Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56780
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡振國(Jenn-Gwo Hwu)
dc.contributor.authorChia-Ming Hsuen
dc.contributor.author許家銘zh_TW
dc.date.accessioned2021-06-16T05:48:00Z-
dc.date.available2017-08-12
dc.date.copyright2014-08-12
dc.date.issued2014
dc.date.submitted2014-08-10
dc.identifier.citation[1] P. G. Neudeck, “Silicon CarbideTechnology,” in The VLSI Handbook, Second Edition, CRC Press, 5.1-5.34, (2007).
[2] W. J. Choyke, H. Matsunami, G. Pensl, Berlin, Springer Verlag, (2003).
[3] A. Elasser and T. P. Chow, Proceedings of the IEEE90, 969 (2002).
[4] K. Shenai, R. S. Scott, and B. J. Baliga, IEEE Trans. Electron Devices 36, 1811-1823 (1989).
[5] M. Ruff, H. Mitlehner, and R. Helbig, M. Ruff, H. Mitlehner, and R. Helbig, IEEE Trans. Electron Devices 41, 1040–1054 (1994).
[6] M. Bhatnagar and B. J. Baliga, 645–655 (1993).
[7] S. Dimitrijev and P. Jamet, Microelectron. Reliab.43, 225-233 (2003).
[8] V. V. Afanas'ev, M. Bassler, G. Pensl, M. J. Schulz, and E. Kamienski, J. Appl. Phys. 7, 3108-3113 (1996).
[9] R. L. Lambrecht , S. Limpijumnong, S. N. Rashkeev and B. Segall, Mater. Sci. Forum 550,338-342 (2000).
[10] A. A. Lebedev,Semicond. Sci. Technol. 21, R17-R34 (2006).
[11] T. Kimoto, Y. Kanzaki , M. Noborio, H. Kawano and H. Matsunami, Jpn. J. Appl. Phys.44, 1213-1218 (2005).
[12] R. Kosugi, T. Umeda, and Y. Sakuma, Appl. Phys. Lett. 99, 182111 (2011).
[13] M. Yoshikawa, S. Ogawa, K. Inoue, H. Seki, Y. Tanahashi, H. Sako, Y. Nanen, M. Kato, and T. Kimoto, Appl. Phys. Lett.100, 082105 (2012)
[14] H. Yano, T. Hirao, T. Kimoto, H. Matsunami, K. Asano and Y. Sugawara, IEEE Electron Device Lett. 20, 611-613 (1999).
[15] K. Fukuda, M. Kato, K. Kojima and J. Senzaki, Appl. Phys. Lett. 84, 2088 (2004).
[16] E. Pippel, J. Woltersdorf, H. Ö. Ólafsson, and E. Ö. Sveinbjörnsson, J. Appl. Phys.97, 034302 (2005).
[17] H. Watanabe, T. Hosoi, T. Kirino, Y. Kagei, Y. Uenishi, A. Chanthaphan, A. Yoshigoe, Y. Teraoka, and T. Shimura, Appl. Phys. Lett. 99, 021907 (2011).
[18] E. Pitthan, S. A. Correˆa, R. Palmieri, G. V. Soares, H. I. Boudinov, and F. C. Stedile, Electrochem. Solid-State Lett. 14, H368-H371 (2011).
[19] Y. Iwasaki, H. Yano, T. Hatayama, Y. Uraoka, and T. Fuyuki, Appl. Phys. Express 3, 026201 (2010).
[20] E. Pitthan, R. Palmieri, S. A. Corrˆea, Gabriel V. Soares, H. I. Boudinov, and F. C. Stedile, ECS Solid State Letters 2, P8-P10 ( 2013).
[21] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, IEEE Electron Device Lett. 31, 710-712 (2010).
[22] J. Robserson, Eur. Phys. J. Appl. Phys. 28, 265-291 (2004).
[23] J. Robertson, J. Vac. Sci. Technol. B 18, 1785-1791 (2000).
[24] G. Lucovsky, J. Non-Cryst. Solids 303, 40 (2002).
[25] J. Robertson, J. Non-Cryst. Solids 303, 94 (2002).
[26] V. V. Afanas'ev, M. Houssa, A. Stesmans, and M. M. Heyns, Appl. Phys. Lett. 78, 3073-3075 (2001).
[27] R. Mahapatra, A. K. Chakraborty, A. B. Horsfall, N. G. Wright, G. Beamson, and K. S. Coleman, Appl. Phys. Lett. 92, 042904 (2008).
[28] J. C. Vickerman, R. Wilson, B. Ratner, D. Castner, and H. Joerg, “Surface Analysis: The Principal Techniques,” John Wiley & Sons Ltd, Chichester, (1997).
[29] P. D. Ye, J. Vac. Sci. Technol. A 26, 697 (2008).
[30] A. Dimoulas, E. Gusev, P. C. McIntyre, and M. Heyns, “Advanced Gate Stacks for High-Mobility Semiconductors,” Springer, Berlin, (2007).
[31] S. Monaghan, A. O’Mahony, K. Cherkaoui, É. O’Connor, I. M. Povey, M. G. Nolan, D. O’Connell, M. E. Pemble, P. K. Hurley, G. Provenzano, F. Crupi, and S. B. Newcomb,J. Vac. Sci. Technol. B29, 01A807 (2011).
[32] M. Akazawa and H. Hasegawa, J. Vac. Sci. Technol. B26, 1569 (2008).
[33] H. C. Lin, W. E. Wang, G. Brammertz, M. Meuris, M. Heyns, Microelectron. eng. 86, 1554 (2009)
[34] M. Akazawaand H. Hasegawa, Appl. Surf. Sci. 256, 5708 (2010).
[35] I. Ok, H. S. Kim, M. Zhang, C. Y. Kang, S. J. Rhee, C. Choi, S. A. Krishnan, T. Lee, F. Zhu, G. Thareja, and J. C. Lee, IEEE Electron Device Lett. 27, 145 (2006).
[36] Y. C. Chang, C. Merckling, J. Penaud, C. Y. Lu, W. E. Wang, J. Dekoster, M. Meuris, M. Caymax, M. Heyns, J. Kwo, and M. Hong,Appl. Phys. Lett.97, 112901 (2010).
[37] C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace,Appl. Phys. Lett.94, 162101 (2009).
[38] E. J. Kim, L. Wang, P. M. Asbeck, K. C. Saraswat, and Paul C. McIntyre,Appl. Phys. Lett.96, 012906 (2010).
[39] G. Brammertz, H. C. Lin, K. Martens, D. Mercier, C. Merckling, J. Penaud, C. Adelmann, S. Sioncke, W. E. Wang, M. Caymax, M. Meuris, and M. Heyns, J. Electrochem. Soc, 155, H945 (2008)
[40] D. M. Fleetwood, IEEE Trans. Nucl. Sci 39, 269 (1992).
[41] D. M. Fleetwood, P. S. Winokur, R. A. Reber, L. T. Meisenheimer, J. B. Schwank, M. R. Shaneyfelt, and L. C. Riewe, J. Appl. Phys.73, 5058 (1993).
[42] Y. Yuan, L. Wang, B. Yu, B. Shin, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur,IEEE Electron Dev. Lett., 32, 485 (2011).
[43] G. Brammertz, A. Alian, D. H. C. Lin, M. Meuris, M. Caymax, and W. E. Wang, IEEE Trans. Electron Devices, 58, 3890 (2011).
[44] K. Matocha, G. Dunne, S. Soloviev, and R. Beaupre, IEEE Trans. on Electron Devices 55, 1830 (2008).
[45] M. Wolborski, D. Rosen, A. Hallen, M. Bakowski, Thin Solid Films 515, 456 (2006).
[46] Q. Chen, H. Huang, W. Chen, A. T. S. Wee, Y. P. Feng, J. W. Chai, Z. Zhang, J. S. Pan, and S. J. Wang,Appl. Phys. Lett. 96, 072111 (2010)
[47] K. Y. Cheong, J. H. Moon, T. J. Park, J. H. Kim, C. S. Hwang, H. J. Kim, W. Bahng, and N.-K. Kim, IEEE Trans. on Electron Devices 54, 3409 (2007).
[48] A. Perez-Tomas, P. Godignon, J. Montserrat, J. Millan, N. Mestres, P. Vennegues, and J. Stoemenos, Appl. Surface Science 253, 1741 (2006).
[49] A. Paskaleva, R.R Ciechonski, M. Syvajarvi, E. Atanassova, R. Yakimova, J. Appl. Phys. 97, 124507 (2005).
[50] S. W. Huang and J. G. Hwu, IEEE Trans. on Electron Devices 50, 1658 (2003).
[51] R. Suri, C. J. Kirkpatrick, D. J. Lichtenwalner, and V. Misra, Appl. Phys. Lett. 96, 042903 (2010).
[52] C. M. Tanner, Y.-C. Perng, C. Frewin, S. E. Saddow, P. J. Chang, Appl. Phys. Lett. 91, 203510 (2007).
[53] K. J. Yang and C. Hu, IEEE Trans. Electron Devices 46, 1500 (1999).
[54] K. C. Chuang and J. G. Hwu, J. Electrochem. Soc. 155, G159 (2008).
[55] M. Voigtand M. Sokolowski, Mater. Sci. Eng. B 109, 99 (2004).
[56] Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, Appl. Phys. Lett. 88, 263518 (2006).
[57] S. K. Kim, S. W. Lee, C. S. Hwang, Y.-S. Min, J. Y. Won, and J. Jeong, J. Electrochem. Soc.153, F69 (2006).
[58] J. Kim, K. Chakrabarti, J. Lee, K. Y. Oh, C. Lee, Mater. Chem. Phys. 78, 733 (2003).
[59] E. H. Nicollian and J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology,”John Wiley & Sons, Hoboken, NJ, (2003).
[60] D. M. Fleetwood, M.R. Shaneyfelt, W.L. Warren, J.R. Schwank, T.L. Meisenheimer and P. S. Wlnokur, Microelectron. Reliab. 35, 403 (1995).
[61] J. R. Weber, A. Janotti, and C. G. Van de Walle,J. Appl. Phys.109, 033715 (2011).
[62] D. M. Fleetwood, W. L. Warren, J. R. Schwa&, P. S. Winokur, M. R. Shaneyfelt, and L. C. Riewe, IEEE Trans. Nucl. Sci42, 1698 (1995).
[63] R. E. Paulsen and M. H. White,IEEE Trans. Electron Devices 41, 1213 (1994).
[64] F. Varchon, R. Feng, J. Hass, X. Li, B. N. Nguyen, C. Naud, P. Mallet, J. Y. Veuillen, C. Berger, E. H. Conrad, and L. Magaud, Phys. Rev. Lett. 99, 126 805, (2007).
[65] A. Agarwal and S. Haney, J. Electron. Mater. 37, 646 (2008).
[66] T. Zheleva, A. Lelis, G. Duscher, F. Liu, I. Levin, and M. Das, Appl. Phys. Lett. 93, 022108 (2008).
[67] X. Shen and S. T. Pantelides, Appl. Phys. Lett. 98, 053507 (2011)
[68] Q. Zhu, F. Qin, W. Li, and D. Wang, Appl. Phys. Lett. 103, 062105 (2013).
[69] T. D. Lin, Y. H. Chang, C. A. Lin, M. L. Huang, W. C. Lee, J. Kwo, and M. Hong,Applied Physics Letters 100, 172110 (2012).
[70] V. Chobpattana, J. Son, J. J. M. Law, R. Engel-Herbert, C. Y. Huang, and S. Stemmer, Applied Physics Letters 102, 022907 (2013).
[71] B. Shin, J. Cagnon, R. D. Long, P. K. Hurley, S. Stemmer, and P. C. McIntyre, Electrochem. Solid-State Lett., 12, G40 (2009).
[72] O. Auciello,W. Fan, B. Kabius, S. Saha, and J. A. Carlisle, R. P. H. Chang, C. Lopez , E. A. Irene, R. A. Baragiola, Appl. Phys. Lett. 86, 042904 (2005).
[73] C. Si, G. Zhou, Y. Li, J. Wu, and W. Duan, Appl. Phys. Lett. 100, 103105 (2012).
[74] V. Cimalla, J. Pezoldt, and O. Ambacher, J. Phys. D: Appl. Phys. 40, 6386, (2007).
[75] T. Itoh, S. Tanaka, J. F. Li, R. Watanabe, and M. Esashi, IEEE ASME J Microelectromech Syst., 15, 860 (2006).
[76] J. B. Casady and R. W. Johnson, Solid-State Electron. 39, 1409 (1996).
[77] W. Lu, L. C. Feldman, Y. Song, S. Dhar, W. E. Collins, W. C. Mitchel, and J. R. Williams, Appl. Phys. Lett. 85, 3495 (2004).
[78] V. V. Afanas'ev, M. Bassler, G. Pensl, and M. Schulz, Phys. Stat. Sol. A 162, 321 (1997).
[79] V. V. Afanas'ev, M. Houssa, A. Stesmans, J. Appl. Phys. 91, 3079 (2002).
[80] C. M. Tanner, J. Choi, and J. P. Chang, J. Appl. Phys. 101, 034108 (2007).
[81] V. V. Afanas'ev, M. Basler, G. Pensl, A. Stesmans, Mater. Sci. Forum 389-393, 961 (2002).
[82] G. H. Chen, Z. F. Hou, and X. G. Gong, Appl. Phys. Lett. 95, 102905 (2009).
[83] X. Wang, J. Xiang, W. Wang, J. Zhang, K. Han, H. Yang, X. Ma, C. Zhao, D Chen, and T. Ye, Appl. Phys. Lett. 102, 031605 (2013).
[84] V. V. Afanas'ev, A. Stesmans, F. Chen, S. A. Campbell, R. Smith, Appl. Phys. Lett. 82, 922 (2003).
[85] M. Wolborski, M. Rooth, M. Bakowski, A. Hallén, J. Appl. Phys. 101, 124105 (2007).
[86] M. Wolborski, D. Martin, M. Bakowski, A. Hallén, I. Katardjiev, Mater. Sci. Forum 763,833-836 (2009).
[87] S. Wang, M. Di Ventra, S. G. Kim, and S. T. Pantelides, Phys. Rev. Lett.86, 5946 (2001).
[88] J. Robertson, Adv. Phys. 35, 317 (1984).
[89] V. V. Afanas'ev, F. Ciobanu, S. Dimitrijev, G Pensl and A Stesmans, J. Phys.: Condens. Matter16, S1839 (2004).
[90] F. Devynck, A. Alkauskas, P. Broqvist, A. Pasquarello, AIP Conf. Proc.1199, 108 (2010).
[91] E. L. Principe, D. G. Watson, C. Kisielowski, Lawrence Berkeley National LaboratoryLBNL-52151, 1-11 (2002).
[92] C. Riedl, C. Coletti and U. Starke, J. Phys. D: Appl. Phys.43 374009 (2010).
[93] M. Usman, A. Hallén, T. Pilvi, A. Schöner, and M. Leskelä, Journal of the Electrochem. Soc. 158, H75 (2011).
[94] A. Chanthaphan, T. Hosoi, Y. Nakano, T. Nakamura, T. Shimura and H. Watanabe, Appl. Phys. Lett. 102, 093510 (2013).
[95] G. F. Derbenwick, J. Appl. Phys. 48, 1127 (1977).
[96] P. J. Wright and K. C. Saraswat, IEEE Tran. Electron Device 36, 879-889 (1989).
[97] R. Schörner, P. Friedrichs, D. Peters, D. Stephani, S. Dimitrijev and P. Jamet, Appl. Phys. Lett.80, 4253 (2002).
[98] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, M. Di Ventra, S. T. Pantelides, L. C. Feldman, and R. A. Weller, Appl. Phys. Lett. 76, 1713 (2000).
[99] S. A. Correˆa, C. Radtke, G. V. Soares, L. Miotti, I. J. R. Baumvol, S. Dimitrijev, J. Han, L. Hold, F. Kong, and F. C. Stedile, Appl. Phys. Lett. 94, 251909 (2009).
[100] T. L. Biggerstaff, C. L. Reynolds, T. Zheleva, A. Lelis, D. Habersat, S. Haney, S.-H. Ryu, A. Agarwal, and G. Duscher, Appl. Phys. Lett. 95, 032108 (2009).
[101] C. Onneby, C.G. Pantano, J. Vac. Sci. Technol. A. 15, 1597 (1997).
[102] T. Hosoi, T. Kirino, S. Mitani, Y. Nakano, T. Nakamura, T. Shimura, and H. Watanabe, Curr. Appl. Phys. 12, S79 (2012).
[103] Q. Zhu, L. Huang, W. Li, S. Li, D. Wang, Appl. Phys. Lett. 99, 082102 (2011).
[104] S. Miyazaki, J. Vac. Sci. Technol. B 19, 2212 (2001).
[105] S. Miyazaki, , H. Nishimura, M.Fukuda, L. Ley, and R. Ristein, Appl. Surf. Sci., 113, 585-589 (1997).
[106] T. H. DieStefano and D. E. Eastman, Solid State Commun. 9, 2259 (1971).
[107] J. W. Liu, M. Y. Liao, M. Imura,and Y. Koide, Appl. Phys. Lett.101, 252108 (2012).
[108] C. M. Hsu and J. G. Hwu, ECS Journal of Solid State Science and Technology 2, N3072-N3078 (2013).
[109] C. M. Hsu and J. G. Hwu, Appl. Phys. Lett. 101, 253517 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56780-
dc.description.abstract本論文中,我們研究各種氧化層於碳化矽金氧半電容上的表現,其中包含氧化鋁、氧化鉿、二氧化矽,首先、我們使用高介質氧化層沉積於碳化矽上,其電容電壓圖遲滯現象相當小,定電壓測試下無缺陷捕捉,但是,漏電流大,且於其變頻電容電壓圖中發現了顯著的頻率分散現象,隨著量測頻率的上升,電容值下降,我們對此現象進行了分析與討論,提出了等效電路模型,隨著偏壓改變邊界電阻(Rbt),此模擬非常符合實驗數據。我們以熱氧化於碳化矽上生長二氧化矽,發現了隨著氧化層的厚度增厚(=15.5奈米),多餘的未氧化的碳原子,會嵌於碳化矽中,其位置接近於二氧化矽介面,且會吸引電子,本論文以X射線與歐傑光譜儀首度證實其存在,相對地,7.5奈米厚的二氧化矽具有理想的電性與化學組成,並無碳積聚。同時、對於氧化鉿/二氧化矽/碳化矽電容做電性量測,解釋碳積聚對電容電壓圖的影響,分析其穩定度,最後、我們使用X射線光譜分析,以逐層分析,細部的描繪了二氧化矽/碳化矽之能帶圖,發現了薄的二氧化矽具有理想的能帶圖,隨著厚度增厚,二氧化矽的能隙與傳導帶隙會下降,從以上的實驗得知,於碳化矽上生長閘極氧化層,大約7.5奈米厚的二氧化矽為首選,具備良好電性且不存在碳積聚。zh_TW
dc.description.abstractIn this dissertation, we have investigated different gate dielectrics on 4H-SiC, such as Al2O3, HfO2, and SiO2. At first, high-κ dielectric was deposited on SiC for MOS capacitors. The hysteresis of capacitance-voltage (C-V) curves is small and charge trapping under constant field stress is negligible. However, the leakage current is large, and the C-V shows significant C-V frequency dispersion. When the frequency increases, the measured capacitances shift downward because of border traps effect. We first proposed an equivalent circuit model including border trap effect to explain the C-V frequency dispersion on SiC. With suitable Rbt at different biases, this simulation can fit the experimental data successfully.Second, the SiO2 with different thicknesses are grown on 4H-SiC by thermal oxidation. By X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) analysis, we first detected the C interstitials or clusters in SiC. The thick SiO2 (15.5nm) produced C interstitials in SiC.The C interstitials would trap electron during the constant field stress test. On the other hand, the thin SiO2 (7.5nm) has ideal electrical property and chemical composition, and the SiC substrate does not contain excess C in it. Moreover, we investigated different thickness of SiO2 using XPS analysis. We first depicted SiO2/4H-SiC energy band alignment of the different SiO2 thicknesses layer by layer. The Band gap (EG) and conduction band offset ( ) of SiO2 are reduced when grow thicker SiO2. The surface SiO2 layer is more perfect than the bottom layer. Nevertheless, from the XPS depth profile, both thin and thick SiO2 did not contain the silicon oxycarbides (SiCxOy) in it. From experimental result of study, the 7.5 nm SiO2is the best dielectric for SiC, which has ideal band structure and no excess C contamination.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:48:00Z (GMT). No. of bitstreams: 1
ntu-103-D98943032-1.pdf: 10966290 bytes, checksum: 30c08ae1c115c11bd122352fde0852f9 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Contents iv
Figure Captions vi
Table Captions ix
Chapter 1 Introduction 1
1-1 SiC Substrates and Oxidation Process 1
1-2 High- Gate Dielectrics 5
1-3 Combined High-low Frequency Method for Determining Density of Interface Traps (Dit) 8
1.4 X-ray Photoelectron Spectroscopy (XPS) 9
Chapter 2 Frequency Dispersion of Metal-Al2O3-SiC Capacitors Containing Border Traps Effect 21
2-1 Introduction 22
2-2 The Fabrication Processes of Al/Al2O3/4H-SiC Capacitors 25
2-3 Electrical Property of SiC Capacitors with Thin Al2O3 Gate Dielectric 27
2-4 Modeling of Border Traps Effects on SiC Capacitor 30
2-5 Summary 37
Chapter 3 Detection of Thickness-dependent Excess Carbon in HfO2/SiO2/4H-SiC Structure 49
3-1 Introduction 50
3-2 Experimental 51
3-3 Results and discussion 53
3-3-1 C-V Characteristics and HRTEM Images 53
3-3-2 CarbonInterstitials in SiC 55
3-4 Summary 58
Chapter 4 Improvement of Electrical Performance of HfO2/SiO2/4H-SiC Structure with Thin SiO2 63
4-1 Introduction 64
4-2 Experimental 67
4-3 Results and discussion 69
4-3-1 Electrical Properties and Chemical Compositions of the Capacitors 69
4-3-2 Constant Stress Reliability of the Capacitors 75
4-4 Summary 78
Chapter 5 Energy-band Alignment of SiO2on 4H-SiC Measured Layer by Layer 89
5-1 Introduction 89
5-2 Experimental 91
5-3 Results and Discussion 93
5-4 Summary 97
Chapter 6 Conclusions 104
6-1 Conclusions 104
6-2 Suggestions for Future Work 106
References 108
dc.language.isoen
dc.subject碳化矽zh_TW
dc.subject二氧化矽zh_TW
dc.subject碳積聚zh_TW
dc.subject高介電質zh_TW
dc.subject能帶圖zh_TW
dc.subjectX射線光譜分析zh_TW
dc.subject電容電壓圖zh_TW
dc.subjecthigh-κen
dc.subjectMOSen
dc.subjectSiCen
dc.subjectSiO2en
dc.subjectXPSen
dc.subjectCarbon interstitialsen
dc.subjectband alignmenten
dc.title碳化矽金氧半電容之閘極氧化層與碳積聚研究zh_TW
dc.titleInvestigation of Gate Dielectrics and Carbon Interstitials on 4H-SiC MOS Capacitorsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee連振炘,王水進,曾俊元,賴朝松,趙天生
dc.subject.keyword碳化矽,二氧化矽,碳積聚,高介電質,能帶圖,X射線光譜分析,電容電壓圖,zh_TW
dc.subject.keywordSiC,SiO2,XPS,Carbon interstitials,band alignment,high-κ,MOS,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2014-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
10.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved