請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56769
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林立德(Li-Deh Lin) | |
dc.contributor.author | Jing-Fen Wu | en |
dc.contributor.author | 吳靜芬 | zh_TW |
dc.date.accessioned | 2021-06-16T05:47:19Z | - |
dc.date.available | 2015-10-15 | |
dc.date.copyright | 2014-10-15 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-10 | |
dc.identifier.citation | 1. Hiroaki M Hakkaido University Creative Research Institution web sie
Development of highly efficient solar cells utilizing near-infrared light http://www.cris.hokudai.ac.jp/cris/en/research/frontier/misawa.html Accessed June 14, 2014. 2. Colours web site http://2011sec2lss.wikispaces.com/Colours Accessed June 14, 2014. 3. Spartan Environmental Technologies Web site http://www.spartanwatertreatment.com/UV.html Accessed June 15, 2014. 4. 謝嘉民, 賴一凡, 林永昌, 枋志堯. 光激發螢光量測的原理、架構及應用. 奈米通訊期刊 2005; 12(2): 29-39. 5. Olympus America Web site http://www.olympusmicro.com/primer/java/jablonski/jabintro/index.html Accessed June 17, 2014. 6. Fardad S, Roy G, Walsh LJ. Applications of Laser induced Fluorescence in Dentistry. International journal of dental clinics 2011; 3: 38-44. 7. Ibraheem NA, Hasan MM, Khan RZ, Mishra PK. Understanding Color Models: A Review. ARPN Journal of Science and Technology 2012; 2: 265-275. 8. Vichi A, Louca C, Corciolani G, Ferrari M. Color related to ceramic and zirconia restorations: A review. Dental Materials 2011; 27: 97-108. 9. Wyszecki G, Stiles WS. Color Science: Concepts and Methods, Quantitative Data and Formulae. John Wiley & Sons 10. Westland S. Review of the CIE system of colorimetry and its use in dentistry. Journal of Esthetic & Restorative Dentistry: Official Publication of the American Academy of Esthetic Dentistry 2006; 15 Suppl 1: S5-12. 11. 林欣儀. 拔下之人類牙齒其螢光與色度關係. 臺灣大學, 臨床牙醫學研究所, 2011. 12. digital printing evolution web site http://digitalprintingevolution.blogspot.tw/2010_04_01_archive.html Accessed June 15, 2014. 13. Buchalla W. Comparative fluorescence spectroscopy shows differences in noncavitated enamel lesions. Caries Research 2005; 39: 150-156. 14. Higham SM, Pender N, de Jong ED, Smith PW. Application of biophysical technologies in dental research. Journal of Applied Physics 2009; 105: 481-488. 15. Benedict HC. A note on the fluorescence of teeth in ultra-violet rays. Science 1928; 67: 442. 16. Hartles RL, Leaver AG. The identification of pyrimidines in the fluorescing fractions of the teeth of the sperm whale (Physeter macrocephalus). Journal of Dental Research; 34: 820-830. 17. Mancewicz SA, Hoerman KC. Characteristics of insoluble protein of tooth and bone—I Fluorescence of some acidic hydrolytic fragments. Archives of Oral Biology 1964; 9: 535-544. 18. Foreman PC. The excitation and emission spectra of fluorescent components of human dentine. Archives of Oral Biology 1980; 25: 641-647. 19. Perry A, Biel M, DeJongh O, Hefferren J. Comparative study of the native fluorescence of human dentine and bovine skin collagens. Archives of Oral Biology 1969; 14: 1193-1211. 20. Happe A, Schulte-Mattler V, Fickl S, Naumann M, Zoller JE, Rothamel D. Spectrophotometric assessment of peri-implant mucosa after restoration with zirconia abutments veneered with fluorescent ceramic: a controlled, retrospective clinical study. Clinical Oral Implants Research 2013; 24: 28-33. 21. Monsenego G, Burdairon G, Clerjaud B. Fluorescence of dental porcelain. Journal of Prosthetic Dentistry 1993; 69: 106-113. 22. Matsumoto H, Kitamura S, Araki T. Autofluorescence in human dentine in relation to age, tooth type and temperature measured by nanosecond time-resolved fluorescence microscopy. Archives of Oral Biology 1999; 44: 309-318. 23. Angmar-Mansson B, ten Bosch JJ. Advances in methods for diagnosing coronal caries--a review. Advances in Dental Research; 7: 70-79. 24. Albin S, Byvik CE, Buoncristian AM. Laser induced fluorescence of dental caries. Proc SPIE 1988; 907: 96-98. 25. Konig K, Flemming G, Hibst R. Laser-induced autofluorescence spectroscopy of dental caries. Cellular and Molecular Biology 1998; 44: 1293-1300. 26. Alfano RR, Yao SS. Human teeth with and without dental caries studied by visible luminescent spectroscopy. Journal of Dental Research 1981; 60: 120-122. 27. Goff JP, Hayes W, Hull S, Hutchings MT, Clausen KN. Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Physical Review B 1999; 59: 14202-14219. 28. Rekow ED, Silva NRFA, Coelho PG, Zhang Y, Guess P, Thompson VP. Performance of dental ceramics: challenges for improvements. Journal of Dental Research 2011; 90: 937-952. 29. Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: Clinical and experimental considerations. Dental materials : official publication of the Academy of Dental Materials 2011; 27: 83-96. 30. Tholey MJ, Berthold C, Swain MV, Thiel N. XRD2 micro-diffraction analysis of the interface between Y-TZP and veneering porcelain: Role of application methods. Dental Materials 2010; 26: 545-552. 31. Chevalier J, Gremillard L, Virkar AV, Clarke DR. The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. Journal of the American Ceramic Society 2009; 92: 1901-1920. 32. Pittayachawan P. Comparative study of physical properties of zirconia based dental ceramics. Doctoral dissertation, University College London Eastman Dental Institute, 2008. 33. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dental Materials 2008; 24: 289-298. 34. Garvie RC, Hannink RH, Pascoe RT. Ceramic steel. Nature 1975; 258: 703-704. 35. Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dental Materials 2010; 26: 807-820. 36. Kelly JR, Benetti P. Ceramic materials in dentistry: historical evolution and current practice. Australian Dental Journal 2011; 56: 84-96. 37. Dion I, Bordenave L, Lefebvre F, Bareille R, Baquey C, Monties JR, Havlik P. Physico-chemistry and cytotoxicity of ceramics .2. Cytotoxicity of ceramics. Journal of Materials Science-Materials in Medicine 1994; 5: 18-24. 38. Lohmann CH, Dean DD, Koster G, Casasola D, Buchhorn GH, Fink U, Schwartz Z, Boyan BD. Ceramic and PMMA particles differentially affect osteoblast phenotype. Biomaterials 2002; 23: 1855-1863. 39. Rimondini L, Cerroni L, Carrassi A, Torricelli P. Bacterial colonization of zirconia ceramic surfaces: An in vitro and in vivo study. International Journal of Oral & Maxillofacial Implants 2002; 17: 793-798. 40. Scarano A, Piattelli M, Caputi S, Favero GA, Piattellit A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: An in vivo human study. Journal of Periodontology 2004; 75: 292-296. 41. Scotti R, Kantorski KZ, Monaco C, Valandro LF, Ciocca L, Bottino MA. SEM evaluation of in situ early bacterial colonization on a Y-TZP ceramic: A pilot study. International Journal of Prosthodontics 2007; 20: 419-422. 42. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dental Materials 2008; 24: 299-307. 43. Helmer JC, Driskell TD. Research on bioceramics. Symposium on use of ceramics as surgical implants. Clemson University, 1969. 44. Kohal RJ, Klaus G, Strub JR. Zirconia-implant-supported all-ceramic crowns withstand long-term load: a pilot investigation. Clinical Oral Implants Research 2006; 17: 565-571. 45. Luthardt RG, Holzhuter MS, Rudolph H, Herold V, Walter MH. CAD/CAM-machining effects on Y-TZP zirconia. Dental Materials 2004; 20: 655-662. 46. Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: A laboratory study. International Journal of Prosthodontics 2001; 14: 231-238. 47. Luthy H, Filser F, Loeffel O, Schumacher M, Gauckler LJ, Hammerle CHF. Strength and reliability of four-unit all-ceramic posterior bridges. Dental Materials 2005; 21: 930-937. 48. Guazzato M, Albakry M, Quach L, Swain MV. Influence of grinding, sandblasting, polishing and heat treatment on the flexural strength of a glass-infiltrated alumina-reinforced dental ceramic. Biomaterials 2004; 25: 2153-2160. 49. Chen YM, Smales RJ, Yip KHK, Sung WJ. Translucency and biaxial flexural strength of four ceramic core materials. Dental Materials 2008; 24: 1506-1511. 50. Sundh A, Sjogren G. Fracture resistance of all-ceramic zirconia bridges with differing phase stabilizers and quality of sintering. Dental Materials 2006; 22: 778-784. 51. Gupta TK, Bechtold JH, Kuznicki RC, Cadoff LH, Rossing BR. Stabilization of tetragonal phase in polycrystalline zirconia. Journal of Materials Science 1977; 12: 2421-2426. 52. Lange FF. Transformation toughening. Journal of Materials Science 1982; 17: 225-234. 53. Cottom BA, Mayo MJ. Fracture toughness of nanocrystalline ZrO2-3mol% Y2O3 determined by vickers indentation. Scripta Materialia 1996; 34: 809-814. 54. Bravo-Leon A, Morikawa Y, Kawahara M, Mayo MJ. Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Materialia 2002; 50: 4555-4562. 55. Kobayashi K, Kuwajima H, Masaki T. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ionics 1981; 3–4: 489-493. 56. Chevalier J, Gremillard L, Deville S. Low-temperature degradation of Zirconia and implications for biomedical implants In: Proceedings of the Annual Review of Materials Research. 2007: 1-32. 57. Masaki T. Mechanical properties of Y-PSZ after aging at low temperature. International Journal of High Technology Ceramics 1986; 2: 85-98. 58. Munoz-Saldana J, Balmori-Ramirez H, Jaramillo-Vigueras D, Iga T, Schneider GA. Mechanical properties and low-temperature aging of tetragonal zirconia polycrystals processed by hot isostatic pressing. Journal of Materials Research 2003; 18: 2415-2426. 59. International Organization, ISO 13356: Implants for surgery - Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). International Standard. Geneva, Switzerland. 2008. 60. Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. The European Journal Of Esthetic Dentistry : Official Journal Of The European Academy of Esthetic Dentistry 2009; 4: 130-151. 61. Miyazaki T, Hotta Y. CAD/CAM systems available for the fabrication of crown and bridge restorations. Australian Dental Journal 2011; 56: 97-106. 62. Bachhav VC, Aras MA. Zirconia-based fixed partial dentures: a clinical review. Quintessence International 2011; 42: 173-182. 63. Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NRFA. All-ceramic systems: laboratory and clinical performance. Dental Clinics of North America 2011; 55: 333-352. 64. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. British Dental Journal 2008; 204: 505-511. 65. Baldissara P, Llukacej A, Ciocca L, Valandro FL, Scotti R. Translucency of zirconia copings made with different CAD/CAM systems. The Journal of Prosthetic Dentistry 2010; 104: 6-12. 66. Aboushelib MN, Dozic A, Liem JK. Influence of framework color and layering technique on the final color of zirconia veneered restorations. Quintessence International 2010; 41: E84-E89. 67. Oh GJ, Lee K, Lee DJ, Lim HP, Yun KD, Ban JS, Lee KK, Fisher JG, Park SW. Effect of metal chloride solutions on coloration and biaxial flexural strength of yttria-stabilized zirconia. Metals and Materials International 2012; 18: 805-812. 68. Filser FT. Direct ceramic machining of ceramic dental restorations. Swiss Federal Institute of Technology Zurich, Technical Science, 2001. 69. Hjerppe J, Narhi T, Froberg K, Vallittu PK, Lassila LVJ. Effect of shading the zirconia framework on biaxial strength and surface microhardness. Acta Odontologica Scandinavica 2008; 66: 262-267. 70. Shah K, Holloway JA, Denry IL. Effect of coloring with various metal oxides on the microstructure, color, and flexural strength of 3Y-TZP. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2008; 87B: 329-337. 71. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Effect of zirconia type on its bond strength with different veneer ceramics. Journal of Prosthodontics 2008; 17: 401-408. 72. Fondriest J. Shade matching in restorative dentistry: The science and strategies. International Journal of Periodontics & Restorative Dentistry 2003; 23: 467-479. 73. D'Alpino PHP, Pereira JC, Svizero NR, Rueggeberg FA, Pashley DH. Use of fluorescent compounds in assessing bonded resin-based restorations: A literature review. Journal of Dentistry 2006; 34: 623-634. 74. Tani K, Watari F, Uo M, Morita M. Fluorescent properties of porcelain-restored teeth and their discrimination. Materials Transactions 2004; 45: 1010-1014. 75. Zirkonzahn. Processing and Colouring of Prettau Zirconia. Italy. 2009. 76. 3M ESPE. Instruction for Lava™ Plus High Translucency Zirconia. Germany. 2013. 77. 鄭信民, 林麗娟. X光繞射應用簡介. 工業材料雜誌 2000; 181: 100-108. 78. Johnston WM, Kao EC. Assessment of appearance match by visual observation and clinical colorimetry Journal of Dental Research 1989; 68: 819-822. 79. American Society for Testing and Materials, E112: Standard Test Methods for Determining Average Grain Size. West Conshohocken.2012. 80. Yuan JC-C, Brewer JD, Monaco Jr EA, Davis EL. Defining a natural tooth color space based on a 3-dimensional shade system. The Journal of Prosthetic Dentistry 2007; 98: 110-119. 81. Lim YK, Lee YK. Fluorescent emission of varied shades of resin composites. Dental Materials 2007; 23: 1262-1268. 82. Tani K, Watari F, Uo M, Morita M. Discrimination between composite resin and teeth using fluorescence properties. Dental Materials Journal 2003; 22: 569-580. 83. Ecker GA, Moser JB, Wozniak WT, Brinsden GI. Effect of repeated firing on fluorescence of porcelain-fused-to-metal porcelains. Journal of Prosthetic Dentistry 1985; 54: 207-214. 84. Garvie RC. Phase analysis in zirconia systems. Journal of the American Ceramic Society 1972; 55: 303-305. 85. Toraya H, Yoshimura M, Somiya S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. Journal of the American Ceramic Society 1984; 67: C119-C121. 86. Deville S, Gremillard L, Chevalier J, Fantozzi G. A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2005; 72B: 239-245. 87. Chevalier J. What future for zirconia as a biomaterial? Biomaterials 2006; 27: 535-543. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56769 | - |
dc.description.abstract | 背景
釔安定正方晶相二氧化鋯(3% mol yttrium-stabilized tetragonal zirconia poly-crystal, 3Y-TZP)陶瓷為近年來廣泛應用之牙科贋復材料。其與自然牙相近之象牙色外觀,視為極具應用於美觀區贋復材料之潛力。欲使釔安定正方晶相二氧化鋯(3Y-TZP)陶瓷達到最佳化擬真效果,多家廠商推出市售螢光染劑,能使二氧化鋯陶瓷(3Y-TZP)和自然牙具有相同螢光反應,使其更亮白。然而對於如何使用市售螢光染劑調控二氧化鋯陶瓷(3Y-TZP)螢光表現,及其對二氧化鋯陶瓷(3Y-TZP)顏色及微結構之影響,目前並無具體的文獻報告。 目的 本實驗欲檢測市售螢光劑是否可調控二氧化鋯陶瓷(3% mol yttrium-stabilized tetragonal zirconia poly-crystal, 3Y-TZP)之螢光強度及其螢光表現與自然牙螢光表現之差異。同時觀察市售螢光劑之使用是否會伴隨二氧化鋯陶瓷(3Y-TZP)顏色改變。此外,觀察使用市售螢光劑是否會改變二氧化鋯陶瓷(3Y-TZP)微結構:晶體結構、表面型態與平均粒徑尺寸。 材料與方法 本實驗將未燒結ZirkonzahnR PRETTAU ZIRKON二氧化鋯陶瓷(3% mol yttrium-stabilized tetragonal zirconia poly-crystal, 3Y-TZP)切削,再燒結成大小為直徑10 mm與厚 2 mm 之圓錠樣本。二氧化鋯陶瓷(3Y-TZP)樣本分為未染色C與以市售螢光染劑做為螢光來源之染色樣本F,先將需染色樣本進行染色後,再將所有樣本進行最終燒結。螢光染色之二氧化鋯陶瓷(3Y-TZP)樣本F又依染色方法分為浸泡或塗抹染色兩組。浸泡染色組依浸泡時間分為5秒、1分鐘與10分鐘,依序為F(5)、F(60)、F(600)三小組; 塗抹染色組依塗抹次數分為1與4次兩小組,依序為F1、F4。實驗分為三個部分進行: (1)以螢光光譜儀及紫外燈觀察浸泡染色時間及塗抹染色次數對螢光強度的影響,並與自然牙比較螢光光譜之差異;(2)以數位比色機紀錄市售螢光劑浸泡時間及塗抹次數所導致二氧化鋯陶瓷(3Y-TZP)之CIE L*a*b*值之變化,以了解螢光劑是否會導致可辨識顏色之變化(ΔE>3.7),其顏色是否與自然牙顏色有所差異,並與淺色系A1及中間色系A3染劑染色後二氧化鋯陶瓷(3Y-TZP)之顏色做比較。以單因子變異數分析比較各組L*、a*、b*與∆E平均值是否有差異,定義P value = 0.05為顯著水平,若P value ≦0.05,進行事後多重比較,分析各組之差異。利用student t test分析各組樣本之∆E值與數值∆E = 3.7是否有統計上顯著差異,若P value ≦0.05則具統計上顯著意義;(3)以粉末X射線繞射儀觀察未染色與以不同方法染色之二氧化鋯陶瓷(3Y-TZP)之晶相結構,分析染色及染色方法是否會導致晶相改變。以掃描式電子顯微鏡觀察未染色與以不同方法染色之二氧化鋯陶瓷(3Y-TZP)的表面微結構差異,利用截距法計算平均粒徑及以能量分散光譜儀分析表面元素組成。結果以單因子變異數分析(one-way ANOVA) 比較各組平均數是否有差異, P value ≦ 0.05代表具統計顯著意義。 結果 一、以市售螢光染劑作為螢光來源之二氧化鋯陶瓷(3Y-TZP)與自然牙有不同的螢光表現。螢光染色二氧化鋯陶瓷(3Y-TZP)之激發與放射光譜波形相較於自然牙較為狹窄集中,往低波長偏移。二、市售螢光染劑染色二氧化鋯陶瓷(3Y-TZP)之螢光於CIE色度座標上,光譜相較於自然牙明顯往藍光位移。三、以市售螢光染劑作為二氧化鋯陶瓷(3Y-TZP)之螢光來源,可藉由浸泡時間調控螢光強度,隨浸泡時間增加,螢光強度增加。然而5秒、1分鐘與10分鐘之浸泡時間所造成螢光強度之差異無法以肉眼區分。四、以市售螢光染劑作為二氧化鋯陶瓷(3Y-TZP)之螢光來源,亦可藉由塗抹染色次數調控螢光強度,隨塗抹次數增加,螢光強度增加。塗抹一次及四次所造成螢光強度之差異,能以肉眼區分。五、市售螢光染劑改變二氧化鋯陶瓷(3Y-TZP)螢光之同時,伴隨顏色之改變,導致二氧化鋯陶瓷(3Y-TZP)之CIE L*值下降,a*值及b*值增加。使用最短的浸泡時間或最少的塗抹次數仍會造成肉眼可辨識顏色之改變(ΔE>3.7),達到統計上顯著,p < 0.05。六、市售螢光染劑造成顏色之改變(ΔE)遠大於淺色系之染劑A1,p < 0.05。七、以浸泡與塗抹方法使用螢光染劑染色,達到相同的螢光強度時,塗抹方法對二氧化鋯陶瓷(3Y-TZP)之顏色的改變較少。此外,浸泡螢光染劑10分鐘會導致二氧化鋯陶瓷(3Y-TZP)顏色超出自然牙顏色區間外。八、未染色及使用市售螢光劑染色後的二氧化鋯陶瓷(3Y-TZP)均以正方晶相二氧化鋯(tetragonal phase ZrO2, t-ZrO2)為主體,含有少量的單斜晶相二氧化鋯(monoclinic phase ZrO2, m-ZrO2)。九、使用市售螢光劑以不同方法染色之二氧化鋯陶瓷(3Y-TZP)於電子顯微鏡下具有不同微結構之特徵,包含染劑物質分布、顆粒之均質性及平均粒徑尺寸。使用浸泡法染色之二氧化鋯陶瓷(3Y-TZP)F(600)其平均粒徑大於未染色C與使用塗抹法染色之二氧化鋯陶瓷(3Y-TZP) F4,達到統計上顯著,p < 0.05。 結論 使用市售螢光染劑(ZirkonzahnR Colour Liquid Fluoreszenz for Prettau)作為二氧化鋯陶瓷(3Y-TZP)之螢光來源,可藉由浸泡時間及塗抹染色次數調控二氧化鋯陶瓷(3Y-TZP)之螢光強度,同時伴隨肉眼可辨識之顏色變化。並且由於顏色變化比淺色染劑明顯,不適用於淺色區。塗抹染色之方法於增加螢光強度同時有較少的顏色變化,符合臨床上之需求,且染色後能維持均勻且適當粒徑尺寸,可避免二氧化鋯陶瓷(3Y-TZP)抗低溫衰變能力之下降。 | zh_TW |
dc.description.abstract | Background
3% mol yttrium-stabilized tetragonal zirconia poly-crystal (3Y-TZP) is becoming one of the most promising restorative materials. To mimic the photoluminescence of natural teeth, manufactories provide a fluorescent liquid applied on the 3Y-TZP. However, there is no document about the capacity of the fluorescent agent to regulate the photoluminescence intensity of 3Y-TZP, the photoluminescence expression, and the effect on the color and microstructure of 3Y-TZP. Purpose The purpose of this study was to explore if using a commercial fluorescent agent was able to regulate the photoluminescence intensity of 3Y-TZP, and to analyze the difference of photoluminescence expression between dyed 3Y-TZP and natural teeth. The color, crystallographic forms, surface morphology, and mean grain size of dyed 3Y-TZP were recorded and the results were compared to undyed 3Y-TZP. Materials and methods Zirconia sample was milled to disc form. Shading process was prior to sintering and the commercial fluorescent agent was applied by dipping and brushing methods. The discs were divided into 3 groups: the undyed control group; the dipping groups; the brushing groups. The dipping groups- F(5)、F(60)、F(600) were immersed in the commercial fluorescent agent for 5 sec., 1 and 10 min., respectively. The brushing groups- F1、F4 were tinted with the commercial fluorescent agent by 1 or 4 strokes respectively. This study was divided into 3 parts: (1) The photoluminescence excitation was observed by naked eyes under UV lamp and measured by photoluminescence spectrophotometer. (2) CIE L*, a*, b* values of various group were measured by digital colorimeter. Color change (∆E) of various groups was compared to ∆E=3.7. Student t test was performed to detect the difference (at a significance difference of p ≦ 0.05). One-way ANOVA tests (at a significance difference of p ≦ 0.05) were used to evaluate the difference of mean L*, a*, b*, ∆E values among various groups. (3) The crystallographic shapes of C、F(600)、F4 were measured by X-ray powder diffractometer (XRD). Surface structural and chemical differences among C、F(600)、F4 were evaluated using scanning electron microscopy (SEM) and energy dispersive analysis (EDS). The mean grain size was calculated. One-way ANOVA were used to detect the difference (at a significance difference of p ≦ 0.05). Results The results were listed below: (1) The photoluminescence excitation of dyed 3Y-TZP differed from a natural tooth. Their spectra were more concentrated than a natural tooth’s spectra, and the peaks were left-shifted. (2) The color of the photoluminescence of dyed 3Y-TZP was blue-shifted. (3) The commercial fluorescent agent could regulate the photoluminescence intensity of dyed 3Y-TZP by immersion time, and the intensity increased as immersion time increased. The difference of the photoluminescence intensity among F(5), F(60) and F(600) was not detected by naked eyes. (4) The commercial fluorescent agent could regulate the photoluminescence intensity of dyed 3Y-TZP by the number of strokes applied, and the intensity increased as strokes increased. The difference of the photoluminescence intensity between F1 and F4 could be detected by naked eyes. (5) The commercial fluorescent agent changed the color. The commercial fluorescent agent made L* value decreased, and a* and b* values increased. Even these samples with the shortest immersion time or the least applied stroke produced color change detectable by naked eyes, ΔE >3.7 ( p < 0.05). (6) The commercial fluorescence agent led to more color change than light-colored A1 agent (p<0.05). (7) The dipping groups caused more notable color change than the brushing groups as the photoluminescence intensity achieved the same level. (8) Undyed C and F4, F(600) samples were composed mainly of t-ZrO2, and a small quantity of m-ZrO2 content. (9) Different shading methods made microstructure distinct, such as the distribution of coloring pigment, homogeneity of grain size, and mean grain size. The dipping group F(600) had a significantly larger grain size than the control group C and the brushing group F4 ( p < 0.05). Conclusion The commercial fluorescent agent can regulate the photoluminescence intensity by immersion time and the number of the strokes applied. However, the increase of the photoluminescence intensity accompanies with color change. The color change is detectable by naked eyes and even more obvious than light-colored dye agent’s. The brushing method cause less color change than the dipping method as the photoluminescence intensity at the same level. Besides, the brushing method compared to the dipping method can maintain even and adequate grain size, which is thought as a key factor to avoid the low temperature degradation. These results show the brushing method more practical clinically than the dipping method. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:47:19Z (GMT). No. of bitstreams: 1 ntu-103-P00422005-1.pdf: 5188197 bytes, checksum: 48438acd29a516af27cb78635c62e946 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 III Abstract VI 總目錄 IX 圖目錄 XII 表目錄 XVI Chapter 1緒論 1 1.1光與顏色 1 1.1.1可見光與紫外光 1 1.1.2螢光與磷光之發光機制 5 1.1.3色彩之描述與表達 7 1.2自然牙的螢光反應 11 1.3牙科二氧化鋯陶瓷(3Y-TZP)之染色以及文獻回顧 14 1.3.1牙科二氧化鋯陶瓷(3Y-TZP)之發展及基本性質 14 1.3.2牙科二氧化鋯陶瓷(3Y-TZP)之加工製造 24 1.3.3牙科二氧化鋯陶瓷(3Y-TZP)之染色及其影響 26 1.3.4牙科二氧化鋯陶瓷(3Y-TZP)螢光染劑之使用 33 1.4研究目的與假設 33 Chapter 2實驗材料與方法 35 2.1實驗用樣本製備 35 2.1.1牙科二氧化鋯陶瓷(3Y-TZP)樣本 35 2.1.2 自然牙樣本 36 2.2實驗器材 37 2.2.1光激發光譜儀(Photoluminescence spectrophotometer) 38 2.2.2紫外線燈(fluorescent lamp, UV lamp) 40 2.2.3數位比色機(digital colorimeter) 41 2.2.4掃瞄式電子顯微鏡(scanning electron microscope, SEM) 42 2.2.5 粉末X射線繞射分析儀(X-ray powder diffractometer, XRD) 45 2.3實驗流程與方法 46 2.3.1市售螢光染劑對二氧化鋯陶瓷(3Y-TZP)螢光之影響 47 2.3.2市售螢光染劑對二氧化鋯陶瓷(3Y-TZP)顏色之影響 48 2.3.3市售螢光染劑對二氧化鋯陶瓷(3Y-TZP)微結構之影響 48 2.4資料處理分析 48 Chapter 3 實驗結果與討論 51 3.1市售螢光染劑對二氧化鋯陶瓷(3Y-TZP)螢光之影響 51 3.1.1 未染色二氧化鋯陶瓷(3Y-TZP)與市售螢光染劑之螢光表現 51 3.1.2 染色二氧化鋯陶瓷(3Y-TZP)與自然牙螢光之比較 53 3.1.3 浸泡時間與塗抹次數對二氧化鋯陶瓷(3Y-TZP)螢光之影響 55 3.2市售螢光染劑對二氧化鋯陶瓷(3Y-TZP)顏色之影響 63 3.3市售螢光染劑對二氧化鋯陶瓷(3Y-TZP)微結構之影響 71 3.3.1 二氧化鋯陶瓷 (3Y-TZP)之晶體結構 71 3.3.2 表面形貌之觀察及元素分析 74 3.4討論 80 Chapter 4 總結 89 4.1結論 89 4.2未來研究方向 91 參考資料 92 | |
dc.language.iso | zh-TW | |
dc.title | 市售螢光染劑對於釔安定正方晶相二氧化鋯陶瓷顏色、螢光及表面微結構之影響 | zh_TW |
dc.title | Effect of a commercial fluorescence liquid on the color, fluorescence, and surface microstructure of 3Y-TZP | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 劉如熹(Ru-Shi Liu) | |
dc.contributor.oralexamcommittee | 王若松(Juo-Song Wang) | |
dc.subject.keyword | 二氧化鋯陶瓷(3Y-TZP),螢光,顏色,粒徑尺寸,晶相, | zh_TW |
dc.subject.keyword | 3% mol yttrium-stabilized tetragonal zirconia poly-crystal (3Y-TZP),photoluminescence,color,grain size,crystallography, | en |
dc.relation.page | 99 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-11 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 5.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。