Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56770
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱錦洲
dc.contributor.authorYi Chengen
dc.contributor.author鄭屹zh_TW
dc.date.accessioned2021-06-16T05:47:23Z-
dc.date.available2014-08-12
dc.date.copyright2014-08-12
dc.date.issued2014
dc.date.submitted2014-08-11
dc.identifier.citation[1] Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 41–72.
[2] Bandyopadhyay, P. 2005 Trends in biorobotic autonomous undersea vehicles, IEEE Journal of Oceanic Engineering 30(1), 109-139.
[3] Beal, D. N., Hover, F. S., Triantafyllou, M. S., Liao, J. C., & Lauder, G. V. 2006 Passive propulsion in vortex wakes, J. Fluid Mech. 549, 385-402.
[4] Biesheuvel, A. & Hagmeijer, R. 2006 On the force on a body moving in fluid. Fluid Dyn. Res. 38, 716–742.
[5] Blondeaux, P. O., Fornarelli, F., Guglielmini, L., Triantafyllou, M. S. & Verzicco, M. 2005 Numerical experiments on flapping foils mimicking fish-like locomotion. Phys. Fluids 17, 113601.
[6] Buchholz, J. H. J. & Smits, A. J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603, 331–365.
[7] Eloy, C. 2013 On the best design for undulatory swimming. Journal of Fluid Mechanics, 717, 48-89.
[8] Burgers, J. M. 1920 On the resistance of fluids and vortex motion. Proc. Kon. Akad. Westenschappente Amsterdam. 1, 774–782.
[9] Chang, C. C. 1992 Potential flow and forces for incompressible viscous flow. Proc. R. Soc. A-Math. Phys. Eng. Sci. 437, 517–525.
[10] Chang, C. C. & Lei, S. Y. 1996 An analysis of aerodynamic forces on a delta wing. J. Fluid Mech. 316, 173-196.
[11] Chang, C. C. & Lei, S. Y. 1996 On the sources of aerodynamic forces: steady flow around a cylinder or a sphere. Proc. R. Soc. Lond. A 452, 2369-2395.
[12] Chang, C. C., Yang, S. H. & Chu, C. C. 2008 A many-body force decomposition with applications to flow about bluff bodies. J. Fluid Mech. 600, 95–104.
[13] Chu, C. C., Chang, C. C. et al. 1996 Suction effect on an impulsively started circular cylinder: vortex structure and drag reduction. Phys. Fluids. 11, 2995-3007.
[14] Dickinson, M. H., Farley, C. T., Full, R. J., Koehl. M. A. R., Kram, R. & Lehman, S. 2000 How Animals Move: An Integrative View. Science 288, 100.
[15] Drucker, E. G. & Lauder, G. V. 1999 Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using particle image velocimetry. J. Fluid Mech. 202, 2392–2412.
[16] von Ellenrieder, K. D., Parker, K. & Soria, J. 2003 Flow structures behind a heaving and pitching finite-span wing. J. Fluid Mech. 490, 129–138.
[17] Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121–140.
[18] Glauert, H. 1983 The elements of aerofoil and airscrew theory. Cambridge University Press.
[19] Green, M. A. & Smits, A. J. 2008 Effects of three-dimensionality on thrust production by a pitching panel. J. Fluid Mech. 615, 211–220.
[20] Guglielmini, L. & Blondeaux, P. 2004 Propulsive efficiency of oscillating foils. Euro. J. Fluid Mech. 23, 255–278.
[21] Howe, M. S. 1995 On the force and moment on a body in an incompressible fluid, with application to rigid bodies and bubbles at high and low Reynolds numbers. Quart. J. Mech. Appl. Math. 48, 401–426.
[22] Hsieh, C. T., Chang, C. C. and Chu, C. C. Revisiting the aerodynamics of hovering flight using simple models, 2009, J. Fluid Mech. 623, 121-148.
[23] Hsieh, C. T., Kung, C. F., Chang, C. C. and Chu, C. C. 2010 Unsteady aerodynamics of dragonfly using a simple wing-wing model from the perspective of a force decomposition. J. Fluid Mech. 663, 233-252.
[24] Koochesfahani, M. M. 1989 Vortical patterns in the wake of an oscillating aerofoil. AIAA Journal 27, 1200–1205.
[25] Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. Pergamon.
[26] Lentink, D., Muijres, F. T., Donker-Duyvis, F. J. & van Leeuwen, J. L. 2008 Vortex wake interactions of a flapping foil that models animal swimming and flight. J. Expl Biol. 211, 267–273.
[27] Lewin, G. C. & Haj-Hariri, H. 2003 Modelling thrust generation of a two-dimensional heaving aerofoil in a viscous flow. J. Fluid Mech. 492, 339–362.
[28] Zhu, Q., Wolfgang, M. J., Yue, D. K. P., & Triantafyllou, M. S. 2002 Three-dimensional flow structures and vorticity control in fish-like swimming. Journal of Fluid Mechanics, 468, 1-28.
[29] SZ, W., & GW, H. 2012 Numerical Simulation of a Three-Dimensional Fish-like Body Swimming with Finlets.
[30] Liao, J. C., Beal, D. V. , Lauder, G. V. & Triantafyllou, M. S., 2003 The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street. J. Expl Biol. 206(6), 1059.
[31] Licht, S., Hover, F. & Triantafyllou, M. 2004 Design of a flapping foil underwater vehicle. 13th International Underwater Technology Symposium.
[32] Lighthill, M. J. 1986 Fundamentals concerning wave loading on offshore structures. J. Fluid Mech. 173, 667–681.
[33] Lighthill, M. J. 1969 Hydromechanics of aquatic animal propulsion, Annual Review of Fluid Mechanics. 1(1), 413-446.
[34] Lighthill, M. J. 1971 Large-amplitude elongated-body theory of fish locomotion. Proceedings of the Royal Society of London, Series B, Biological Sciences, 179(1055), 125-138.
[35] Lindsey, C. C. 1978 Form, function and locomotory habits in fish, Fish Physiology, VII Locomotion, W. S. Hoar and D. J. Randall, Eds.New York: Academic, 1–100.
[36] Milano, M. & Gharib, M. 2005 Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 534, 403–409.
[37] Webb, P. W. 1984 Form and function in fish swimming, Sci. Amer. 251, 58–68.
[38] Schnipper, T., Andersen, A. & Bohr, T. 2009 Vortex wakes of a flapping foil. J. Fluid Mech. 633, 411–423.
[39] Schouveilera, L., Hover, F. S. and Triantafyllou, M. S. 2005 Performance of flapping foil propulsion, J. Fluids Struct. 20, 949–959.
[40] Sfakiotakis, M., Lane, D. & Davies, J. 1999 Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 24(2), 237-252.
[41] Taylor, G. K., Nudds, R. L. & Thomas, A. L. R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 435, 707–711.
[42] Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7, 205–224.
[43] Triantafyllou, M. S., Triantafyllou, G. S. & Gopalkrishnan, R. 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids 3 (12), 2835–2837.
[44] Tytell, E. D. & Lauder, G. V. 2004 The hydrodynamics of eel swimming. Part I. Wake structure. J. Expl Biol. 207, 1825–1841.
[45] Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355–381.
[46] Wu, T. 1960 Swimming of a waving plate. J. Fluid Mech. 10, 321-344.
[47] Wu, J. C. 1981 Theory for aerodynamic force and moment in viscous flow. AIAA J. 19, 432–441.
[48] 蕭穎謙 1993 環繞機翼之二維渦漩流的研究,國立台灣大學應用力學研究所博士論文。
[49] 蘇正瑜 1998 三角翼外流場之力源分析,國立台灣大學應用力學研究所博士論文。
[50] 丁上杰 2009 魚類操控式游動之流體動力與生物物理學研究,清華大學動力機械工程學系博士論文。
[51] 曾耀霆 2013 以力元理論探討魚類BCF泳動之尾鰭推進機制,國立台灣大學應用力學研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56770-
dc.description.abstract本論文將以力元理論探討低雷諾數流場中,模擬魚體擺動在不同史卓荷數(Strouhal Number,St)下進行BCF泳動模式的受力機制。透過力元理論分析魚類擺動的推進機制,發現推力的產生主要來自於附加質量項C_Da與體渦度項C_Dv,尤以體渦度項的變化的最為明顯,將隨著不同的擺動幅度與史卓荷數St導致流場中渦度的增強,而有明顯提升。
透過力元理論分析可以明顯的了解魚體各部位與流場中的渦流結構對其造成之受力變化,進行定量的描述。觀察各部位的受力變化,發現到魚身區的渦漩提供了大量的阻力,而尾鰭區與尾流區的渦漩則是提供了大部分的推力;進一步分析受力隨著運動狀態變化時,發現到在推力峰值時,在尾鰭末端會產生一極大之推力元素,而造成此現象的原因為推力峰值時,尾鰭末端的輔助勢流函數擁有極大值,造就了此現象。
最後透過渦漩結構Q圖,並將其上色,以顏色表示其CDv之值,可以確切的了解三維流場中,渦環結構的產生與其對魚體之受力貢獻。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-16T05:47:23Z (GMT). No. of bitstreams: 1
ntu-103-R01543071-1.pdf: 7141354 bytes, checksum: 4ee4db03ddd62fdec1054eb3707155cd (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 ix
第1章 緒論 1
1.1. 研究背景 1
1.2. 研究動機 3
1.3. 魚類游動之文獻回顧 3
1.3.1. 魚類游動模式分類 3
1.3.2. 魚類與流場渦漩之交互作用 7
1.4. 理論分析文獻回顧 10
1.4.1. 早期理論分析模式 10
1.4.2. 力元理論文獻回顧 11
1.5. 研究目的 13
1.6. 全文概述 13
第2章 力元理論 15
2.1. 前言 15
2.2. 輔助勢流 16
2.3. 力元理論推導 18
第3章 數值方法及控制方程式 25
3.1. 簡介 25
3.2. 網格產生 25
3.2.1. 網格產生時間 26
3.2.2. 數值擴散 27
3.2.3. 網格品質 27
3.3. 控制方程式 28
3.3.1. 質量守恆方程式 29
3.3.2. 動量守恆方程式 29
3.4. 數值求解方法 29
3.4.1. 分離求解器 30
3.4.2. 空間離散 31
3.4.3. 時間離散 36
3.4.4. 壓力-速度耦合關係的處理 38
第4章 結果與討論 46
4.1. 流場參數設定 46
4.2. 幾何外型與運動參數設定 47
4.3. 輔助勢流場數值計算結果 51
4.4. 數值結果驗證 51
4.5. 以力元理論觀點分析魚體在不同St、a0流場下之推力 52
4.5.1. 魚體阻力隨時間的變化 52
4.5.2. 體渦度項對於平板推力之影響 62
4.6. 以力元理論觀點分析三維流場特性 68
4.6.1. 推力峰值時的三維流場分析 72
4.6.2. 三維流場隨運動狀態變化分析探討 79
第5章 結論與未來展望 92
5.1. 結論 92
5.2. 未來展望 93
參考文獻 95
dc.language.isozh-TW
dc.subjectBCFzh_TW
dc.subject力元理論zh_TW
dc.subject魚體外型zh_TW
dc.subjectfish-like bodyen
dc.subjectBCFen
dc.subjectforce element theoryen
dc.title以力元理論探討魚類BCF泳動之奧祕zh_TW
dc.titleAnalysis of the Propulsion Mechanisms by BCF Swimming Fish from the Perspective of Force Element Theoryen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor張建成
dc.contributor.oralexamcommittee郭光輝,楊適豪,宮春斐
dc.subject.keyword力元理論,BCF,魚體外型,zh_TW
dc.subject.keywordforce element theory,BCF,fish-like body,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2014-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
6.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved