Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56772
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorShang-Cheng Wuen
dc.contributor.author吳尚錚zh_TW
dc.date.accessioned2021-06-16T05:47:30Z-
dc.date.available2020-08-04
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-26
dc.identifier.citationChapter1
(1) Liu, K.; Sakurai, M.; Aono, M., ZnO-Based Ultraviolet Photodetectors. Sensors (Basel) 2010, 10, 8604-8634.
(2) Li, W. D.; Chou, S. Y., Solar-blind deep-UV band-pass filter (250 – 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography. Optics Express 2010, 18 (2), 931-937.
(3) Salvestrini, J. P.; Ahaitouf, A.; Srour, H.; Gautier, S.; Moudakir, T.; Assouar, B.; Ougazzaden, A., Tuning of internal gain, dark current and cutoff wavelength of UV photodetectors using quasi-alloy of BGaN-GaN and BGaN-AlN superlattices. In M. Razeghi, E. Tournie, G. J. Brown (Eds.), Quantum Sensing and Nanophotonic Devices IX. San Francisco, California, the United States of America: SPIE Press.
(4) Omnès, F.; Monroy, E.; Muñoz, E.; Reverchon, J. L., Wide bandgap UV photodetectors : A short review of devices and applications. In H. Morkoc, C. W. Litton (Eds.), Gallium Nitride Materials and Devices II. San Jose, California, the United States of America: SPIE Press.
(5) Sang, L.; Liao, M.; Sumiya, M., A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures. Sensors (Basel) 2013, 13, 10482-10516.
(6) Vijayakumar, A.; Todi, R. M.; Sundaram, K. B., Amorphous-SiCBN-Based Metal–Semiconductor–Metal Photodetector for High-Temperature Applications. IEEE Electron Device Letters 2007, 28 (8), 713-715.
(7) Lien, W. C.; Tsai, D. S.; Lien, D. H.; Senesky, D. G.; He, J. H.; Pisano, A. P., 4H–SiC Metal–Semiconductor–Metal Ultraviolet Photodetectors in Operation of 450 ◦C. IEEE Electron Device Letters 2012, 33 (11), 1586-1588.
(8) Li, X.; Lin, S.; Lin, X.; Xu, Z.; Wang, P.; Zhang, S.; Zhong, H.; Xu, W.; Wu, Z.; Fang, W., Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector. Optics Express 2016, 24 (1), 134-145.
(9) Li, D.; Shao, Z. G.; Hao, Q.; Zhao, H., Intrinsic carrier mobility of a single-layer graphene covalently bonded with single-walled carbon nanotubes. Journal of Applied Physics 2014, 115, 233701.
(10) Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters 2008, 100, 016602.
(11) Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007, 6, 183-191.
(12) Wang, J.; Ma, F.; Sun, M., Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Advances 2017, 7, 16801-16822.
(13) Dean, C.; Young, A. F.; Wang, L.; Meric, I.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Shepard, K.; Kim, P.; Hone, J., Graphene based heterostructures. Solid State Communications 2012, 152, 1275-1282.
(14) Chen, J. H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology 2008, 3, 206-209.
(15) Lin, I. T.; Liu, J. M., Surface polar optical phonon scattering of carriers in graphene on various substrates. Applied Physics Letters 2013, 103, 081606.
(16) Decker, R.; Wang,Y.; Brar, V. W.; Regan, W.; Tsai, H. Z.; Wu, Q.; Gannett,W.; Zettl, A.; Crommie, M. F., Local Electronic Properties of Graphene on a BN Substrate via Scanning Tunneling Microscopy. Nano Letters 2011, 11, 2291-2295.
(17) Touski, S. B.; Hosseini, M., A comparative study of substrates disorder on mobility in the Graphene nanoribbon: Charged impurity, surface optical phonon, surface roughness. Physica E: Low-dimensional Systems and Nanostructures 2020, 116, 113763.
(18) Meric, I.; Dean, C. R.; Petrone, N.; Wang, L.; Hone, J.; Kim, P.; Shepard, K. L., Graphene Field-Effect Transistors Based on Boron–Nitride Dielectrics. Proceedings of the IEEE 2013, 101 (7), 1609-1619.
(19) Xue, J.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; LeRoy, B. J., Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Materials 2011, 10, 282-285.
(20) Liu, Z.; Ma, L;. Shi, G.; Zhou, W.; Gong, Y.; Lei, S.; Yang, X.; Zhang, J.; Yu, J.; Hackenberg, K. P.; Babakhani, A.; Idrobo, J. C.; Vajtai, R.; Lou, J.; Ajayan, P. M., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology 2013, 8, 119-124.
(21) Leon, J. A.; Mamani, N. C.; Rahim, A.; Gomez, L. E.; Silva, M. A. P. d.; Gusev, G. M., Transferring Few-Layer Graphene Sheets on Hexagonal Boron Nitride Substrates for Fabrication of Graphene Devices. Graphene 2014, 3, 25-35.
(22) Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J., Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology 2010, 5, 722-726.
(23) Li, L. H.; Chen, Y., Atomically Thin Boron Nitride: Unique Properties and Applications. Advanced Functional Materials 2016, 26, 2594-2608.
(24) Cai, Q.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E. J. G.; Li, L. H., High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Science Advances 2019, 5, eaav0129.
(25) Falin, A.; Cai, Q.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S.; Watanabe, K.; Taniguchi, T.; Barnett, M. R.; Chen, Y.; Ruoff, R. S.; Li, L. H., Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nature Communications 2017, 8, 15815.
(26) Chu, D.; Pak, S. W.; Kim, E. K., Locally Gated SnS2/hBN Thin Film Transistors with a Broadband Photoresponse. Scientific Reports 2018, 8, 10585.
(27) Laturia, A.; Van de Put, M. L.; Vandenberghe, W. G., Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Materials and Applications 2018, 6.
(28) Yamoah, M. A.; Yang, W.; Pop, E.; Goldhaber-Gordon, D., High Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride. ACS Nano 2017, 11, 9914-9919.
(29) Meng, J.; Liu, X.; Zhang, X.; Zhang, Y.; Wang, H.; Yin, Z.; Zhang, Y.; Liu, H.; You, J.;Yan, H., Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy 2016, 28, 44-50.
(30) Zheng, W.; Lin, R.; Zhang, Z.; Huang, F., Vacuum-Ultraviolet Photodetection in Few-Layered h‑BN. ACS Applied Materials and Interfaces 2018, 10, 27116-27123.
(31) Zheng, W.; Lin, R.; Jia, L.; Huang, F., Vacuum-Ultraviolet-Oriented van der Waals Photovoltaics. ACS Photonics 2019, 6, 1869-1875.
Chapter2
(1) Inagaki, M.; Kang, F.; Toyoda, M.; Konno, H., Advanced Materials Science and Engineering of Carbon. Butterworth–Heinemann: United Kingdom; Oxford, 2014.
(2) Ghatge, M.; Shrivastava, M., Physical Insights on the Ambiguous Metal–Graphene Interface and Proposal for Improved Contact Resistance. IEEE Transcations on Electron Devices 2015, 62 (12), 4139-4147.
(3) Subhani, T.; Shaffer, M. S. P.; Boccaccini, A. R., Ceramic Nanocomposites. Woodhead Publishing: United Kingdom; Cambridge, 2013.
(4) Zhu, H.; Xu, Z.; Xie, D.; Fang, Y., Graphene: Fabrication, Characterizations, Properties and Applications. Academic Press: United States; Cambridge, Massachusetts 2017.
(5) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.
(6) Ullal, C. K.; Shi, J.; Sundararaman, R., Electron mobility in graphene without invoking the Dirac equation. American Journal of Physics 2019, 87 (4), 291-295.
(7) Aliofkhazraei, M.; Ali, N.; Milne, W. I.; Ozkan, C. S.; Mitura, S.; Gervasoni, J. L., Graphene Science Handbook: Nanostructure and Atomic Arrangement. CRC Press: United States; Boca Raton, Florida 2016.
(8) Tiwari, S. K.; Kumar, V.; Huczko, A.; Oraon, R.; Adhikari, A. D.; Nayak, G. C., Magical Allotropes of Carbon: Prospects and Applications. Critical Reviews in Solid State and Materials Sciences 2016, 0 (0), 1-61.
(9) Liu, L.; Zhang, J.; Zhao, J.; Liu, F., Mechanical properties of graphene oxides. Nanoscale 2012, 4, 5910.
(10) Wang, J.; Ma, F.; Sun, M., Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Advances 2017, 7, 16801-16822.
(11) Petrescu, M. I.; Balint, M. G., Structure and properties modifications in boron nitride. Part I: direct polymorphic transformations mechanisms. UPB Scientific Bulletin, Series B: Chemistry and Materials Science 2007, 69 (1), 35-42.
(12) Falin, A.; Cai, Q.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S.; Watanabe, K.; Taniguchi, T.; Barnett, M. R.; Chen, Y.; Ruoff, R. S.; Li, L. H., Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nature Communications 2017, 8, 15815.
(13) Mortazavi, B.; Cuniberti, G., Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Advances 2014, 4, 19137-19143.
(14) Cai, Q.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E. J. G.; Li, L. H., High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Science Advances 2019, 5, eaav0129.
(15) Li, L. H.; Chen, Y., Atomically Thin Boron Nitride: Unique Properties and Applications. Advanced Functional Materials 2016, 26, 2594-2608.
(16) Dependence of the fundamental band gap of AlxGa1-xN on alloy composition and pressure. Journal of Applied Physics 1999, 85, 8505-8507.
(17) Guenther, B. D.; Steel, D., Encyclopedia of Modern Optics 2nd edition. Academic Press: United States; Cambridge, Massachusetts 2018.
(18) Zhao, S.; Connie, A. T.; Dastjerdi, M. H. T.; Kong, X. H.; Wang, Q.; Djavid, M.; Sadaf, S.; Liu, X. D.; Shih, I.; Guo, H.; Mi, Z., Aluminum nitride nanowire light emittingdiodes: Breaking the fundamental bottleneck of deep ultraviolet lightsources. Scientific Reports 2015, 5, 8332.
(19) McCluskey, M. D.; Johnson, N. M.; Van de Walle, C. G.; Bour, D. P.; Kneissl, M.; Walukiewicz, W., Metastability of Oxygen Donors in AlGaN. Physical Review Letters 1998, 80 (18), 4008-4011.
(20) Neamen, D. A., Semiconductor Physics and devices: Basic Principles 4th edition. McGraw-Hill: United States; New York City, New York 2012.
Chapter3
(1) Wang, H.; Xu, H.; Wu, C.; Soomro, A. M.; Guo, H.; Wei, T.; Li, S.; Kang, J.; Cai, D., Family of Cu@metal nanowires network for transparent electrodes on n-AlGaN. Physica Status Solidi (A) 2016, 213 (5), 1209-1212.
(2) Wu, C.; Soomro, A. M.; Sun, F.; Wang, H.; Liu, C.; Yang, X.; Kang, J.; Cai, D., Seven-inch large-size synthesis of monolayer hexagonal BN film by low-pressure CVD. Physica Status Solidi (B) 2016, 253 (5), 829-833.
(3) Tan, W. C.; Hofmann, M.; Hsieh, Y. P.; Lu, M. L.; Chen, Y. F., A Graphene-Based Surface Plasmon Sensor. Nano Research 2012, 5 (10), 695-702.
Chapter4
(1) Li, X.; Sundaram, S.; Disseix, P.; Gac, G. L.; Bouchoule, S.; Patriarche, G.; Reveret, F.; Leymarie, J.; Gmili, Y. E.; Moudakir, T.; Genty, F.; Salvestrini, J-P.; Dupuis, R. D.; Voss, P. L.; Qugazzaden, A., AlGaN-based MQWs grown on a thick relaxed AlGaN buffer on AlN templates emitting at 285 nm. Optical Materials Express 2015, 5 (2), 380-392.
(2) Muth, J. F.; Brown, J. D.; Johnson, M. A. L.; Yu, Z.; Kolbas, R. M.; Cook, J. W.; Schetzina, J. F., Absorption Coefficient and Refractive Index of GaN, AlN and AlGaN Alloys. MRS Internet Journal of Nitride Semiconductor Research 1999, 4, 502-507.
(3) Xia, K.; Artyukhov, V. I.; Sun, L.; Zheng, J.; Jiao, L.; Yakobson, B. I.; Zhang, Y., Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces. Nano Research 2016, 9 (7), 2182-2189.
(4) Sun, Z.; Yan, Z. I.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M., Growth of graphene from solid carbon sources. Nature 2010, 468, 549-552.
(5) Li, L. H.; Chen, Y., Atomically Thin Boron Nitride: Unique Properties and Applications. Advanced Functional Materials 2016, 26, 2594-2608.
(6) Cai, Q.; Scullion, D.; Falin, A.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E. J.; Li, L. H., Raman signature and phonon dispersion of atomically thin boron nitride. Nanoscale 2017, 9, 3059-3067.
(7) Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D., Atomic Structure of Graphene on SiO2. Nano Letters 2007, 7 (6), 1643-1648.
(8) Grabowski, S. P.; Schneider, M.; Nienhaus, H.; Mönch, W.; Dimitrov, R.; Ambacher, O.; Stutzmann, M., Electron Affinity of AlxGa1-xN(0001) surfaces. Applied Physics Letters 2001, 78 (17), 2503-2505.
(9) Fiori, G.; Betti, A.; Bruzzone, S.; Iannaccone, G., Lateral Graphene–hBCN Heterostructures as a Platform for Fully Two-Dimensional Transistors. ACS Nano 2012, 6 (3), 2642-2648.
(10) Palla, P.; Uppu, G. R.; Ethiraj, A. S.; Raina, J. P., Bandgap engineered graphene and hexagonal boron nitride for resonant tunnelling diode. Bulletin of Materials Science 2016, 39 (6), 1441-1451.
(11) Shan, W.; Ager, J. W.; Yu, K. M.; Walukiewicz, W.; Haller, E. E.; Martin, M. C.; McKinney, W. R.; Yang, W., Journal of Applied Physics 1999, 85 (12), 8505-8507.
(12) Wang, J.; Ma, F.; Sun, M., Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Advances 2017, 7, 16801-16822.
(13) Dean, C.; Young, A. F.; Wang, L.; Meric, I.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Shepard, K.; Kim, P.; Hone, J., Graphene based heterostructures. Solid State Communications 2012, 152, 1275-1282.
(14) Ahmed, F.; Choi, M. S.; Liu, X.; Yoo, W. J., Carrier transport at the metal–MoS2 interface. Nanoscale 2015, 7, 9222-9228.
(15) Schöche, S.; Kühne, P.; Hofmann, T.; Schubert, M.; Nilsson, D.; Kakanakova-Georgieva, A.; Janzén, E.; Darakchieva, V., Electron effective mass in Al0.72Ga0.28N alloys determined by mid-infrared optical Hall effect. Applied Physics Letters 2013, 103, 212107.
(16) Fritsch, D.; Schmidt, H.; Grundmann, M., Band-structure pseudopotential calculation of zinc-blende and wurtzite AlN, GaN, and InN. Physical Review B 2003, 67, 235205.
(17) Gurram, M.; Omar, S.; Wees, B. J. V., Electrical spin injection, transport, and detection ingraphene-hexagonal boron nitride van der Waals heterostructures: progress and perspectives. 2D Materials 2018, 5, 032004.
(18) Lu, Y.; Wu, Z.; Xu, W.; Lin, S., ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity. Nanotechnology 2016, 27, 48LT03.
(19) Gao, G.; Mathkar, A.; Martins, E. P.; Galvao, D. S.; Gao, D.; Autreto, P. A. D. S.; Sun, C.; Cai, L.; Ajayan, P. M., Designing nanoscaled hybrids from atomic layered boron nitride with silver nanoparticle deposition. J. Mater. Chem. A 2014, 2, 3148-3154.
(20) Cicek, E.; McClintock, R.; Cho, C. Y.; Rahnema, B.; Razeghi, M., AlxGa1-xN-based back-illuminated solarblind photodetectors with external quantum efficiency of 89%. Applied Physics Letters 2013, 103, 191108.
(21) Yang, M.; Chong, M.; Zhao, D.; Wang, X.; Su, Y.; Sun, J.; Sun, X., Back-illuminated AlxGa1-xN-based dual-band solar-blind ultraviolet photodetectors. Journal of Semiconductors 2014, 35 (6), 064008.
(22) Xie, F.; Lu, H.; Chen, D.; Ji, X.; Yan, F.; Zhang, R.; Zheng, Y.; Li, L.; Zhou, J., Ultra-Low Dark Current AlGaN-Based Solar-Blind Metal–Semiconductor–Metal Photodetectors for High-Temperature Applications. IEEE Sensors Journal 2012, 12 (6), 2086-2090.
(23) Bao, G.; Li, D.; Sun, X.; Jiang, M.; Li, Z.; Song, H.; Jiang, H.; Chen, Y.; Miao, G.; Zhang, Z., Enhanced spectral response of an AlGaN-based solar-blind ultraviolet photodetector with Al nanoparticles. Optics Express 2014, 22, 24286-24293.
(24) Zhang, W.; Xu, J.; Ye, W.; Li, Y.; Qi, Z.; Dai, J.; Wu, Z.; Chen, C.; Yin, J.; Li, J.; Jiang, H.; Fang, Y., High-performance AlGaN metal–semiconductor–metal solar-blind ultraviolet photodetectors by localized surface plasmon enhancement. Applied Physics Letters 2015, 106, 021112.
(25) Liu, H. Y.; Wang, Y. H.; Hsu, W. C., Suppression of Dark Current on AlGaN/GaN Metal–Semiconductor–Metal Photodetectors. IEEE Sensors Journal 2015, 15 (9), 5202-5207.
(26) Kang, S.; Chatterjee, U.; Um, D. Y.; Yu, Y. T.; Seo, I. S.; Lee, C. R., Ultraviolet‑C Photodetector Fabricated Using Si-Doped n‑AlGaN Nanorods Grown by MOCVD. ACS Photonics 2017, 4, 2595-2603.
(27) Kang, S.; Nandi, R.; Kim, H.; Jeong, K. U.; Lee, C. R., Synthesis of n-AlGaN nanoflowers by MOCVD for high-performance ultraviolet-C photodetectors. Journal of Materials Chemistry C 2018, 6, 1176-1186.
(28) Chang, P. C.; Chen, C. H.; Chang, S. J.; Su, Y. K.; Yu, C. L.; Huang, B. R.; Chen, P. C., High UV/visible rejection contrast AlGaN/GaN MIS photodetectors. Thin Solid Films 2006, 498, 133-136.
(29) Liu, H. Y.; Lee, C. S.; Liu, G. J.; Huang, R. C., Ultrasonic Assisted Mist Chemical Vapor Deposition Deposited MgO for AlGaN/GaN Metal-Insulator-Semiconductor Ultraviolet Photodetector. IEEE Sensors Letters 2017, 1 (2), 3500404.
(30) Han, W. Y.; Zhang, Z. W.; Li, Z. M.; Chen, Y. R.; Song, H.; Miao, G. Q.; Fan, F.; Chen, H. F.; Liu, Z.; Jiang, H., High performance back-illuminated MIS structure AlGaN solar-blind ultraviolet photodiodes. Journal of Materials Science: Materials in Electronics 2018, 29, 9077-9082.
(31) Chen, M.; Ma, J.; Li, P.; Xu, H.; Liu, Y., Zero-biased deep ultraviolet photodetectors based on graphene/cleaved (100) Ga2O3 heterojunction. Optics Express 2019, 27 (6), 8717-8726.
(32) Li, X.; Jordan, M. B.; Ayari, T.; Sundaram, S.; El Gmili, Y.; Alam, S.; Alam, M.; Patriarche, G.; Voss, P. L.; Paul Salvestrini, J.; Ougazzaden, A., Flexible metal-semiconductormetal device prototype on waferscale thick boron nitride layers grown by MOVPE. Scientific Reports 2017, 7, 786.
(33) Liu, H.; Meng, J.; Zhang, X.; Chen, Y.; Yin, Z.; Wang, D.; Wang, Y.; You, J.; Gao, M.; Jin, P., High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale 2018, 10, 5559-5565.
(34) Martens, M.; Schlegel, J.; Vogt, P.; Brunner, F.; Lossy, R.; Würfl, J.; Weyers, M.; Kneissl, M., High gain ultraviolet photodetectors based on AlGaN/GaN heterostructures for optical switching. Applied Physics Letters 2011, 98, 211114.
(35) Young, S. J., Photoconductive Gain and Noise Properties of ZnO Nanorods Schottky Barrier Photodiodes. IEEE Journal of Selected Topics in Quantum Electronics 2014, 20 (6), 96-99.
(36) He, J. H.; Chang, P. H.; Chen, C. Y.; Tsai, K. T., Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt. Nanotechnology 2009, 20, 135701.
(37) Rathkanthiwar, S.; Kalra, A.; Solanke, S. V.; Mohta, N.; Muralidharan, R.; Raghavan, S.; Nath, D. N.; Gain mechanism and carrier transport in high responsivity AlGaN-based solar blind metal semiconductor metal photodetectors. Journal of Applied Physics 2017, 121, 164502.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56772-
dc.description.abstract隨著科技的發展,紫外光感測器因其在光譜上的專一性而能在諸多領域有所應用,從殺菌、水質淨化到光通訊。由於傳統的矽基紫外光感測器因其狹窄能隙而有明顯的缺陷,擁有寬能隙的半導體,也就是能隙超過4電子伏特的材料,便成為矽絕佳的替代品。在此研究中,透過組合各個部件材料的特性,我們設計出一種由石墨烯-數層六方晶氮化硼-n型氮化鋁鎵構成且擁有良好性能的新型太陽盲區深紫外光感測器。在元件中作為寬能隙半導體之一的氮化鋁鎵讓元件能在不需要紫外光過濾片的情況下就能偵測深紫外訊號而不受可見光等的影響,因此使元件是真正的太陽盲光感測器。此外,石墨烯-六方晶氮化硼異質接面用來解決石墨烯與傳統塊材絕緣體接面之間的應變導致的問題,以此提升元件的表現。另外,石墨烯對紫外光擁有極高穿透率,這讓入射光能在極少能量損失下直接激發主動層中的載子。二維六方晶氮化硼絕緣層則能抑制漏電流並協助光載子進行量子穿隧。有趣的是,相較於已經發表以氮化鋁鎵為基礎的深紫外光感測器,此研究所提出的光感測器能在不施加高額外加偏壓下便擁有優良的響應度和偵測率。zh_TW
dc.description.abstractNowdays, the deep-ultraviolet photodetectors are useful in the progression of many fields, extending from disinfection, water purification to optical communication due to their spectral specificity. Because of the fact that silicon-based devices possess obvious flaws in ultraviolet devices owing to its narrow band gap, thus wide-bandgap semiconductors, which have band gap exceeding 4 eV, provide excellent alternatives. In this study, through the combination of the characteristics of each component material, we design a nanolayered graphene/hBN/n-AlGaN deep-ultraviolet and solar-blind photodetector with high performance. The AlGaN, which belongs to wide-bandgap materials, enables the device to sense deep-ultraviolet signals without the need of ultraviolet-pass filter and hence makes the device be a true solar-blind photodetector. Besides, the several nanolayered graphene-hBN heterostructure is employed to enhance the device performance, which successfully solves the strain emerged between the graphene and conventional bulk insulators. Furthermore, the high transparency of graphene can cause incident signals to directly excite the carriers in active layer with negligible energy loss, and the two-dimensional hBN insulating layer is beneficial to suppress leakage current and aid quantum tunneling of photogenerated carriers. Interestingly, the photodetectors presented in this study show favorable responsivity and detectivity without the requirement of high external bias compared with published AlGaN-based deep-ultraviolet photodetectors.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:47:30Z (GMT). No. of bitstreams: 1
U0001-2407202009104900.pdf: 3014668 bytes, checksum: 2f627a177c5021661776da8d9fa81887 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents論文口試委員審定書 I
致謝 II
中文摘要 III
Abstract IV
Contents VI
List of Figures and Tables VIII
Chapter 1 Introduction 1
References 5
Chapter 2 Theoretical Background 11
2.1 Graphene 11
2.2 Hexagonal Boron Nitride 13
2.3 Aluminum Gallium Nitride 15
2.4 Photodetectors 16
References 17
Chapter 3 Experimental Details 20
3.1 Chemical Vapor Deposition System 20
3.2 Thermal Evaporation 23
3.3 Electrical and Photoresponsive Properties Measurement 25
3.4 Device Fabrication 26
References 29
Chapter 4 Results and Discussion 30
4.1 Structure of the devices 30
4.2 Electrical transport properties of the devices 36
4.3 Photoresponsive properties of the photodetectors 41
References 58
Chapter 5 Conclusion 65
dc.language.isoen
dc.subject深紫外光感測器zh_TW
dc.subject太陽隱蔽光感測器zh_TW
dc.subject石墨烯-絕緣體-半導體結構zh_TW
dc.subject石墨烯-六方晶氮化硼異質接面zh_TW
dc.subject氮化鋁鎵zh_TW
dc.subject二維材料zh_TW
dc.subjectsolar-blind photodetectoren
dc.subjectdeep-ultraviolet photodetectoren
dc.subjecttwo-dimensional materialsen
dc.subjectAlGaNen
dc.subjectgraphene-hBN heterostructureen
dc.subjectgraphene-insulator-semiconductor structureen
dc.title基於氮化鋁鎵和石墨烯-氮化硼異質結構之新穎太陽隱蔽深紫外光感測器zh_TW
dc.titleNovel solar-blind deep-ultraviolet photodetector based on AlGaN and graphene-hBN heterostructureen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.advisor-orcid陳永芳(0000-0003-1203-5115)
dc.contributor.oralexamcommittee王偉華(Wei-Hua Wang),沈志霖(Ji-Lin Shen)
dc.subject.keyword深紫外光感測器,太陽隱蔽光感測器,石墨烯-絕緣體-半導體結構,石墨烯-六方晶氮化硼異質接面,氮化鋁鎵,二維材料,zh_TW
dc.subject.keyworddeep-ultraviolet photodetector,solar-blind photodetector,graphene-insulator-semiconductor structure,graphene-hBN heterostructure,AlGaN,two-dimensional materials,en
dc.relation.page66
dc.identifier.doi10.6342/NTU202001812
dc.rights.note有償授權
dc.date.accepted2020-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-2407202009104900.pdf
  未授權公開取用
2.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved