請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56761完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林楨家(Jen-Jia Lin) | |
| dc.contributor.author | Jhang-Jyun Liao | en |
| dc.contributor.author | 廖章鈞 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:46:49Z | - |
| dc.date.available | 2020-08-21 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-16 | |
| dc.identifier.citation | Attoh-Okine, N. and L. D. Shen (1995) Security issues of emerging smart cards fare collection application in mass transit. Pacific Rim TransTech Conference, Seattle, WA, USA, IEEE. Badoe, D. A. and M. K. Yendeti (2007) Impact of transit pass ownership on daily number of trips made by urban public transit. Journal of Urban Planning and Development, 133 (4): 242-249. Beirão, G. and J. A. Sarsfield Cabral (2007) Understanding attitudes towards public transport and private car: A qualitative study. Transport Policy, 14 (6): 478-489. Bertolini, L. (1999) Spatial development patterns and public transport: The application of an analytical model in the Netherlands. Planning Practice and Research, 14 (2): 199-210. Blythe, P. T. (2004) Improving public transport ticketing through smart cards. Proceedings of the Institution of Civil Engineers-Municipal Engineer, 157: 47-54. Bruesch, T. S. and A. R. Pagan (1979) A simple test for heteroscedasticity and random coefficient variation. Econometrica, 47 (5): 1287-1294. Chu, K. K. A. and R. Chapleau (2018) Augmenting transit trip characterization and travel behavior comprehension. Transportation Research Record: Journal of the Transportation Research Board, 2183 (1): 29-40. Dempsey, P. S. (2015) Privacy issues with the use of smart cards. Social Science Research Network, August 4, 2007. Feuillet, T., H. Charreire, M. Menai, P. Salze, C. Simon, J. Dugas, S. Hercberg, V. A. Andreeva, C. Enaux, C. Weber and J. M. Oppert (2015) Spatial heterogeneity of the relationships between environmental characteristics and active commuting: towards a locally varying social ecological model. International Journal of Health Geographics, 14: 12. Getis, A. and J. K. Ord (2010) The analysis of spatial association by use of distance statistics. Perspectives on Spatial Data Analysis: 127-145. Golob, T. T. and H. Meurs (1986) Biases in response over time in a seven-day travel diary. Transportation, 13 (2): 163-181. Gordon, J. B., H. N. Koutsopoulos, N. H. M. Wilson and J. P. Attanucci (2013) Automated inference of linked transit journeys in London using fare-transaction and vehicle location data. Transportation Research Record: Journal of the Transportation Research Board, 2343 (1): 17-24. Henderson, J. V. and H. G. Wang (2007) Urbanization and city growth: The role of institutions. Regional Science and Urban Economics, 37: 283-313. Jang, W. (2018) Travel time and transfer analysis using transit smart card data. Transportation Research Record: Journal of the Transportation Research Board, 2144 (1): 142-149. Kitamura, R. (1990) Panel analysis in transportation planning: An overview. Transportation Research Part A: General, 24 (6): 401-415. Kusakabe, T. and Y. Asakura (2014) Behavioural data mining of transit smart card data: A data fusion approach. Transportation Research Part C: Emerging Technologies, 46: 179-191. Liang, Q., J. Weng, W. Zhou, S. B. Santamaria, J. Ma and J. Rong (2018) Individual travel behavior modeling of public transport passenger based on graph construction. Journal of Advanced Transportation, 2018: 1-13. Liu, X., Y. Zhou and A. Rau (2018) Smart card data-centric replication of the multi-modal public transport system in Singapore. Journal of Transport Geography, 76: 254-264. Ma, X., Y.-J. Wu, Y. Wang, F. Chen and J. Liu (2013) Mining smart card data for transit riders’ travel patterns. Transportation Research Part C: Emerging Technologies, 36: 1-12. Meyer, J. and E. A. Beimborn (1998) Usage impacts and benefits of innovative transit pass program. Transportation Research Record: Journal of the Transportation Research Board, 2183: 131-138. Morency, C., M. Trépanier and B. Agard (2006) Analysing the variability of transit users behaviour with smart card data. IEEE Intelligent Transportation Systems Conference, Toronto, Ont., Canada, IEEE. Morency, C., M. Trépanier and B. Agard (2007) Measuring transit use variability with smart-card data. Transport Policy, 14 (3): 193-203. Nassir, N., M. Hickman and Z.-L. Ma (2015) Activity detection and transfer identification for public transit fare card data. Transportation, 42 (4): 683-705. Pelletier, M.-P., M. Trépanier and C. Morency (2011) Smart card data use in public transit: A literature review. Transportation Research Part C: Emerging Technologies, 19 (4): 557-568. Seaborn, C., J. Attanucci and N. H. M. Wilson (2018) Analyzing multimodal public transport journeys in London with smart card fare payment data. Transportation Research Record: Journal of the Transportation Research Board, 2121 (1): 55-62. Shelfer, K. M. and J. D. Procaccino (2002) Smart card evolution. Communications of the ACM, 45 (7): 83-88. Tao, S., D. Rohde and J. Corcoran (2014) Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap. Journal of Transport Geography, 41: 21-36. Tong, H. Y., W. T. Hung and C. S. Cheung (2011) On-road motor vehicle emissions and fuel consumption in urban driving conditions. Journal of the Air Waste Management Association, 50 (4): 543-554. Tu, W., R. Cao, Y. Yue, B. Zhou, Q. Li and Q. Li (2018) Spatial variations in urban public ridership derived from GPS trajectories and smart card data. Journal of Transport Geography, 69: 45-57. Yap, M. D., S. Nijënstein and N. van Oort (2018) Improving predictions of public transport usage during disturbances based on smart card data. Transport Policy, 61: 84-95. Zhang, X., Y. Xu, W. Tu and C. Ratti (2018) Do different datasets tell the same story about urban mobility — A comparative study of public transit and taxi usage. Journal of Transport Geography, 70: 78-90. 中央通訊社(2017)台北捷運準點率超過99% 星媒按讚 https://www.cna.com.tw/news/aopl/201711160417.aspx(擷取日期:2019.3.21) 卡優新聞網(2018)電子票證持有率逾9成 最常於便利商店消費https://www.cardu.com.tw/news/detail.php?34600(擷取日期:2018.11.15) 年代新聞(2017)四卡爭霸! 悠遊卡市占率年下滑3% https://www.youtube.com/watch?v=z4oUu1Jx_FU itct=CAgQpDAYCiITCP2Aq5bv3dcCFUItAwodYv8PljIHcmVsYXRlZEjc9uen9sbUpZoB app=desktop(擷取日期:2018.11.15) 臺北大眾捷運股份有限公司(2018a)公共運輸定期票13日起開放預購 歡迎持悠遊卡至捷運車站購買https://www.metro.taipei/News_Content.aspx?n=30CCEFD2A45592BF s=728DD88C9CF87C81(擷取日期:2018.11.15) 臺北大眾捷運股份有限公司(2018b)車票種類、旅遊票推薦https://www.metro.taipei/cp.aspx?n=CEF54168B23F73B4(擷取日期:2018.11.15) 臺北大眾捷運股份有限公司(2019a)路網簡介 https://www.metro.taipei/cp.aspx?n=CCF30033E6ED8008 s=13A497BCFA1A16EB(擷取日期:2019.4.24) 臺北大眾捷運股份有限公司(2019b)旅運量 https://www.metro.taipei/cp.aspx?n=FF31501BEBDD0136(擷取日期:2019.4.24) 臺北大眾捷運股份有限公司(2019c)何謂雙向轉乘優惠?電子票證各票種雙向轉乘優惠如何扣款?https://www.metro.taipei/News_Content.aspx?n=566DA580861CEE77 s=1CDFC00134A98701(擷取日期:2019.4.24) 臺北市政府民政局(2018)臺北市每月各里人口數及戶數 https://ca.gov.taipei/News_Content.aspx?n=F98484FF6E3A5230 sms=D19E9582624D83CB s=6F385E21D02AAFD5(擷取日期:2019.3.22) 鄭麗淑、李佳倩(2018)近二年臺北市公共自行車使用特性。臺北市政府交通局統計室 蘋果即時(2018)【Hen會花】悠遊卡5月嗶破53億 市占逾7成 https://tw.appledaily.com/new/realtime/20180708/1387102/(擷取日期:2019.4.24) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56761 | - |
| dc.description.abstract | 隨著都市人口的快速成長,都市交通的負面影響也日趨嚴重,為此,公共運輸應運而生。然而公共運輸並非單一系統,若要有效地滿足都市的運輸需求,則對系統間轉乘型態的了解便至關重要。同時,影響轉乘行為的因素眾多,包括社會經濟、建成環境乃至地理空間等,而這些變數影響關係在非均質的地理空間中也往往存在差異。因此,本研究之目的為對大臺北地區公共運輸使用者的轉乘行為進行分析,藉由了解其特徵以及與其他因子間的影響關係、探索其空間上的變異,來對大臺北地區的旅運型態更加了解,並有助於建構更友善之轉乘環境。 在對於轉乘行為的分析上,以往多採取問卷形式的調查資料,然而此方式雖獲得的資訊較全面,但具有成本高昂、精確度低等問題,也因此不適用於大量或是長期的分析。近年由於資訊科學之演進及自動收費系統的普及,智慧卡的資料能夠被處理與應用,並提供更長期、大量且整合不同系統的分析方式,也讓以智慧卡資料來研究公共運輸議題成為一項具有優勢的選項。本文即以大臺北地區智慧卡(悠遊卡)中的捷運、YouBike資料進行研究,透過兩運具間轉乘行為的識別,依序應用空間分析、熱區分析與迴歸等方式,分析大臺北地區公共運輸使用者轉乘行為之空間變異,並探討背後的因素如人口、社會經濟、建成環境、定期票等,及其影響關係在空間上的異質性。 研究結果發現,各項社會經濟與建成環境變數確實會對使用者轉乘行為造成效果不一之影響,並可與過往文獻做呼應或是呈現出大臺北地區旅運行為的特殊性;而在政策效果上,亦能透過模式分析結果驗證定期票的影響。上述發現不僅可填補過往運用智慧卡資料進行轉乘分析的研究缺口,更能了解其影響因素與影響關係之空間變化,有助於未來政府與營運單位改善各地的轉乘資源,同時更有效地建立富有彈性之公共運輸政策,提升整體公共運輸的質與量。 | zh_TW |
| dc.description.abstract | Having the advantages of releasing traffic congestion and improving environmental quality, public transport systems have gradually become a vital part of urban transportation. However, public transport systems are usually composed of multiple systems, a comprehensive understanding of transfer patterns among systems is an essential issue in order to satisfy user needs of public transport. Because system-transferring is related to users’ travel behaviors, identifying the spatiotemporal variations of transfer patterns helps public transport agencies realizing current situations and further enhancing the service quality. Most previous studies on transfer pattern analysis used survey data. Although the information derived from survey data is detailed, there are still some disadvantages and limits. Thanks to the progress of data science and the automatic fare collection systems, increasing novel methods using smart card data have been developed. This study applied the transit smart card (Easy Card) data of Taipei Metropolitan Area to analyze the spatial variations of public transport users’ transfer patterns. Two study issues were proposed: how has the “1280 monthly pass” scheme affected transfer patterns? And, what are the associations of transfer patterns with build environment and socioeconomic attributes? The empirical findings of this study show that the socio-economic and built environment attributes had different impacts on travelers’ transfer behaviors. Comparing with previous studies, the uniqueness of travelers’ transfer behaviors in the Taipei Metropolitan Area was identified. The empirical findings can not only fill the research gap in analyzing transfer behavior by smart card data, but also help us understanding the relationships among the study variables and their spatial variations. Results gained from this research can be used by governments or public transport agencies as a reference to improve the inter-system transfer quality or formulate more flexible policies, and promote the quality and ridership of public transport. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:46:49Z (GMT). No. of bitstreams: 1 U0001-2407202010055200.pdf: 7599995 bytes, checksum: 844a510fd4ab0ef3eab19b23185b2351 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 i Abstract ii 第一章 緒論 1 第一節 研究動機與目的 1 第二節 研究範疇 6 第三節 研究流程與內容 14 第四節 研究方法 17 第二章 文獻回顧 19 第一節 智慧卡優缺與應用前景 19 第二節 應用於各類公共運輸相關分析 23 第三節 轉乘識別與資料處理 29 第四節 綜合評析 32 第三章 研究設計 34 第一節 課題研析 34 第二節 假說研提 48 第三節 驗證方法 53 第四章 研究資料 62 第一節 資料蒐集與整理 62 第二節 敘述統計 67 第三節 空間特徵 78 第五章 實證分析 92 第一節 模式估計 92 第二節 假說驗證 108 第三節 意涵討論 112 第六章 結論與建議 124 第一節 結論 124 第二節 建議 126 參考文獻 131 | |
| dc.language.iso | zh-TW | |
| dc.subject | 轉乘 | zh_TW |
| dc.subject | 智慧卡 | zh_TW |
| dc.subject | 可近性 | zh_TW |
| dc.subject | 公共運輸 | zh_TW |
| dc.subject | 旅運行為 | zh_TW |
| dc.subject | transfer | en |
| dc.subject | public transport | en |
| dc.subject | smart card | en |
| dc.subject | travel behavior | en |
| dc.subject | accessibility | en |
| dc.title | 以智慧卡資料探討公共運輸使用者轉乘行為之空間變異 | zh_TW |
| dc.title | Exploring Spatial Variations of Public Transport Users’ Transfer Behaviors Using Smart Card Data | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 溫在弘(Tzai-Hung Wen),許聿廷(Yu-Ting hsu) | |
| dc.subject.keyword | 公共運輸,智慧卡,旅運行為,可近性,轉乘, | zh_TW |
| dc.subject.keyword | public transport,smart card,travel behavior,accessibility,transfer, | en |
| dc.relation.page | 135 | |
| dc.identifier.doi | 10.6342/NTU202001814 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
| 顯示於系所單位: | 地理環境資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2407202010055200.pdf 未授權公開取用 | 7.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
