Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56794
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳耀銘(Yaow-Ming Chen)
dc.contributor.authorYing-Ting Huangen
dc.contributor.author黃盈庭zh_TW
dc.date.accessioned2021-06-16T05:48:53Z-
dc.date.available2022-09-02
dc.date.copyright2020-08-03
dc.date.issued2020
dc.date.submitted2020-07-24
dc.identifier.citation[1] T. Conway, “An isolated power factor corrected power supply utilizing the transformer leakage inductance,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6468–6477, July 2019.
[2] Y. T. Huang, C. H. Li, Y. M. Chen, and Y. P. Tong, “Analysis and design of a single–stage buck–type AC–DC adaptor,” IEEE Applied Power Electronics Conference and Exposition, 2017, pp. 16–22.
[3] Z. Guo, X. Ren, Y. Wu, Z. Zhang, and Q. Chen, “A novel simplified variable on–time method for CRM boost PFC converter,” IEEE Applied Power Electronics Conference and Exposition, 2017, pp. 1778–1784.
[4] B. Zhao, R. Ma, A. Abramovitz, and K. Smedley, “Bridgeless buck–boost PFC rectifier with a bidirectional switch,” IEEE International Power Electronics and Motion Control Conference, 2016, pp. 2747–2751.
[5] P. R. Mohanty, A. K. Panda, and D. Das, “An active PFC boost converter topology for power factor correction,” IEEE India Conference, 2015, pp. 1–5.
[6] R. Philip and C. Sreeja, “Single phase PFC using buck–boost converter,” IEEE Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives, 2014, pp. 1–5.
[7] X. G. Zhang, B. Wang, H. Ding, and D. G. Xu, “Study of CCM boost PFC based on Simulink,” IEEE Power Electronics and Motion Control Conference, 2012, pp. 1756–1760.
[8] D. C. Lu, H. C. Iu, and V. Pjevalica, “A single–stage AC/DC converter with high power factor, regulated bus voltage, and output voltage,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 218–228, Jan. 2008.
[9] J. J. Lee, J. M. Kwon, E. H. Kim, W. Y. Choi, and B. H. Kwon, “Single–stage single–switch PFC flyback converter using a synchronous rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1352–1365, March 2008.
[10] W. Wang, H. Liu, S. Jiang, and D. Xu, “A novel bridgeless buck–boost PFC converter,” IEEE Power Electronics Specialists Conference, 2008, pp. 1304–1308.
[11] J. Chen, D. Maksimovic, and R. W. Erickson, “Analysis and design of a low–stress buck–boost converter in universal–input PFC applications,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 320–329, March 2006.
[12] Y. T. Huang, C. H. Li, and Y. M. Chen, “A modified asymmetrical half–bridge flyback converter for step–down AC–DC application,” IEEE Trans. Power Electron., vol. 35, no. 5, pp. 4613–4621, May 2020.
[13] A. Abasian, H. Farzanehfard, and S. A. Hashemi, “A single–stage single–switch soft–switching (S6) boost–flyback PFC converter,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 9806–9813, Oct. 2019.
[14] A. Mallik and A. Khaligh, “Maximum efficiency tracking of an integrated two–staged AC–DC converter using variable dc link voltage,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8408–8421, Nov. 2018.
[15] H. Wu, Y. Zhang, and Y. Jia, “Three–port bridgeless PFC–based quasi single–stage single–phase AC–DC converters for wide voltage range applications,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5518–5528, July 2018.
[16] H. Khalilian, H. Farzanehfard, E. Adib, and M. Esteki, “Analysis of a new single–stage soft–switching power–factor–correction LED driver with low dc–bus voltage,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3858–3865, May 2018.
[17] C. H. Li, Y. T. Huang, Y. M. Chen, and Y. P. Tong, “A single–stage asymmetrical half–bridge AC/DC converter with coupled inductors,” IEEE Energy Conversion Congress and Exposition, 2017, pp. 5645–5650.
[18] S. W. Lee and H. L. Do, “A single–switch AC–DC LED driver based on a boost–flyback PFC converter with lossless snubber,” IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1375–1384, Feb. 2017.
[19] M. Bodetto, A. E. Aroudi, A. Cid-Pastor, and M. S. A. Numay, “Improving the dimming performance of low–power single–stage AC–DC HBLED drivers,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5797–5806, July 2017.
[20] Q. Luo, J. Huang, Q. He, K. Ma, and L. Zhou, “Analysis and design of a single–stage isolated AC–DC LED driver with a voltage doubler rectifier,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5807–5817, July 2017.
[21] C. Li and D. Xu, “Family of enhanced ZCS single–stage single–phase isolated AC–DC converter for high–power high–voltage dc supply,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3629–3639, May 2017.
[22] S. W. Lee and H. L. Do, “Boost–integrated two–switch forward AC–DC LED driver with high power factor and ripple–free output inductor current,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5789–5796, July 2017.
[23] S. W. Lee and H. L. Do, “Single–stage bridgeless AC–DC PFC converter using a lossless passive snubber and valley switching,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6055–6063, Oct. 2016.
[24] S. Lim, D. M. Otten, and D. J. Perreault, “New AC–DC power factor correction architecture suitable for high–frequency operation,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2937–2949, Apr. 2016.
[25] B. Singh, B. P. Singh, and S. Dwivedi, “Performance comparison of high frequency isolated AC–DC converters for power quality improvement at input ac mains,” IEEE Power Electronic, Drives and Energy Systems, 2006, pp. 1–6.
[26] P. N. Papanikolaou, C. E. Tatakis, and A. C. Kyritsis, “Design of a PFC AC/DC flyback converter for low voltage applications,” IEEE European Conference on Power Electronics and Applications, 2005, pp. 1–10.
[27] H. Ma, J. S. Lai, C. Zheng, and P. Sun, “A high–efficiency quasi–single–stage bridgeless electrolytic capacitor–free high–power AC–DC driver for supplying multiple LED strings in parallel,” IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5825–5836, Aug. 2016.
[28] J. C. W. Lam and P. K. Jain, “A high power factor, electrolytic capacitor–less ac–input LED driver topology with high frequency pulsating output current,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 943–955, Feb. 2015.
[29] D. Camponogara, D. R. Vargas, M. A. D. Costa, J. M. Alonso, J. Garcia, and T. Marchesan, “Capacitance reduction with an optimized converter connection applied to LED drivers,” IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 184–192, Jan. 2015.
[30] D. G. Lamar, J. Sebastian, M. Arias, and A. Fernandez, “On the limit of the output capacitor reduction in power–factor correctors by distorting the line input current,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1168–1176, March 2012.
[31] H. S. Kim, J. H. Jung, J. W. Baek, and H. J. Kim, “Analysis and design of a multioutput converter using asymmetrical PWM half–bridge flyback converter employing a parallel–series transformer,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3115–3125, Aug. 2013.
[32] J. H. Jung, “Feed–forward compensator of operating frequency for APWM HB flyback converter,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 211–223, Jan. 2012.
[33] G. Y. Jeong, “High efficiency asymmetrical half–bridge flyback converter using a new voltage–driven synchronous rectifier,” IET Power Electron., vol. 3, no. 1, pp. 18–32, Jan. 2010.
[34] T. M. Chen and C. L. Chen, “Analysis and design of asymmetrical half bridge flyback converter,” IET Electric Power Appl., vol. 149, no. 6, pp. 433–440, Nov. 2002.
[35] T. M. Chen and C. L. Chen, “Characterization of asymmetrical half bridge flyback converter,” IEEE Power Electronics Specialists Conference, 2002, pp. 921–926.
[36] S. H. Yang, C. H. Meng, C. C. Chiu, C. W. Chang, K. H. Chen, Y. H. Lin, S. R. Lin, and T. Y. Tsai, “A buck power factor correction converter with predictive quadratic sinusoidal current modulation and line voltage reconstruction,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5912–5920, Sep. 2016.
[37] K. Mahmud and L. Tao, “Power factor correction by PFC boost topology using average current control method,” IEEE Global High Tech Congress on Electronics, 2013, pp. 16–20.
[38] J. P. Gegner and C. Q. Lee, “Linear peak current mode control: a simple active power factor correction control technique for continuous conduction mode,” IEEE Power Electronics Specialists Conference, 1996, pp. 196–202.
[39] C. P. Tung, K. W. Wang, K. W. Ho, P. W. Chow, W. T. Fa, W. T. Chan, and S. H. Chung, “Flyback PFC with a series–pass module in cascode structure for input current shaping,” IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5362–5377, June 2019.
[40] P. S. Ninkovic, “A novel constant–frequency hysteresis current control of PFC converters,” IEEE International Symposium on Industrial Electronics, 2002, pp. 1059–1064.
[41] K. Yao, Y. Wang, J. Guo, and K. Chen, “Critical conduction mode boost PFC converter with fixed switching frequency control,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6845–6857, Aug. 2018.
[42] C. Zhao, J. Zhang, and X. Wu, “An improved variable on–time control strategy for a CRM flyback PFC converter, “IEEE Trans. Power Electron., vol. 32, no. 2, pp. 915–919, Feb. 2017.
[43] A. H. Memon, K. Yao, Q. Chen, J. Guo, and W. Hu, “Variable–on–time control to achieve high input power factor for a CRM–integrated buck–flyback PFC converter,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5312–5322, July 2017.
[44] J. Yang, J. Zhang, X. Wu, Z. Qian, and M. Xu, “Performance comparison between buck and boost CRM PFC converter,” IEEE Control and Modeling for Power Electronics, 2010, pp. 1–5.
[45] K. H. Liu and Y. L. Lin, “Current waveform distortion in power factor correction circuits employing discontinuous–mode boost converters,” IEEE Power Electronics Specialists Conference, 1989, pp. 825–829.
[46] Q. Li, K. Yao, J. Song, H. Xu, and Y. Han, “A series diode method of suppressing parasitic oscillation for boost PFC converter operated in discontinuous conduction mode,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 407–424, Jan. 2018.
[47] K. Yao, Q. Li, and J. Lv, “DCM boost PFC converter with optimum utilization control of switching cycles,” IEEE Energy Conversion Congress and Exposition, 2015, pp. 2048–2055.
[48] J. Yang, A. N. Faris, and W. Zhang, “Operation analysis for buck PFC converter in discontinuous capacitor voltage mode,” IEEE Power Electronics and Application Conference and Exposition, 2014, pp. 1467–1472.
[49] Y. Ohnuma and J. I. Itoh, “A novel single–phase buck PFC AC–DC converter using an active buffer,” IEEE Energy Conversion Congress and Exposition, 2012, pp. 4223–4229.
[50] L. Solero, V. Serrao, M. Montuoro, and A. Romanelli, “Low THD variable load buck PFC converter,” IEEE Power Electronics Specialists Conference, 2008, pp. 906–912.
[51] X. Xie, J. Wang, C. Zhao, Q. Lu, and S. Liu, “A novel output current estimation and regulation circuit for primary side controlled high power factor single–stage flyback LED driver,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4602–4612, Nov. 2012.
[52] H. S. Athab, D. D. C. Lu, and K. Ramar, “A single–switch AC/DC flyback converter using a CCM/DCM quasi–active power factor correction front–end,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1517–1526, March 2012.
[53] Y. C. Chang and C. M. Liaw, “Design and control for a charge–regulated flyback switch–mode rectifier,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 59–74, Jan. 2009.
[54] C. R. Lee, W. T. Tsai, and H. S. Chung, “A buck–type power–factor–correction circuit,” IEEE Power Electronics and Drive Systems, 2013, pp. 586–590.
[55] Y. C. Li, F. C. Lee, Q. Li, X. Huang, and Z. Liu, “A novel AC–to–DC adaptor with ultra–high power density and efficiency,” IEEE Applied Power Electronics Conference and Exposition, 2016, pp. 1853–1860.
[56] Q. Hu and R. Zane, “Minimizing required energy storage in off–line LED drivers based on series–input converter modules,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2887–2895, Oct. 2011.
[57] F. Wang, L. Li, Y. Zhong, and X. Shu, “Flyback–based three–port topologies for electrolytic capacitor–less LED drivers,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5818–5827, July 2017.
[58] P. J. Villegas, J. Sebastian, M. Hernando, F. Nuno, and J. A. Martinez, “Average current mode control of series–switching post–regulators used in power factor correctors,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 813–819, Sep. 2000.
[59] W. Y. Choi and J. S. Yoo, “A bridgeless single–stage half–bridge AC/DC converter,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3884–3895, Dec. 2011.
[60] T. F. Wu, J. C. Hung, S. Y. Tseng, and Y. M. Chen, “A single–stage fast regulator with PFC based on an asymmetrical half–bridge topology,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 139–150, Feb. 2005.
[61] S. K. Ki and D. D. C. Lu, “Implementation of an efficient transformerless single–stage single–switch AC/DC converter,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4095–4105, Dec. 2010.
[62] Y. Chen, Z. Zhong, and Y. Kang, “Design and implementation of a transformerless single–stage single–switch double–buck converter with low dc–link voltage, high step–down, and constant input power factor features,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6660–6671, Dec. 2014.
[63] S. K. Ki and D. D. C. Lu, “A high step–down transformerless single–stage single–switch AC/DC converter,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 36–45, Jan. 2013.
[64] J. M. Alonso, M. A. D. Costa, and C. Ordiz, “Integrated buck–flyback converter as a high–power–factor off–line power supply,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1090–1100, March 2008.
[65] Y. Sun, Y. Liu, M. Su, W. Xiong, and J. Yang, “Review of active power decoupling topologies in single–phase systems,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4778–4794, July 2016.
[66] Y. Yang, X. Ruan, L. Zhang, J. He, and Z. Ye, “Feed–forward scheme for an electrolytic capacitor–less AC–DC LED driver to reduce output current ripple,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5508–5517, Oct. 2014.
[67] K. W. Lee, Y. H. Hsieh, and T. J. Liang, “A current ripple cancellation circuit for electrolytic capacitor–less AC–DC LED driver,” IEEE Applied Power Electronics Conference and Exposition, 2013, pp. 1058–1061.
[68] S. Wang, X. Ruan, K. Yao, S. C. Tan, Y. Yang, and Z. Ye, “A flicker–free electrolytic capacitor–less AC–DC LED driver,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4540–4548, Nov. 2012.
[69] Q. Hu and R. Zane, “Off–line LED driver with bidirectional second stage for reducing energy storage,” IEEE Energy Conversion Congress and Exposition, 2011, pp. 2302–2309.
[70] J. He, X. Ruan, and L. Zhang, “A flicker–free electrolytic capacitor–less AC–DC LED driver,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 320–324, Jan. 2017.
[71] K. Yao, X. Zhou, F. Yang, S. Yang, C. Cao, and C. Mao, “Optimum third current harmonic during nondead zone and its control implementation to improve PF for DCM buck PFC converter,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9238–9248, Dec. 2017.
[72] B. Wang, X. Ruan, K. Yao, and M. Xu, “A method of reducing the peak–to–average ratio of LED current for electrolytic capacitor–less AC–DC drivers,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 592–601, March 2010.
[73] L. Gu, X. Ruan, M. Xu, and K. Yao, “Means of eliminating electrolytic capacitor in AC/DC power supplies for LED lightings,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1399–1408, May 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56794-
dc.description.abstract本論文致力於縮減單級交流/直流功率因數校正轉換器之輸出電容值,以便達成縮小體積、降低成本、提高功率密度等功能要求。藉由電路架構的改進與控制策略的創新,兩種不同研究方向在本論文中被提出,用以達成相同的輸出電容縮減研究目標。
首先,在電路架構的研究上,本論文提出一個單級改良型非對稱半橋返馳式轉換器 (asymmetrical half-bridge flyback converter, AHBFC),乃是結合降壓型功率因數校正器、儲能電路與傳統型非對稱半橋返馳式轉換器而成。此改良型AHBFC具有儲能電容,能降低96 %之輸出電容值。在全輸入電壓範圍時,依舊達成穩定的電壓輸出。另外,不需要額外的控制電路,即可達到功率因數趨近於1與低總諧波失真的規範要求。同時保有功率半導體元件零電壓切換與零電流切換的特性,維持電路整體的轉換效率。
在控制策略的研究上,則提出一種創新的前饋電壓控制策略 (feedforward voltage control strategy, FVCS),使用前饋電壓訊號讓輸入電流產生失真,論文中提供之設計範例能降低40 %之輸出電容值。此控制策略不需要傳統諧波電流注入法之電流感測電路與諧波注入電路,因此可以大量簡化控制電路的複雜度。
本論文中,首先介紹交流/直流功率因數校正轉換器,與減少電容值之現有技術,接著針對提出之轉換器與控制策略,提供詳盡的理論分析、數學推導、設計準則與電腦模擬。最後,分別透過原型電路之硬體實作與實驗結果,驗證本論文所提出之改良型AHBFC與FVCS在全輸入電壓範圍之可行性及其達成輸出電容縮減之功效。
zh_TW
dc.description.abstractThis dissertation aims to reduce the output capacitance for single-stage AC-DC power factor correction (PFC) converters for achieving small size, low cost, and high power density. In order to reduce the output capacitance, this dissertation proposes two approaches, a modified circuit topology and a novel control strategy.
Firstly, based on the circuit topology, a modified asymmetrical half-bridge flyback converter (AHBFC) which integrates a buck-type PFC, an energy buffer, and a conventional AHBFC is proposed. Due to the storage capacitor of the modified AHBFC, the required output capacitance can be reduced to 96 % of the rated one. Under universal input voltage range, the converter can still achieve constant output voltage. In addition, without an extra control circuit, the converter can achieve near unity power factor (PF) and low total harmonic distortion (THD). Meantime, the zero-voltage switching (ZVS) and zero-current switching (ZCS) characteristics of the power semiconductor devices can be kept to maintain the overall conversion efficiency of the converter.
As for the control strategy, a feedforward voltage control strategy (FVCS) is proposed to distort the input current by utilizing the feedforward voltage signal. For a design example provided in this dissertation, the required output capacitance can be reduced to 40 % of the rated one. Without the required current sense circuit and harmonic injection circuit of the conventional harmonic current injection technique, the complexity of the control circuit can be reduced.
In this dissertation, some prior arts for AC-DC PFC converters and capacitance reduction methods are introduced. Then, the detailed theoretical analyses, mathematical derivations, design procedures, and computer simulations for the proposed converter and control strategy are provided. Finally, hardware implementations and experimental results of the prototype circuits are presented to verify the feasibility of the proposed modified AHBFC and FVCS under universal input voltage range and their effectiveness on output capacitance reduction.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:48:53Z (GMT). No. of bitstreams: 1
U0001-2307202023301900.pdf: 3326509 bytes, checksum: cb6d12dba30b506bae60773b191214a5 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
ABBREVIATIONS xi
Chapter 1. Introduction 1
1.1. Background 1
1.2. Motivation 4
1.3. Dissertation Outline 5
Chapter 2. Literature Survey 6
2.1. Review of AC-DC PFC Converters 6
2.1.1. PFC Converters 6
2.1.2. Capacitance and Voltage Ripple 9
2.2. Review of Capacitance Reduction 12
2.2.1. Additional Energy Conversion 12
2.2.2. Active Power Decoupling Method 14
2.2.3. Harmonic Current Injection Technique 18
Chapter 3. Proposed Output Capacitance Reduction 20
3.1. The Proposed Modified AHBFC 20
3.1.1. Circuit Configuration 20
3.1.2. Steady-State Analysis 28
3.1.3. Parameter Design 32
3.1.4. Simulation Results 34
3.2. The Proposed FVCS 37
3.2.1. Mathematical Derivation 37
3.2.2. Harmonic Current Limitation 40
3.2.3. Parameter Design 44
3.2.4. Simulation Results 49
Chapter 4. Hardware Implementation and Experimental Results of Modified AHBFC 52
4.1. Component Selection 52
4.1.1. Power Stage 52
4.1.2. Control Stage 58
4.2. Experimental Results 61
4.2.1. Output Voltage Regulation 62
4.2.2. ZVS and ZCS 63
4.2.3. Performance Measurement 65
Chapter 5. Hardware Implementation and Experimental Results of FVCS 67
5.1. Component Selection 67
5.1.1. Power Stage 67
5.1.2. Control Stage 71
5.2. Experimental Results 75
5.2.1. Output Ripple Reduction 76
5.2.2. Performance Measurement 79
Chapter 6. Conclusions and Suggested Future Research 80
6.1. Summary and Major Contributions 80
6.2. Suggestions for Future Research 81
REFERENCES 82
Vita 92
dc.language.isoen
dc.subject交流/直流轉換器zh_TW
dc.subject功率因數校正zh_TW
dc.subject非對稱半橋返馳式轉換器zh_TW
dc.subject前饋電壓控制zh_TW
dc.subject電容縮減zh_TW
dc.subjectpower factor correction (PFC)en
dc.subjectasymmetrical half-bridge flyback converteren
dc.subjectfeedforward voltage controlen
dc.subjectcapacitance reductionen
dc.subjectAC-DC converteren
dc.title單級交流/直流轉換器之輸出電容縮減zh_TW
dc.titleOutput Capacitance Reduction for Single-Stage AC-DC Convertersen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.author-orcid0000-0002-6661-6874
dc.contributor.oralexamcommittee邱煌仁(Huang-Jen Chiu),賴炎生(Yen-Shin Lai),陳景然(Ching-Jan Chen),金藝璘(Katherine Ann Kim),羅有綱(Yu-Kang Lo)
dc.subject.keyword交流/直流轉換器,功率因數校正,非對稱半橋返馳式轉換器,前饋電壓控制,電容縮減,zh_TW
dc.subject.keywordAC-DC converter,power factor correction (PFC),asymmetrical half-bridge flyback converter,feedforward voltage control,capacitance reduction,en
dc.relation.page93
dc.identifier.doi10.6342/NTU202001806
dc.rights.note有償授權
dc.date.accepted2020-07-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-2307202023301900.pdf
  未授權公開取用
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved