Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56756
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李君浩(Jiun-Haw Lee)
dc.contributor.authorPo-Sheng Wangen
dc.contributor.author王博聖zh_TW
dc.date.accessioned2021-06-16T05:46:31Z-
dc.date.available2019-08-12
dc.date.copyright2014-08-12
dc.date.issued2014
dc.date.submitted2014-08-11
dc.identifier.citationChapter1
[1] S. Watanabe, N. Ide, J. Kido, Jpn. J. Appl. Phys. 2007, 46, 3A.
[2] Y. Chen, J. Chen, Y. Zhao, and D. Ma, Appl. Phys. Lett. 2012, 100, 213301.
[3] X. Yang, H. Huang, B. Pan, S. Zhuang, M. P. Aldred, L. Wang, J. Chen, and D. Ma, J. Mater. Chem. 2012, 22, 23129.
[4] P. Kumar and S. Chand, Prog. Photovolt: Res. Appl. 2012, 20, 377.
[5] T. Ameri, N. Li and C. J. Brabec, Energy Environ. Sci. 2013, 6, 2390.
[6] J. S. Park, H. Chae, H. K. Chung, and S. I. Lee, Semicond. Sci. Technol. 2011, 26, 034001
[7] G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, Opt. Lett. 1997, 22, 3, 172.
[8]A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida , T. Miyadera, and M. Tsuchida, IEEE J. Sel. Top. Quant. 2004, 10, 1.
[9] N. C. Giebink and S. R. Forrest, Phys. Rev. B 2008, 77, 235215.
[10] M. A. Baldo, M. E. Thompson and S. R. Forrest, Pure Appl. Chem. 1999, 71, 11, 2095.
[11] B. P. Yan, C. C. C. Cheung, S. C. F. Kui, H. F. Xiang, V. A. L. Roy, S. J. Xu and C. M. Che, Adv. Mater. 2007, 19, 21, 3599.
[ 2] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki and F. Sato, Appl. Phys. Lett. 2003, 83, 569.
[ 3] X. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest, and M. E. Thompson, Chem. Mater. 2004, 16, 4743.
[ 4] C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer, A. Meyer, Sol. Energy. Mater. and Sol. Cells 2007, 91, 5, 379.
[ 5] Y. Galagan, J. E. J.M. Rubingh, R. Andriessen, C. C. Fan, P. W.M. Blom, S. C. Veenstra, J. M. Kroon, Sol. Energy. Mater. and Sol. Cells 201, 95, 5, 1339.
[ 6] R. F. Service, Science 2011, 332, 293.
[ 7] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li and Y. Yang, Nat. Commun. 2013, 4, 1446.
[ 8] P. Li, H. Tong, J. Liu, J. Ding, Z. Xie and L. Wang, RSC Adv. 2013, 3, 23098.
[ 9] Y. M. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan and A. J. Heeger, Nat. Mater., 2012, 11, 44–48.
[20] A. R. B. M. Yusoff, H. P. Kim, J. Jang. Sol. Energy. Mater. and Sol. Cells 2013, 109, 63.
[2 ] Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, Nature Photon. 2012, 6, 190.
[22] M. Ikai, S Tokito, Y. Sakamoto, T. Suzuki and Y. Taga, Appl. Phys. Lett. 2011, 79, 156
[23] D. F. O’Brien, M. A. Baldo, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett. 1999, 74, 442.
[24] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature 1998, 395, 151.
[25] M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch , M. E. Thompson, J. Am. Chem. Soc., 2003, 125, 7796.
[26]C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082.
[27] S. J. Su, H. Sasabe, T. Takeda, Kido, J. Chem. Mater. 2008, 20, 5951.
[28] R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Kwong, J. J. Brown, S. Garon and M. E. Thompson, Appl. Phys. Lett. 2003, 82, 15.
[29] J. K. Bin, N. S. Cho, and J. I. Hong, Adv. Mater. 2012, 24, 2911.
[30] S. Gong , Y. Chen , J. Luo , C. Yang , C. Zhong, J. Qin , and D. Ma, Adv. Funct. Mater. 2011, 21, 1168.
[3 ] M. S. Lin, S. J. Yang, H.W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondal and K.-T. Wong, J. Mater. Chem., 2012, 22, 16114.
[32] C. W. Lee, J.-K. Kim, S. H. Joo, and J. Y. Lee, Appl. Mater. Interfaces 2013, 5, 2169.
[33] H. Ye, D. Chen, M. Liu, S. J. Su, Y. F. Wang, C. C. Lo, A. Lien, and J. Kido, Adv. Funct. Mater. 2014, 24, 3268.
[34] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky and F. Wudl, Appl. Phys. Lett. 1993, 62, 585.
[35] J. Xue, B. P. Rand, S. Uchida and S. R. Forrest, Adv. Mater. 2005, 17, 1.
[36] J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, Advanced Materials 2006, 18, 5, 572.
[37] V. E. Choong, Y. Park, N. Shivaparan, C. W. Tang, Y. Gao, Appl. Phys. Lett. 1995, 71, 1005.
[38] T. L. Chiu, W. F. Xu, C. F. Lin, J. H. Lee, C. C. Chao, M. K. Leung, Appl. Phys. Lett. 2009, 94, 013307.
[39] M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Sol. 2009, 131, 9281.
[40] M. S. Whitea, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 2006, 89, 143517.
[41] N. Sekinea, C. H. Choua, W. L. Kwana, Y. Yang, Org. Electron. 2009, 10, 1473.
[42] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, D. L. Kwong, Appl. Phys. Lett. 2008, 93, 221107.
[43] C. Tao, S.P. Ruan, X.D. Zhang, G.H. Xie, L. Shen, X.Z. Kong, W. Dong, C.X. Liu, W.Y. Chen, Appl. Phys. Lett. 2008, 93, 193307.
[44] H. Schmidt, H. Flugge, T. Winkler, T. Bulow, T. Riedl, W. Kowalsky, Appl. Phys. Lett. 2009, 94, 243302.
[45] J. S. Huang, C. Y. Chou, M. Y. Liu, K. H. Tsai, W. H. Lin, C. F. Lin, Org. Electron. 2009, 10, 1060.
[46] G. Li, C. W. Chu, V. Shrotriya, J. Huang, Y. Yang, Appl. Phys. Lett. 2006, 88, 253503.
[47] H. H. Liao, L. M. Chen, Z. Xu, G. Li, Y. Yang, Appl. Phys. Lett. 2008, 92, 173303.
[48] J. S. Huang, C. Y. Chou, C.F. Lin, IEEE Electron Dev. Lett. 2010, 31, 332.
[49] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, D. S. Ginley, Appl. Phys. Lett. 2006, 89, 143517.
[50] H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, A. K. Y. Jen, Adv. Mater. 2008, 20, 2376.
[51] S.K. Hau, H.L. Yip, H. Ma, A.K.Y. Jen, Appl. Phys. Lett. 2008, 93, 233304.
[52] R. Sondergaard, M. Helgesen, M. Jorgensen, F. C. Krebs, Adv. Energy Mater. 2011, 1, 68.
[53] Y. Zhou, C. F. Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S.R. Marder, A. Kahn, B. Kippelen, Science 2012, 336 , 327–332.
[54] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, C. J. Brabec, Appl. Phys. Lett. 2006, 89, 233517.
[55] R. Steim, S. A. Choulis, P. Schilinsky, C. J. Brabec, Appl. Phys. Lett. 2008, 92, 093303
[56] S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma, A. K. Y. Jen, J. Mater. Chem. 2008, 18, 5113.
[57] J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater. 2006, 18, 572–576
[58] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 5835.
[59] D. Kabra, M. H. Song, B. Wenger, R. H. Friend, H. J. Snaith, Adv. Mater. 2008, 20, 22, 3447.
[60] Y. Park, V. E. Choong, B. R. Hsieh, C. W. Tang, Y. Gao, Phys. Rev. Lett. 1997, 78, 3955.
[61] J. Mei, M. S. Bradley, V. Bulović, Phys. Rev. B 2009, 79, 235205.
[62] M. Y. Chan, C. S. Lee, S. L. Lai, M. K. Fung, F. L. Wong, H. Y. Sun, K. M. Lau,S. T. Lee, J. Appl. Phys. 2006, 100, 094506.
[63] D. W. Zhao, P. Liu, X. W. Sun, S. T. Tan, L. Ke, A. K. K. Kyaw, Appl. Phys. Lett., 2009 ,95, 153304.
[64] M. Vogel, S. Doka, C. Breyer, M. C. Lux-Steiner, K. Fostiropoulos, Appl. Phys. Lett. 2006, 89, 163501.
[65] J. W. Shim, Y. Zhou, C. Fuentes-Hernandez, A. Dindar, Z. Guan, H. Cheun, A. Kahn, and B. Kippelen, Sol. Energy. Mater. and Sol. Cells 2012, 107, 51.
[66] A. K. K. Kyaw, D. H. Wang, V. Gupta, J. Zhang, S. Chand, G. C. Bazan, and A. J. Heeger, Adv. Mater. 2013, 25, 2397
[67] C. F. Lin, V. M. Nichols, Y. C. Cheng, C. J. Bardeen, M. K. Wei, S. W. Liu, C. C. Lee, W. C. Su, T. L. Chiu, H. C. Han, L. C. Chen, C. T. Chen, J. H. Lee, Sol. Energy. Mater. and Sol. Cells 2014, 122, 2
[68] W. Shockley and H. J. Queisser, J. Appl. Phys. 1961, 32, 510.
Chapter2
[1] C. H. Hsiao, Study of High-Efficiency and High-Color-Stability White Organic Light-Emitting Devices, National Taiwan University Doctoral Dissertation 2010.
[2] M. K. Das and N. R. Das, J. Appl. Phys., 2009, 105, 093118.
[3] L. A. A. Pettersson, L. S. Roman, O. Inganas, J. Appl. Phys. 1999, 86, 487.
[4] P. Peumans, A. Yakimov, S. Forrest, J. of Appl. Phys. 2003, 93, 3693.
Chapter3
[1] M. S. Lin, S. J. Yang, H. W. Chang Y. H. Huang Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondal and K. T. Wong, J. Mater. Chem. 2012, 22, 16114.
[2] T. L. Chiu, C. C. Teng, C. C. Yang, and J. H. Lee, Optoelectron. Adv. Mater.-Rapid Commun. 2010, 14, 1913.
[3] X. M. Yu, G. J. Zhou, C. S. Lam, W. Y. Wong, X. L. Zhu, J. X. Sun, M. Wong, H. S. Kwok, J. Organomet. Chem. 2008, 693, 1518.
[4] X. M. Yu, H. S. Kwok, W. Y. Wong, G. J. Zhou, Chem. Mater. 2006, 18, 5097.
[5] S. L. Gong, Y. H. Chen, C. L. Yang, C. Zhong, J. G. Qin, D. Ma, Adv. Mater. 2010, 22, 5370.
[6] C. W. Ko, Y. T. Tao, Chem. Mater. 2001, 13, 2441.
Chapter4
[1] P. Peumans, V. Bulovi, and S. R. Forrest, Appl. Phys. Lett. 2000, 76, 2650.
[2] P. Peumans and S. R. Forrest, Appl. Phys. Lett. 2001, 79, 126.
[3] H. W. Lin,C. W. Lu, L. Y. Lin, Y. H. Chen, W. C. Lin, K. T. Wong and F. Lin, J. Mater. Chem. A 2013, 1, 1770.
[4] L. A. A. Pettersson, L. S. Roman, and Olle Inganas, J. Appl. Phys. 1999, 86, 487.
[5] J. Nelson, J. Kirkpatrick, and P. Ravirajan, Phys. Rev. B 2004, 69, 035337
[6] W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo, and M. Riede, Appl. Phys. Lett. 2011, 98, 063301.
[7] Y. Zhou, C. F. Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S.R. Marder, A. Kahn, B. Kippelen, Science 2012, 336 , 327–332.
[8] S. Heutz, P. Sullivan, B. M. Sanderson, S. M. Schultes, and T. S. Jone, Enregy Mater. Solar Cells 2004, 83, 229.
[9] S. Y. Yang, K. Shin, and C. E. Park, Adv. Func. Mater. 2005, 15, 1806.
[10] H. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, Adv. Func. Mater. 2007, 17, 2653.
[11] D. Gupta, S. Mukhopadhyay, and K.S.Narayan, Sol. Energy Mater. Sol. Cells 2010, 94, 1309.
Appendex
[ ] W. Shockley and H. J. Queisser, J. Appl. Phys. 1961, 32, 510.
[2] M. K. Siddiki, J. Li, D. Galipeau and Q. Qiao, Energy Environ. Sci. 2010, 3, 867.
[3] A. Polman and H. A. Atwater, Nat. Mater. 2012, 11, 174.
[4] U. Ortabasi, A. Lewandowski, R. McConnell, D.J. Aiken, P.L. Sharps, B.G. Bovard, PVSC, 2002.
[5] C. F. Lin, V. M. Nichols, Y. C. Cheng, C. J. Bardeen, M. K. Wei, S. W. Liu, C. C. Lee, W. C. Su, T. L. Chiu, H. C. Han, L. C. Chen, C. T. Chen, J. H. Lee, Sol. Energy. Mater. and Sol. Cells 2014, 122, 264.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56756-
dc.description.abstract於本篇論文中第一部分,我們使用雙偶極之咔唑及三氮唑衍生物9,9'-(2-(4,5-diphenyl-4H-1,2,4-triazol-3-yl)-1,3-phenylene)bis(9H-carbazole) (CbzTAZ)作為主體材料及 Iridium(III)bis[(4,6-difluorophenyl)-pyridinato-N,C2’]picolinate (FIrpic) 作為客體材料來製作藍光磷光有機發光二極體。 藉由調變摻雜濃度及結構厚度,能達到 52.36 cd/A 的最高電流效率、46.1 lm/W 的最高功率效率及23.29% 的最高外部量子效率。
  另一部分,我們以boron subphthalocyanine (SubPc)作為施體材料及C60作為受體材料來製作倒置有機光伏電池。於陰極端加入氧化鋅層及陽極端以氧化鉬層作為緩衝層來減少能接不匹配的限制。接著,我們調變C60的厚度及氧化鉬層厚度達到載子平衡,並且藉由光場分佈來降低C60的吸收,達到窄吸收頻普,將可應用於分光系統上。相較於傳統結構,此倒置結構將能獲更多載子,且將功率轉換效率自2.89%提升至3.66%。此外,我們於倒置結構上去除C60來製作無炭球元件,並將其開路電壓推至接近SubPc的理論極限的1.34 V。
zh_TW
dc.description.abstractIn this thesis, we fabricated the blue phosphorescent organic light-emitting diodes (PhOLEDs) with bipolar crbazole-triazole derivative material, 9,9'-(2-(4,5-diphenyl-4H-1,2,4-triazol-3-yl)-1,3-phenylene)bis(9H-carbazole) (CbzTAZ), as host and Iridium(III)bis[(4,6-difluorophenyl)-pyridinato-N,C2’]picolinate (FIrpic) as guest. By optimizing the dopant ratio of phosphor in host and the thickness of architecture, the maximum current efficiency of 52.36 cd/A, power efficiency of 46.1 lm/W, and external quantum efficiency of 23.29% were achieved.
The other part, we fabricated inverted photovoltaic cells (OPVs) with boron subphthalocyanine (SubPc) as donor material and C60 as acceptor material. By inserting ZnO as a buffer layer at cathode side and MoO3 as a buffer layer at anode side, the ability of carrier extraction will not be restricted by the mismatch of energy level. Further, we tuned the thickness of C60 and optical distribution by the thickness of MoO3 to achieve hole-electron balance and decrease light absorption of C60 to obtain keen absorption spectrum for the application of spectral splitting system. Compared with conventional structure, it can derive more carriers and enhance power conversion efficiency from 2.89% to 3.66%. Besides, we took off C60 to be a fullerence-free OPVs and pushed open-circuit voltage to 1.34 V, which is approaching to the physical limit of SubPc.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:46:31Z (GMT). No. of bitstreams: 1
ntu-103-R01941065-1.pdf: 13017119 bytes, checksum: 3373b11d973ab0d3c8e72b0fed184d49 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 V
Abstract Ⅵ
Content Ⅶ
Figure Content Ⅹ Table Content ⅩⅢ
Chapter 1 Introduction 1
1.1 Blue Phosphorescent Organic Light Emitting Diodes (PhOLEDs) 2
1.1.1 Introduvtion of PhOLEDs 2
1.1.2 Host Materials for Blue PhOLED doped with FIrpic 3
1.2 Organic Photovoltaic Cells(OPVs) 6
1.2.1 Introduction of OPVs 6
1.2.2 Inverted Structure and Buffer Layers 9
1.3 Motivation and Thesis Organization 11
1.4 References 15
Chapter 2 Fabrication and Measurement Systems 20
2.1 Fabrication System of Device 20
2.1.1 Substrate Preparation 20
2.2.3 Evaporation 21
2.2.4 Encapsulation 22
2.2.5 Fabrication of ZnO 22
2.2.3 Fabrication of PEIE 22
2.3 Measurement System of PhOLEDs 23
2.3.1 Luminance Efficiency and Properties 23
2.3.2 External Quantum Efficiency 24
2.4 Measurement System of OPVs 24
2.4.1 Absorption Measurement of Device 24
2.4.2 Morphology Measurement of Film 25
2.4.3 Power Conversion Efficiency 25
2.4.4 External Quantum Efficiency and Internal Quantum Efficiency 26
2.5 Simulation of Optical Field Distribution 27
2.6 References 27
Chapter 3 Blue PhOLEDs with Bipolar Carbazole-triazole Derivative as Host 28
3-1 Introduction 28
3-2 Optimization of Blue PhOLEDs with CbzTAZ as Host 29
3-2-1 Testing for Best Dopant Concentration of Phosphor 30
3-2-2 Tuning the Thickness of EML 35
3-2-3 Tuning the Thickness of ETL 39
3-2-4 Tuning the thickness ratio of EML and ETL 43
3-2-5 Tuning the thickness of HTL 48
3-3 Compare with Mixture Structure of mCP and TAZ as Host 52
3-4 Reference 59
Chapter 4 SubPc OPV Devices with Keen Absorption Spectrum 60
4-1 Introduction 60
4-2 Standard SubPc/C60 OPV Devices 61
4-3 Inverted SubPc/C60 OPV Devices 67
4-3-1 Test of Buffer Layers at Cathode Side 68
4-3-2 Test of Buffer Layer at Anode Side 71
4-3-3 Optimization of SubPc/C60 Device 74
4-3-4 Thickness Adjustment of C60 76
4-3-5 Tuning of Optical Field Distribution for Keen Absorption Spectrum 79
4-4 SubPc, Fullerence-free Devices Absorption Spectrum 86
4-4-1 Test of Exciton Dissociation 87
4-4-2 Optimization of Fullerence-free SubPc Photovoltaic Devices 89
4-5 References 92
Chapter 5 Summary 93
Appendix I OPV Device with Quasi-planar Donor Material 94
C-1 Characteristics of Donor Materials 94
C-2 PODCBT-sym/C60 OPV Device in PMHJ Structure 95
C-3 PODCBT-asym/C60 OPV Device in PMHJ Structure 99
Appendix II DPPS as ETL in Blue PhOLEDs 103
Appendix III S111 as HTL in Green PhOLEDs 108
Appendix IV Red and Green PhOLEDs with Carbazole Derivatives as Host Materials 113
Appendix IV-1 Red PhOLEDs with CbzOXD-1, CbzOXD-2 or CbzTAZ-2 as Host Material 113
Appendix IV-2 Green PhOLEDs with CbzOXD-1 or CbzOXD-2 as Host Material 117
Appendix IV -3 Green PhOLEDs with CbzTAZ-2 as Host Material in Different Dopant Ratio 120
Appendix V Concept of Spectral Splitting for Beating the Limits of Efficiency 124
References of Appendix 128
dc.language.isoen
dc.subject分光系統zh_TW
dc.subject開路電壓zh_TW
dc.subject倒置結構zh_TW
dc.subject效率zh_TW
dc.subject藍光磷光有機發光二極體zh_TW
dc.subjectblue phosphorescent organic light-emitting diodeen
dc.subjectefficiencyen
dc.subjectinverted structureen
dc.subjectspectral splitting systemen
dc.subjectopen-circuit voltageen
dc.title雙偶極咔唑三氮唑衍生物為主體材料之藍光磷光有機發光二極體及倒置有機光伏電池zh_TW
dc.titleBlue Phosphorescent Organic Light-Emitting Diodes with Bipolar Carbazole-triazole Derivatives as Host Material, and Inverted Organic Photovoltaic Cellsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉舜維(Shun-Wei Liu),王立義(Lee-Yih Wang),汪根欉(Ken-Tsung Wong),梁文傑(Man-Kit Leung)
dc.subject.keyword藍光磷光有機發光二極體,效率,倒置結構,分光系統,開路電壓,zh_TW
dc.subject.keywordblue phosphorescent organic light-emitting diode,efficiency,inverted structure,spectral splitting system,open-circuit voltage,en
dc.relation.page128
dc.rights.note有償授權
dc.date.accepted2014-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
12.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved