請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56777完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林太家 | |
| dc.contributor.author | Chia-Yu Hsieh | en |
| dc.contributor.author | 謝佳佑 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:47:49Z | - |
| dc.date.available | 2016-08-17 | |
| dc.date.copyright | 2014-08-17 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-10 | |
| dc.identifier.citation | [1] A. Arnold, P. Markowich, and G. Toscani. On large time asymptotics for drift-diffusion-Poisson systems. In Proceedings of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998), volume 29, pages 571--581, 2000.
[2] V. Barcilon, D.-P. Chen, R. S. Eisenberg, and J. W. Jerome. Qualitative properties of steady-state Poisson-Nernst-Planck systems: perturbation and simulation study. SIAM J. Appl. Math., 57(3):631--648, 1997. [3] M. Bendahmane and M. Langlais. A reaction-diffusion system with cross-diffusion modeling the spread of an epidemic disease. J. Evol. Equ., 10(4):883--904, 2010. [4] P. Biler. Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions. Nonlinear Anal., 19(12):1121--1136, 1992. [5] P. Biler and J. Dolbeault. Long time behavior of solutions of Nernst-Planck and Debye-Huckel drift-diffusion systems. Ann. Henri Poincare, 1(3):461--472, 2000. [6] P. Biler, W. Hebisch, and T. Nadzieja. The Debye system: existence and large time behavior of solutions. Nonlinear Anal., 23(9):1189--1209, 1994. [7] P. Biler and T. Nadzieja. Existence and nonexistence of solutions for a model of gravitational interaction of particles. I. Colloq. Math., 66(2):319--334, 1994. [8] A. Blanchet, J. Dolbeault, and B. Perthame. Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differential Equations, pages No. 44, 32 pp. (electronic), 2006. [9] D. Chen, J. Lear, and B. Eisenberg. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Biophys J, 72(1):97--116, 1997. [10] L. Chen and A. Jungel. Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Differential Equations, 224(1):39--59, 2006. [11] B. Eisenberg. Ionic channels in biological membranes: Natural nanotubes. Acc. Chem. Res., 31:117--123, 1998. [12] B. Eisenberg, Y. Hyon, and C. Liu. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. J. Chem. Phys., 133:104104--1, 2010. [13] B. Eisenberg and W. Liu. Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J. Math. Anal., 38(6):1932--1966 (electronic), 2007. [14] H. Gajewski. On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. Z. Angew. Math. Mech., 65(2):101--108, 1985. [15] H. Gajewski and K. Zacharias. Global behaviour of a reaction-diffusion system modelling chemotaxis. Math. Nachr., 195:77--114, 1998. [16] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1983. [17] M. A. Herrero and J. J. L. Velazquez. Singularity patterns in a chemotaxis model. Math. Ann., 306(3):583--623, 1996. [18] B. Hille. Ion channels of excitable membranes. Sinauer Associates, Inc., third edition, 2001. [19] T.-L. Horng, T.-C. Lin, C. Liu, and B. Eisenberg. PNP equations with steric effects: A model of ion flow through channels. J. Phys. Chem. B, 116(37):11422--11441, 2012. [20] D. Horstmann. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein., 105(3):103--165, 2003. [21] D. Horstmann. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch. Math.-Verein., 106(2):51--69, 2004. [22] R. J. Hunter. Zeta potential in colloid science. Academic Press Inc., 1981. [23] Y. Hyon, B. Eisenberg, and C. Liu. A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci., 9(2):459--475, 2011. [24] W. Jager and S. Luckhaus. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc., 329(2):819--824, 1992. [25] E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biology, 26:399--415, 1970. [26] D. Lacoste, G. I. Menon, M. Z. Bazant, and J. F. Joanny. Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane. Eur. Phys. J. E, 28:243--264, 2009. [27] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva. Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968. [28] C.-C. Lee, H. Lee, Y. Hyon, T.-C. Lin, and C. Liu. New Poisson-Boltzmann type equations: one-dimensional solutions. Nonlinearity, 24(2):431--458, 2011. [29] T.-C. Lin and B. Eisenberg. A new approach to the Lennard-Jones potential and a new model: PNP-steric equations. Commun. Math. Sci., 12(1):149--173, 2014. [30] W. Liu. Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J. Appl. Math., 65(3):754--766 (electronic), 2005. [31] P. A. Markowich, C. A. Ringhofer, and C. Schmeiser. Semiconductor equations. Springer-Verlag, Vienna, 1990. [32] Y. Mori, J. W. Jerome, and C. S. Peskin. A three-dimensional model of cellular electrical activity. Bull. Inst. Math. Acad. Sin. (N.S.), 2(2):367--390, 2007. [33] T. Nagai. Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl., 5(2):581--601, 1995. [34] J.-H. Park and J. W. Jerome. Qualitative properties of steady-state Poisson-Nernst-Planck systems: mathematical study. SIAM J. Appl. Math., 57(3):609--630, 1997. [35] O. Riveros, T. Croxton, and W. Armstrong. Liquid junction potentials calculated from numerical solutions of the Nernst-Planck and Poisson equations. J. Theor. Biol., 140:221--230, 1989. [36] R. Ryham, C. Liu, and L. Zikatanov. Mathematical models for the deformation of electrolyte droplets. Discrete Contin. Dyn. Syst. Ser. B, 8(3):649--661, 2007. [37] L. Wan, S. Xu, M. Liao, C. Liu, and P. Sheng. New perspectives on electrokinetics. Phys. Rev. X, 2014, in press. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56777 | - |
| dc.description.abstract | This thesis consists of three parts. The first part is devoted to the stability problem of boundary layer solutions to Poisson-Nernst-Planck (PNP) systems. PNP system has been widely used to describe the electron transport of semiconductors and the ion transport of ionic solutions, and plays a crucial role in the study of many physical and biological problems. PNP system with Robin boundary condition for the electrostatic potential admits a boundary
layer solution as a steady state. We obtain some stability results by studying the asymptotic behavior for the steady state. In the second part, we study existence of solutions for a modified PNP system. Historically, from the Debye-Huckel theory, PNP systems are adopted for dilute ionic solutions. However, in biological system, ionic solutions are usually highly concentrated. The modified PNP system, which takes into account the relative drag from interaction of different ions, involves much more complicated nonlinear coupling between unknown variables. Compare with the original PNP system, it brings extra difficulties in analysis. We use Galerkin's method and Schauder's fixed-point theorem, and give an estimate of upper bounds of solutions to prove existence of local solutions. The third part deals with existence of solutions of a modified PNP equation with cross-diffusion. By using Galerkin's method and Schauder's fixed-point theorem, we obtain the local existence for this system. Moreover, we obtain the global existence by uniform in time L^2 estimates of solutions. We also consider a modified Keller-Segel system with similar modification and develop some local and global existence results. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:47:49Z (GMT). No. of bitstreams: 1 ntu-103-F96221005-1.pdf: 4454558 bytes, checksum: 5899618c1a71f9e8f9ae88625e2db04d (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv Contents vi 1 Stability of Boundary Layer Solutions to Poisson-Nernst-Planck Systems 1 1.1 Introduction 1 1.2 Linearized Problem 9 1.2.1 Proof of Theorem 1.1.2 14 1.2.2 Corollaries of Theorem 1.1.2 20 1.3 Asymptotic Limit Equation of ( ilde{delta}, ilde{eta}) 22 1.4 Stability for PNP system 25 1.4.1 Proof of Theorem 1.4.1 30 1.4.2 Corollaries of Theorem 1.4.1 32 2 Local Existence for Modified Poisson-Nernst-Planck Systems with Saturable Nonlinearity 34 2.1 Introduction 34 2.2 Local Existence 37 3 Global Existence for Drift-Diffusion Systems with Cross-Diffusion 62 3.1 Introduction 62 3.2 Local Existence 64 3.3 Global Existence 85 Bibliography 92 | |
| dc.language.iso | en | |
| dc.subject | 泊松─能斯特─普朗克方程 | zh_TW |
| dc.subject | 穩定性 | zh_TW |
| dc.subject | 存在性 | zh_TW |
| dc.subject | 凱勒─謝格爾方程 | zh_TW |
| dc.subject | existence | en |
| dc.subject | Poisson-Nernst-Planck system | en |
| dc.subject | stability | en |
| dc.subject | Keller-Segel system | en |
| dc.title | 泊松─能斯特─普朗克類型方程之研究 | zh_TW |
| dc.title | On Poisson-Nernst-Planck Type Equations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳俊全,柳春(Chun Liu),郭忠勝,陳建隆,陳兆年 | |
| dc.subject.keyword | 泊松─能斯特─普朗克方程,穩定性,存在性,凱勒─謝格爾方程, | zh_TW |
| dc.subject.keyword | Poisson-Nernst-Planck system,stability,existence,Keller-Segel system, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-11 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
