Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56788
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋(Jian-Jang Huang)
dc.contributor.authorWei-Jen Lien
dc.contributor.author李偉任zh_TW
dc.date.accessioned2021-06-16T05:48:30Z-
dc.date.available2014-09-03
dc.date.copyright2014-09-03
dc.date.issued2014
dc.date.submitted2014-08-09
dc.identifier.citation[1-1] Jerming Tseng (2001). Immunology (1st ed.). Taiwan R.O.C. New Wun Chin. ISBN 986-150-040-5.
[1-2] J.L. Pelley, A.S. Daar, M.A. Saner (2009). “State of academic knowledge on toxicity and biological fate of quantum dots” Toxicological Sciences: an official journal of the Society of Toxicology (112):276-296.
[1-3] K. Saha, S.T. Kim, B. Yan, O.R. Miranda, F.S. Alfonso, D. Shlosman, V.M. Rotello (2013). “Surface Functionality of Nanoparticles Determines Cellular Uptake Mechanisms in Mammalian Cells” Small (9):300-305.
[1-4] Y.M. Chu, C.C. Lin, H.C. Chang, C.M. Li, C.X. Guo (2011). “TiO2 nanowire FET device: Encapsulation of biomolecules by elecro polymerized pyrrole propylic acid” Biosensors and Bioelectronics (26): 2334-2340.
[1-5] T.P. Chen, S.P. Chang, F.Y. Hung, S.J. Chang, Z.S. Hu, K.J. Chen (2013). “Simple Fabrication Process for 2D ZnO Nanowalls and Their Potential Application as a Methane Sensor” Sensors (13): 3941-3950.
[1-6] Y.H. Wang, H.X. Yang, H.M. Xu (2010). “DNA-like dye-sensitized solar cells based on TiO2 nanowire-covered nanotube bilayer film electrodes” Materials Letters (64): 164-166.
[1-7] B. Tan, Y.Y. Wu (2006). “Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites” J. Phys. Chem. B (110): 15932-15938.
[1-8] A. Choi, K. Kim, H. Jung, S. Y. Lee (2010). “ZnO nanowires biosensors for detection of biomolecular interactions in enhancement mode” Sensors and Actuators B (148):577-582.
[1-9] W.C. Tian, Y.H. Ho, C.H. Chen, and C.Y. Kuo (2013). “Sensing Performance of Precisely Ordered TiO2 Nanowire Gas Sensors Fabricated by Electron-Beam Lithography” Sensors (13):865-874.
[1-10] G.Z. Shen, D. Chen (2010). “One-dimensional nanostructures for electronic and optoelectronic devices” Fron. Optoelectron. China 3(2): 125-138.
[2-1] X.D. Wang, J.H. Song, C.J. Summers, J.H. Ryou, P. Li, R.D. Dupuis, Z.L. Wang (2006). “Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact: A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications” J. Phys. Chem. B (110) 7720.
[2-2] Corce CM. (2008). “Oncongenes and cancer” N. Engl. J. Med. 358(5): 502-11.
[2-3] http://www.ncbi.nlm.nih.gov/books/NBK27144/#325
[2-4] X. Chen, G.J. Cheng, S.J. Dong (2001). “Amperometric tyrosinase biosensor based on a sol–gel-derived titanium oxide–copolymer composite matrix for detection of phenolic compounds” Analyst (126) 1728.
[2-5] N.I. Goldstein, M. Prewett, K. Zuklys, et al. (1995). “Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model” Clin. Cacner Res. (1):1311-1318.
[2-6] J.R. Grandis, M.F. Melhem, W.E. Gooding, et al. (1998). “Levels of TGF-αProtein in Head and Neck Squamous Cell Carcinoma and Patient Survival” J. of the National Cancer Institute, Vol. 90, No. 11.
[2-7] K. Laimer, F. Spizzo, G. Gastl, et al. (2007). “High EGFR expression predicts poor prognosis in patients with squamous cell carcinoma of the oral cavity and oropharynx: A TMA-based immunohistochrmical analysis” Oral Oncology (43), 193-198.
[3-1] Amy L, Linsebigler. G. Lu, John T., Yates, Jr. (1995). “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results” Chem. Rev. (95): 735-758.
[3-2] T. Kubo, K. Sugimoto, T. Onoki, Y. Yamasaki, and A. Nakahira (2009). “Effects of Additives on Microstructures of Titanate Based Nanotubes Prepared by the Hydrothermal Process” Materials Transactions (50): 1054-1059.
[3-3] X. Chen, S. S. Mao (2007). “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications” Chem. Rev. (107): 2891-2959.
[3-4] T. Kasuga, M. Hiramatsu, et al. (1998). “Fromation of Titanium Oxide Nanotube” Lanumuir (14): 3160-3163.
[3-5] Z. R. Tian, James A. Voigt, et al. (2003). “Large Oriented Arrays and Continuous Films of TiO2-Based Nanotubes” J. AM. CHEM. SOC. (125): 12384-12385.
[3-6] E. Fuchs, K. Weber (1994) “INTERMEDIATE FILAMENTS: Structure, Dynamics, Function, and Disease” Annu. Rev. Biochem. (63): 345-382.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56788-
dc.description.abstract在現今癌症檢測技術中,最常見為螢光染色法,然而螢光染色法存在許多缺點,例如螢光衰退、螢光顏色的限制與細胞自體螢光分辨上的困難,這些都使得醫師在手術的過程中難以達成癌症細胞之即時檢測。雖然有許多團隊利用量子點並藉由表面改質的方式來解決這些困難,然而量子點在製備以及表面改質的過程不僅會改變半導體特性,並且製程昂貴。
因此,我們提出了利用氧化鋅與二氧化鈦奈米線應用於癌症細胞之辨識,並以半導體光源來代替傳統螢光染色之有機螢光物質。氧化鋅與二氧化鈦有著優異的光學特性並常應用於生醫相關研究及產品,且氧化鋅與二氧化鈦奈米線對於蛋白質皆有很高的親和力,因此我們利用具有特異性的生物抗體與奈米線的接合形成了特殊的生物標記並藉由光致發光系統以及顯微拍攝技術,從影像與頻譜的雙重鑑定,可成功辨別癌症細胞與正常細胞。
此外,我們也做了一系列的量化實驗,將生物標記的濃度、有效檢測細胞數量範圍與取得之光學頻譜分析比較並找出規律,最後更模擬真實細胞分布狀況將正常細胞與癌症細胞共同培養並且按照不同比例做癌症細胞檢測實驗,這些實驗數據與整理之規律性將可提供外科醫師在臨床手術上能夠即時辨識癌症細胞。
在這篇論文中,我們提出以半導體光源來替代有機螢光物質來改善現有螢光染色法,並利用氧化鋅與二氧化鈦奈米線與相對應抗體接合而形成之生物標記成功標識出癌症細胞與正常細胞,讓醫師能在臨床手術中進行癌症細胞之即時檢測,且量化實驗的結果也使即時檢測之技術更加系統化。
zh_TW
dc.description.abstractAmong cancer cell detection methods, fluorescence microscopy cancer detection is one of the most common methods. However, there are many disadvantages for fluorescence cancer detection such as the phototoxicity, the limited number of available fluorescent channels, and the overlap of the excitation and emission spectra of the stains. Furthermore, under a constant light illumination, it possesses the issue of photobleaching, making real-time surgery difficult. Many groups have reported that quantum dots can conquer these problems; however, the quantum dots method requires surface modification and the surface state induced by modification changes the property of semiconductor material. Moreover, all the processes cost high.
To overcome these issues, the semiconductor light sources are alternative choices. ZnO and TiO2 nanowires connected with specific antibodies are proposed to identify cancer cells and normal cells, replacing the organic fluorescent substances in the traditional cancer detection method. ZnO and TiO2 have exceptional optical properties, and they are often applied to biomedical research and commercial products. In addition, duto to great affinities between both ZnO and TiO2 nanowires and many proteins, ZnO and TiO2 nanowires bounded to specific antibodies are regarded as biomarkers to distinguish cancer cells from normal cells. Furthermore, from PL spectra and bio-images, our idea for cancer cell detection by semiconductor nanowires was confirmed.
Then, a series of quantitative analyses, including biomarker concentration limit, the valid range of cell numbers, and co-culture case to simulation the real situation were conducted to examine the relationship between the optical response from biomarkers and cell numbers. The data from quantitative analyses were expected to provide a reference for surgeon for real-time cancer cell detection while performing the surgery.
In this thesis, we reported a novel cancer cell detection technology by using ZnO and TiO2 nanowires connected to specific antibodies to distinguish cancer cells from normal cells, leading successful real-time cancer cell detection during cancer resection. Moreover, a series of quantitative experiments will provide physicians with key parameters and thus systemized the real-time cancer cell detection.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:48:30Z (GMT). No. of bitstreams: 1
ntu-103-R00941069-1.pdf: 6847882 bytes, checksum: 634ac2145462739fceae234963b57518 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝……………………………………………………………………………I
摘要……………………………………………………………………………II
Abstract………………………………………………………………………………IV
Chapter 1 Introduction
1-1 Preface……………………………………………………………………………1
1-2 Motivation…………………………………………………………………………3
1-3 Thesis structure…………………………………………………………………………7
References…………………………………………………………………………8
Chapter 2 Tumor detection by ZnO nanowires
2-1 Introduction…………………………………………………………………………10
2-2 Synthesis of ZnO nanowires…………………………………………………………………………13
2-3 Nanowires binding to antibodies experiments…………………………………………………………………………17
2-4 Preliminary experiments of cancer cells detection by ZnO/EGFR antibody biomarkers…………………………………………………………………………23
2-4-1 An introduction to Epidermal Growth Factor Receptors (EGFR) antibodies and cell lines: SCC and Hs68…………………………………………………………………………23
2-4-2 ZnO/EGFR antibody biomarkers fabrication…………………………………………………………………………24
2-4-3 Cancer cells detection by ZnO/EGFR antibody biomarkers…………………………………………………………………………27
References…………………………………………………………………………34
Chapter 3 TiO2 nanowire fabrication
3-1 Historical review…………………………………………………………………………36
3-2 TiO2 synthesis by hydrothermal methods…………………………………………………………………………38
3-2-1 Introduction…………………………………………………………………………38
3-2-2 Hydrothermal methods for TiO2 nanowires…………………………………………………………………………39
3-2-3 TiO2 optical property enhancement by annealing process…………………………………………………………………………44
3-3 Biocompatibility for TiO2 nanowires…………………………………………………………………………47
3-4 TiO2/Vimentin antibody biomarkers fabrication…………………………………………………………………………48
References…………………………………………………………………………49
Chapter 4 Cancer cell detection by bi-color ZnO and TiO2 nanowires
4-1 Introduction…………………………………………………………………………50
4-2 Co-culture process and cancer cell detection procedures…………………………………………………………………………52
4-3 Discussion for cancer cell detection—bio-images…………………………………………………………………………55
4-4 Discussion for cancer cell detection—quantitative analyses…………………………………………………………………………57
4-4-1 An overview of quantitative analyses…………………………………………………………………………57
4-4-2 Quantitative analyses for nanowire concentration limits…………………………………………………………………………59
4-4-3 Quantitative analyses for valid range of cell numbers…………………………………………………………………………63
4-4-4 Quantitative analyses for real condition simulation—co-culture cases…………………………………………………………………………65
Chapter 5 Conclusions…………………………………………………………………………68
dc.language.isoen
dc.subject生物量化zh_TW
dc.subject氧化鋅zh_TW
dc.subject水熱法zh_TW
dc.subject奈米線zh_TW
dc.subject癌症細胞檢測zh_TW
dc.subject二氧化鈦zh_TW
dc.subjectquantitative analysisen
dc.subjectHydrothermal methoden
dc.subjectZnOen
dc.subjectTiO2en
dc.subjectNanowiresen
dc.subjectCancer cell detectionen
dc.title利用雙重顏色氧化鋅與二氧化鈦奈米線進行癌症細胞辨識zh_TW
dc.titleCancer Cell Identification by Bi-color ZnO and TiO2 Nanowiresen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊宗霖(Tsung-Lin Yang),宋孔彬(Kung-Bin Sung),林恭如(Gong-Ru Lin)
dc.subject.keyword癌症細胞檢測,水熱法,氧化鋅,二氧化鈦,奈米線,生物量化,zh_TW
dc.subject.keywordCancer cell detection,Hydrothermal method,ZnO,TiO2,Nanowires,quantitative analysis,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2014-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
6.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved