Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56783
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童世煌(Shih-Huang Tung)
dc.contributor.authorChia-Yi Linen
dc.contributor.author林佳怡zh_TW
dc.date.accessioned2021-06-16T05:48:12Z-
dc.date.available2020-08-04
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-24
dc.identifier.citation1.Ruckenstein, E.; Nagarajan, R., Critical micelle concentration. Transition point for micellar size distribution. The Journal of Physical Chemistry 1975, 79 (24), 2622-2626.
2.Israelachvili, J., Intermolecular and Surface Forces 3rd Edition. Academic Press: 2011.
3.Krimm, S., The hydrophobic effect: Formation of micelles and biological membranes. Journal of Polymer Science 1980, 18 (10), 687.
4.Scartazzini, R.; Luisi, P. L., Organogels from lecithins. The Journal of Physical Chemistry 1988, 92 (3), 829-833.
5.Willard, D. M.; Riter, R. E.; Levinger, N. E., Dynamics of Polar Solvation in Lecithin/Water/Cyclohexane Reverse Micelles. Journal of the American Chemical Society 1998, 120 (17), 4151-4160.
6.Shumilina, E. V.; Khromova, Y. L.; Shchipunov, Y. A., A study of the structure of lecithin organic gels by IR spectroscopy with Fourier-transform. Zhurnal Fizicheskoi Khimii 2000, 74, 1210-1219.
7. Shchipunov, Y. A., Lecithin organogel: A micellar system with unique properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 183-185, 541-554.
8.Tung, S.-H.; Huang, Y.-E.; Raghavan, S. R., Contrasting Effects of Temperature on the Rheology of Normal and Reverse Wormlike Micelles. Langmuir 2007, 23 (2), 372-376.
9.Lin, S.-T.; Lin, C.-S.; Chang, Y.-Y.; Whitten, A. E.; Sokolova, A.; Wu, C.-M.; Ivanov, V. A.; Khokhlov, A. R.; Tung, S.-H., Effects of Alkali Cations and Halide Anions on the Self-Assembly of Phosphatidylcholine in Oils. Langmuir 2016, 32 (46), 12166-12174.
10.Lin, C.-S., Self-assembled behaviors of lecithin/inorganic salt in thin films. Master Thesis in National Taiwan University 2016, 1-69.
11.Chang, H.-M.; Lin, C.-Y.; Tung, S.-H., Correlation between temperature-dependent rheology and electrostatic interactions in reverse wormlike micelles induced by inorganic salts. Soft Matter 2020, 16 (14), 3505-3513.
12.Terech, P.; Furman, I.; Weiss, R. G.; Bouas-Laurent, H.; Desvergne, J. P.; Ramasseul, R., Gels from small molecules in organic solvents : structural features of a family of steroid and anthryl-based organogelators. Faraday Discuss 1995, 101, 345-358.
13.Mukkamala, R.; Weiss, R. G., Physical Gelation of Organic Fluids by Anthraquinone−Steroid-Based Molecules. Structural Features Influencing the Properties of Gels. Langmuir 1996, 12 (6), 1474-1482.
14.Tung, S.-H.; Huang, Y.-E.; Raghavan, S. R., A New Reverse Wormlike Micellar System:  Mixtures of Bile Salt and Lecithin in Organic Liquids. Journal of the American Chemical Society 2006, 128 (17), 5751-5756.
15.Shrestha, L. K.; Sato, T.; Dulle, M.; Glatter, O.; Aramaki, K., Effect of Lipophilic Tail Architecture and Solvent Engineering on the Structure of Trehalose-Based Nonionic Surfactant Reverse Micelles. The Journal of Physical Chemistry B 2010, 114 (37), 12008-12017.
16.Shrestha, L.; Shrestha, R.; Abe, M.; Ariga, K., Reverse micelle microstructural transformations induced by oil and water. Soft Matter 2011, 7, 10017.
17.Njauw, C.-W.; Cheng, C.-Y.; Ivanov, V. A.; Khokhlov, A. R.; Tung, S.-H., Molecular Interactions between Lecithin and Bile Salts/Acids in Oils and Their Effects on Reverse Micellization. Langmuir 2013, 29 (12), 3879-3888.
18.Lee, H.-Y.; Diehn, K. K.; Ko, S. W.; Tung, S.-H.; Raghavan, S. R., Can Simple Salts Influence Self-Assembly in Oil? Multivalent Cations as Efficient Gelators of Lecithin Organosols. Langmuir 2010, 26 (17), 13831-13838.
19.Fujiwara, S.; Itoh, T.; Hashimoto, M.; Horiuchi, R., Molecular dynamics simulation of amphiphilic molecules in solution: Micelle formation and dynamic coexistence. The Journal of Chemical Physics 2009, 130 (14), 144901.
20.Imae, T.; Kamiya, R.; Ikeda, S., Formation of spherical and rod-like micelles of cetyltrimethylammonium bromide in aqueous NaBr solutions. Journal of Colloid and Interface Science 1985, 108 (1), 215-225.
21.Vinson, P. K.; Bellare, J. R.; Davis, H. T.; Miller, W. G.; Scriven, L. E., Direct imaging of surfactant micelles, vesicles, discs, and ripple phase structures by cryo-transmission electron microscopy. Journal of Colloid and Interface Science 1991, 142 (1), 74-91.
22.Danino, D.; Abezgauz, L.; Portnaya, I.; Dan, N., From Discs to Ribbons Networks: The Second Critical Micelle Concentration in Nonionic Sterol Solutions. The journal of physical chemistry letters 2016, 7.
23.Tung, S.-H.; Raghavan, S. R., Self-assembly of amphiphilic molecules in organic liquids. Doctor of Philosophy in University of Maryland 2007, 1-120.
24.Cates, M. E.; Candau, S. J., Statics and dynamics of worm-like surfactant micelles. Journal of Physics: Condensed Matter 1990, 2 (33), 6869-6892.
25.Comstock, M. J., Structure and Flow in Surfactant Solutions, Copyright, 1994 Advisory Board, Foreword. In Structure and Flow in Surfactant Solutions, Comstock, M. J., Ed. American Chemical Society: 1994; Vol. 578, pp i-vi.
26.Hadgiivanova, R., Aggregation of Amphiphilic Molecules in Solution : Thermodynamics, Metastability, and Kinetics. Doctor of Philosophy in Tel Aviv Univeristy 2009.
27.Hoffmann, H., Viscoelastic Surfactant Solutions. In Structure and Flow in Surfactant Solutions, American Chemical Society: 1994; Vol. 578, pp 2-31.
28.Raghavan, S. R.; Kaler, E. W., Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 2001, 17 (2), 300-306.
29.Maibaum, L.; Dinner, A. R.; Chandler, D., Micelle Formation and the Hydrophobic Effect. The Journal of Physical Chemistry B 2004, 108 (21), 6778-6781.
30.Førland, G. M.; Samseth, J.; Gjerde, M. I.; Høiland, H.; Jensen, A. Ø.; Mortensen, K., Influence of Alcohol on the Behavior of Sodium Dodecylsulfate Micelles. Journal of Colloid and Interface Science 1998, 203 (2), 328-334.
31.AJ, W.; MR, E.; PF, F., High-resolution NMR of encapsulated proteins dissolved in low-viscosity fluids. Proc Natl Acad Sci U S A 1998, 95 (26), 15299-15302.
32.Shchipunov, Y. A.; Shumilina, E. V., Lecithin bridging by hydrogen bonds in the organogel. Materials Science and Engineering: C 1995, 3 (1), 43-50.
33.Shchipunov, Y. A.; Shumilina, E. V., Lecithin organogels : Role of polar solvent and nature of intermolecular interactions. Colloid journal of the Russian Academy of Sciences 1996, 58 (1), 117-125.
34.Collins, K. D., Charge density-dependent strength of hydration and biological structure. Biophys J 1997, 72 (1), 65-76.
35.Collins, K. D., Ion hydration: Implications for cellular function, polyelectrolytes, and protein crystallization. Biophys Chem 2006, 119 (3), 271-81.
36.Huang, Y. X.; Tan, R. C.; Li, Y. L.; Yang, Y. Q.; Yu, L.; He, Q. C., Effect of Salts on the Formation of C(8)-Lecithin Micelles in Aqueous Solution. J Colloid Interface Sci. 2001, 236 (1), 28-34.
37.Shchipunov, Y. A.; Hoffmann, H., Growth, Branching, and Local Ordering of Lecithin Polymer-Like Micelles. Langmuir 1998, 14 (22), 6350-6360.
38.Cates, M. E., Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 1987, 20 (9), 2289-2296.
39.Cates, M. E., Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers). The Journal of Physical Chemistry 1990, 94 (1), 371-375.
40.Lequeux, F., Reptation of Connected Wormlike Micelles. Europhysics Letters (EPL) 1992, 19 (8), 675-681.
41.Appell, J.; Porte, G.; Khatory, A.; Kern, F.; Candau, S. J., Static and dynamic properties of a network of wormlike surfactant micelles (cetylpyridinium chlorate in sodium chlorate brine). J. Phys. II France 1992, 2, 1045-1052.
42.Khatory, A.; Kern, F.; Lequeux, F.; Appell, J.; Porte, G.; Morie, N.; Ott, A.; Urbach, W., Entangled versus multiconnected network of wormlike micelles. Langmuir 1993, 9 (4), 933-939.
43.Kern, F.; Zana, R.; Candau, S. J., Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium chloride in the presence of sodium salicylate and sodium chloride. Langmuir 1991, 7 (7), 1344-1351.
44.Fischer, P.; Rehage, H., Rheological Master Curves of Viscoelastic Surfactant Solutions by Varying the Solvent Viscosity and Temperature. Langmuir 1997, 13 (26), 7012-7020.
45.Yixiu, H.; Hong, Z.; Yongqiang, W.; Yongjun, M.; Hang, W., Rheological investigation on anionic wormlike micelles at high temperature. Journal of Molecular Liquids 2015, 211, 481-486.
46.Acharya, D. P.; Varade, D.; Aramaki, K., Effect of temperature on the rheology of wormlike micelles in a mixed surfactant system. Journal of Colloid and Interface Science 2007, 315 (1), 330-336.
47.Evans, D. F.; Wennerström, H., The colloidal domain : where physics, chemistry, biology, and technology meet. WILEY-VCH: 1999.
48.Nucci, N. V.; Vanderkooi, J. M., Temperature Dependence of Hydrogen Bonding and Freezing Behavior of Water in Reverse Micelles. The Journal of Physical Chemistry B 2005, 109 (39), 18301-18309.
49.Sun, L.; Wick, C. D.; Siepmann, J. I.; Schure, M. R., Temperature Dependence of Hydrogen Bonding:  An Investigation of the Retention of Primary and Secondary Alcohols in Gas−Liquid Chromatography. The Journal of Physical Chemistry B 2005, 109 (31), 15118-15125.
50.Jeng, U.-S.; Su, C. H.; Su, C.-J.; Liao, K.-F.; Chuang, W.-T.; Lai, Y.-H.; Chang, J.-W.; Chen, Y.-J.; Huang, Y.-S.; Lee, M.-T.; Yu, K.-L.; Lin, J.-M.; Liu, D.-G.; Chang, C.-F.; Liu, C.-Y.; Chang, C.-H.; Liang, K. S., A small/wide-angle X-ray scattering instrument for structural characterization of air–liquid interfaces, thin films and bulk specimens. Journal of Applied Crystallography 2010, 43, 110-121.
51.Dreiss, C., Wormlike micelles: Where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 2007, 3, 956-970.
52.Guinier, A.; Fournet, G., Small-Angle Scattering of X-rays. Acta Crystallographica 1956, (9), 839.
53.Kline, S. R., Reduction and analysis of SANS and USANS data using IGOR Pro. Journal of Applied Crystallography 2006, 39, 895-300.
54.Pedersen, J. S.; Schurtenberger, P., Scattering Functions of Semiflexible Polymers with and without Excluded Volume Effects. Macromolecules 1996, 29 (23), 7602-7612.
55.Pedersen, J. S., Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Advances in Colloid and Interface Science 1997, 70, 171-210.
56.Akutsu, H.; Seelig, J., Interaction of metal ions with phosphatidylcholine bilayer membranes. Biochemistry 1981, 20 (26), 7366-7373.
57.Altenbach, C.; Seelig, J., Calcium binding to phosphatidylcholine bilayers as studied by deuterium magnetic resonance. Evidence for the formation of a calcium complex with two phospholipid molecules. Biochemistry 1984, 23 (17), 3913-3920.
58.Marra, J.; Israelachvili, J., Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry 1985, 24 (17), 4608-4618.
59.Bockmann, R. A.; Grubmuller, H., Cover Picture Multistep Binding of Divalent Cations to Phospholipid Bilayers A Molecular Dynamics Study Angew. Chem.-Int. Ed. 2004, 43 (8), 911.
60.Cordomí, A.; Edholm, O.; Perez, J. J., Effect of Ions on a Dipalmitoyl Phosphatidylcholine Bilayer. A Molecular Dynamics Simulation Study. The Journal of Physical Chemistry B 2008, 112 (5), 1397-1408.
61.Holtzer, A., The use of flory–huggins theory in interpreting partitioning of solutes between organic liquids and water. Biopolymers 1992, 32 (6), 711-715.
62.Hancock, B. C.; Zografi, G., The Use of Solution Theories for Predicting Water Vapor Absorption by Amorphous Pharmaceutical Solids: A Test of the Flory–Huggins and Vrentas Models. Pharmaceutical Research 1993, 10 (9), 1262-1267.
63.Hauser, H.; Pascher, I.; Pearson, R. H.; Sundell, S., Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta 1981, 650 (1), 21-51.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56783-
dc.description.abstract先前已有許多文獻探討加入無機鹽類可誘導卵磷脂溶膠於低極性有機溶劑中形成卵磷脂蟲狀微胞的原因以及機制,形成蟲狀微胞主要依賴無機鹽類陽離子與卵磷脂頭基中磷酸根的離子間作用力。蟲狀微胞就像高分子鏈一樣,微胞鏈間會產生糾纏進而形成具有黏彈性質的有機凝膠,因此微胞溶液的黏度大幅上升。然而研究中發現,微胞溶液黏度並不會持續增加,當無機鹽類與卵磷脂比例(S0)超過一臨界值後(Scr),微胞溶液的黏度會出現大幅下降的趨勢,此原因仍有待釐清。本實驗利用添加LiCl、LiBr、LiI、CaCl2、LaCl3於環己烷中探討其流變行為、微結構的變化以及卵磷脂中官能基作用力的改變,提出添加無機鹽類如何影響卵磷脂蟲狀微胞生長來探討導致卵磷脂微胞溶液黏度增加與下降的原因。LiCl、LiBr、LiI、CaCl2、LaCl3皆可使卵磷脂蟲狀微胞的生成,使得黏度大幅上升,進而形成有機凝膠,但是由於靜電作用力強度的不同,因此所需添加的無機鹽類量不同,其效率排序為La3+ ≈ Ca2+ > Li+,此外上述無機鹽類添加過量後皆會導致微胞溶液黏度巨幅下降。本實驗利用FT-IR以及小角X光散射觀察卵磷脂官能基的作用力以及微結構隨S0的變化,證實於S0 > Scr後,卵磷脂蟲狀微胞的平均長度縮短、半徑增加,且過量的無機鹽類由卵磷脂中磷酸根位置移動至C=O的位置,因此推測此為造成微胞溶液黏度下降的原因。此外,利用廣角X光散射也發現於有機凝膠狀態下,微胞具有規整排列的結構,溶膠狀態則無此結構。本研究發現無機鹽類於卵磷脂頭基中的位置是決定蟲狀微胞形成與否與長度的主要關鍵原因。zh_TW
dc.description.abstractPrevious studies have shown that the addition of inorganic salts to lecithin organosol induces the formation of worm-like micelles that leads to organogels. The growth of lecithin reverse worm-like micelles depends on the ion-ion interactions between the phosphate group on the lecithin and the alkali cation. The rheological behaviors of the worm-like micelles are similar to polymer chains that entangle one another to cause the increase of the viscosity and even the formation of viscoelastic organogels. It is known that the viscosity of the micellar solution is not constantly increased with the increasing inorganic salts/lecithin molar ratio (S0) but dramatically drops after S0 exceeds a critical value (Scr). However, the reason for the decrease in viscosity after S0 > Scr is still unclear. In this study, we investigated the rheological behaviors and the microstructures of lecithin wormlike micelles induced by LiCl, LiBr, LiI, CaCl2, and LaCl3 in cyclohexane as well as the interaction between lecithin and the inorganic salts. All the inorganic salts can induce the growth of reverse wormlike micelles and cause the viscosity to increase with S0, with the capacity in order of La3+ ≈ Ca2+ > Li+, and all their viscosities sharply decrease after S0 > Scr. We utilized FT-IR and small angle X-ray scattering technique to probe the change of molecular interactions between lecithin and salts, and the transformation of microstructures of worm-like micelles with S0. After S0≥Scr, the average length of the wormlike micelles decreases with the increasing S0 and the radius increases. Meanwhile, the FT-IR absorption band of C=O on lecithin blueshifts after S0 > Scr. We suggest that the excess inorganic salts move from the phosphate group to C=O, therefore causing the shortening of the wormlike micelles and the decrease in viscosity of the solutions. In addition, the X-ray diffraction data show an ordered packing in the wormlike micelles in the organogel state, which is absent in the organosol state. The results reveal that the location of the inorganic salts in the lecithin headgroup is key to determine the formation and the length of the reverse wormlike micelles.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:48:12Z (GMT). No. of bitstreams: 1
U0001-2407202003104400.pdf: 3085972 bytes, checksum: b9288a0cd012f71e9dd491d7d54650c8 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書……………………………………………………………………I
致謝………………………………………………………………………………………………II
摘要……………………………………………………………………………………………III
Abstract…………………………………………………………………………………IV
目錄………………………………………………………………………………………………VI
表目錄……………………………………………………………………………………VIII
圖目錄…………………………………………………………………………………………IX
第一章 緒論………………………………………………………………………………1
1.1. 前言……………………………………………………………………………………1
1.2. 研究動機…………………………………………………………………………2
第二章 文獻回顧………………………………………………………………………4
2.1.雙親性分子自組裝行為………………………………………………4
2.2. 正式微胞-疏水作用力………………………………………………7
2.3. 反式蟲狀微胞-吸引力………………………………………………8
2.4. 強鹼鹵化物/水誘導卵磷脂反式蟲狀微胞…………9
2.5. 抑制反式蟲狀微胞生長之機制………………………………11
2.6. 正式蟲狀微胞受溫度之影響與機制……………………14
2.7. 反式蟲狀微胞受溫度之影響與機制……………………15
第三章 實驗方法與儀器………………………………………………………18
3.1. 實驗藥品…………………………………………………………………………18
3.2. 樣品製備…………………………………………………………………………21
3.3. 流變儀(Rheometer)…………………………………………………21
3.4. 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer)………22
3.5. X光散射 (X-ray Scattering)…………………………23
3.6. 小角X光散射模型…………………………………………………………24
3.6.1. Ellipsoids………………………………………………………………24
3.6.2. Cylinders with Polydisperse Length………25
第四章 結果與討論………………………………………………………………………26
4.1 卵磷脂與無機鹽類/水於環己烷反式微胞流變行為………26
4.2. 小角X光散射(Small Angle X-ray Scattering )………33
4.3. 廣角X光散射(Wide Angle X-ray Scattering, WAXS)………38
4.4. 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer)………40
4.4.1. 磷酸根(phosphate group)………………………………40
4.4.2. 羰基(carbonyl group)………………………………………43
4.4.3. 膽鹼基(choline)……………………………………………………46
4.5. 反式微胞結構變化機制………………………………………………48
4.5.1. 黏度與作用力的關係………………………………………………48
4.5.2.結構的轉變……………………………………………………………………52
第五章 結論…………………………………………………………………………………55
第六章 參考文獻…………………………………………………………………………56
附錄……………………………………………………………………………………………………63
dc.language.isozh-TW
dc.subject無機鹽類zh_TW
dc.subject卵磷脂zh_TW
dc.subject反式微胞zh_TW
dc.subject流變學zh_TW
dc.subject分子間作用力zh_TW
dc.subject自組裝機制zh_TW
dc.subjectself-assembled mechanismen
dc.subjectinorganic saltsen
dc.subjectlecithinen
dc.subjectreverse micellesen
dc.subjectrheologyen
dc.subjectmolecular interactionen
dc.title卵磷脂/無機鹽類於低極性有機溶劑中的自組裝機制及流變行為zh_TW
dc.titleSelf-Assembly Mechanisms and Rheological Behaviors of Lecithin/Inorganic Salt Mixtures in Low-Polar Organic Solventsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖文彬(Wen-Bin Liau),諶玉真(Yu-Jane Sheng),賴偉淇(Wei-Chi Lai)
dc.subject.keyword無機鹽類,卵磷脂,反式微胞,流變學,分子間作用力,自組裝機制,zh_TW
dc.subject.keywordinorganic salts,lecithin,reverse micelles,rheology,molecular interaction,self-assembled mechanism,en
dc.relation.page74
dc.identifier.doi10.6342/NTU202001809
dc.rights.note有償授權
dc.date.accepted2020-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2407202003104400.pdf
  未授權公開取用
3.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved