱(Fu-Ling Yang),廖英志(Ying-Chih Liao) | |
| dc.subject.keyword | 心血管疾病,冠狀動脈粥狀硬化,易破損硬化斑塊,纖維帽,自動擴張式血管支架,有限元素分析, | zh_TW |
| dc.subject.keyword | Cardiovascular disease,Atherosclerosis,Vulnerable plaque,Fibrous cap,Self-expanding stent,Finite element analysis, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 29.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
