Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56787
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳家麟
dc.contributor.authorCheng-Yang Wuen
dc.contributor.author吳政陽zh_TW
dc.date.accessioned2021-06-16T05:48:27Z-
dc.date.available2015-08-16
dc.date.copyright2014-08-16
dc.date.issued2014
dc.date.submitted2014-08-09
dc.identifier.citation[1] C. Anderson, P. Burt, and G. Van Der Wal. Change detection and tracking using
pyramid transform techniques. In 1985 Cambridge Symposium, pages 72–78. International
Society for Optics and Photonics, 1985.
[2] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic. Robust discriminative response
map fitting with constrained local models. In Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on, pages 3444–3451. IEEE, 2013.
[3] P. N. Belhumeur, J. P. Hespanha, and D. Kriegman. Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 19(7):711–720, 1997.
[4] V. Bettadapura. Face expression recognition and analysis: the state of the art. arXiv
preprint arXiv:1203.6722, 2012.
[5] G. de Haan and V. Jeanne. Robust pulse rate from chrominance-based rppg. IEEE
transactions on bio-medical engineering, 60(10):2878, 2013.
[6] H. Gunes and B. Schuller. Categorical and dimensional affect analysis in continuous
input: Current trends and future directions. Image and Vision Computing,
31(2):120–136, 2013.
18
[7] S. Jarlier, D. Grandjean, S. Delplanque, K. N’diaye, I. Cayeux, M. I. Velazco,
D. Sander, P. Vuilleumier, and K. R. Scherer. Thermal analysis of facial muscles
contractions. Affective Computing, IEEE Transactions on, 2(1):2–9, 2011.
[8] L. Kong, Y. Zhao, L. Dong, Y. Jian, X. Jin, B. Li, Y. Feng, M. Liu, X. Liu, and
H. Wu. Non-contact detection of oxygen saturation based on visible light imaging
device using ambient light. Optics express, 21(15):17464–17471, 2013.
[9] K. P. Murphy. Machine learning: a probabilistic perspective. 2012.
[10] B. R. Nhan and T. Chau. Classifying affective states using thermal infrared imaging
of the human face. Biomedical Engineering, IEEE Transactions on, 57(4):979–987,
2010.
[11] M.-Z. Poh, D. J. McDuff, and R. W. Picard. Non-contact, automated cardiac pulse
measurements using video imaging and blind source separation. Optics Express,
18(10):10762–10774, 2010.
[12] M.-Z. Poh, D. J. McDuff, and R. W. Picard. Advancements in noncontact, multiparameter
physiological measurements using a webcam. Biomedical Engineering,
IEEE Transactions on, 58(1):7–11, 2011.
[13] M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic. A multimodal database for
affect recognition and implicit tagging. Affective Computing, IEEE Transactions on,
3(1):42–55, 2012.
[14] N. Sun, M. Garbey, A. Merla, and I. Pavlidis. Imaging the cardiovascular pulse.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 2, pages 416–421. IEEE, 2005.
[15] L. Tarassenko, M. Villarroel, A. Guazzi, J. Jorge, D. Clifton, and C. Pugh. Noncontact
video-based vital sign monitoring using ambient light and auto-regressive
models. Physiological measurement, 35(5):807, 2014.
[16] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of cognitive neuroscience,
3(1):71–86, 1991.
[17] W. Verkruysse, L. O. Svaasand, and J. S. Nelson. Remote plethysmographic imaging
using ambient light. Optics Express, 16(26):21434–21445, 2008.
[18] G. Welch and G. Bishop. An introduction to the kalman filter, 1995.
[19] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and W. T. Freeman. Eulerian
video magnification for revealing subtle changes in the world. ACM Transactions
on Graphics (Proc. SIGGRAPH 2012), 31(4), 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56787-
dc.description.abstract本論文提出了一利用臉部膚色之時空變異特性的情緒分類方式。過去使用生理訊號分類情緒的方法往往會受到訊號取得不易的限制,或者是用以取得訊號的裝置昂貴,從而使此無法實用。
我們在本論文中利用了遠距生理訊號量測的原理,透過一空間-時間濾波的方式,將臉部之生理訊號,從由一般攝影機所拍攝的影片中擷取出來。並用以分類情緒。以此方式擷取的訊號,在實驗中的表現,與由儀器量測的訊號效能相彷甚至更佳,證明了以此種訊號分類情緒方法的可行性。
zh_TW
dc.description.abstractIn this thesis, we proposed a framework for classifying emotions by utilizing the face skin color variations. Previous approaches of classifying emotions with philological signal are limited by the difficulty of acquiring such signals in practice. The proposed method use a spatial-temporal filter to extract the face skin color variation signal in a video which is recorded by a consumer level camera and classify emotions with the extracted signal. The proposed approach is evaluated on a public database MAHNOB-HCI-Tagging and compared with the result provided by the database provider. The results showed the feasibility of the proposed approach, which implies the possibility of emotion classification by remotely estimated physiological signals in face.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:48:27Z (GMT). No. of bitstreams: 1
ntu-103-R01944001-1.pdf: 4109120 bytes, checksum: 0030127353273e8fb30ec5a624f0cae0 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 i
Abstract ii
1 緒論 1
2 文獻回顧 3
2.1 非接觸式生理訊號量測 3
2.2 熱感影像情緒分類 3
3 影片中的臉部膚色時空特性變化資訊 4
3.1 前處理 5
3.1.1 臉部基準點偵測 5
3.1.2 臉部對齊 5
3.2 空間-時間域濾波 6
3.2.1 空間濾波 6
3.2.2 標準化 6
3.2.3 時域濾波 7
3.3 臉部膚色時空變化訊號表示方式 7
3.3.1 臉部膚色變化能量圖 7
3.3.2 特徵提取 8
4 實驗結果與討論 9
4.1 實驗設定 9
4.1.1 情緒維度 9
4.1.2 MAHNOB-HCI-Tagging 資料庫 10
4.1.3 分類演算法 11
4.1.4 交叉驗證方式 11
4.2 實驗結果 12
4.2.1 臉部遮罩 14
4.2.2 色彩空間 15
4.2.3 系統限制 16
5 總結 17
參考文獻 18
dc.language.isozh-TW
dc.subject生理訊號zh_TW
dc.subject膚色zh_TW
dc.subject情緒分類zh_TW
dc.subjectSkin Coloren
dc.subjectPhysiological Signalen
dc.subjectEmotion Classificationen
dc.title基於臉部膚色時空特性變化資訊之情緒分類zh_TW
dc.titleEmoInside: Emotion Classification from Spatial-Temporal Variations of Skin Color in Faceen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文進,鄭文皇,胡敏君
dc.subject.keyword情緒分類,膚色,生理訊號,zh_TW
dc.subject.keywordEmotion Classification,Skin Color,Physiological Signal,en
dc.relation.page20
dc.rights.note有償授權
dc.date.accepted2014-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved