Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56753Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 顏溪成 | |
| dc.contributor.author | Yi-Ting Wu | en |
| dc.contributor.author | 吳怡葶 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:46:19Z | - |
| dc.date.available | 2019-08-21 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-11 | |
| dc.identifier.citation | 1. 楊正杰, 張鼎張, and 鄭晃忠, 銅金屬與低介電常數材料與製程. 2000, 工業材料.
2. Bohr, M.T. Interconnect scaling-the real limiter to high performance ULSI. in International Electron Devices Meeting. 1995. Institute of Electrical & Eletronic Engineers, Inc (IEEE). 3. Steigerwald, J.M., Chemical Mechanical Planarization of Microelectronic Materials. 1997: John Wiley & Sons. 4. 陳怡秀, 化學機械研磨阻障層鉭與其電化學特性的研究, in 化學工程學研究所. 2010, 臺灣大學: 台北市. p. 178. 5. Chyan, O., T.N. Arunagiri, and T. Ponnuswamy, Electrodeposition of Copper Thin Film on Ruthenium A Potential Diffusion Barrier for Cu Interconnects. Journal of The Electrochemical Society, 2003. 150(5): p. C347-C350. 6. Gileadi, E., E. Kirowa-Eisner, and J. Penciner, Interfacial electrochemistry: an experimental approach. 1975: Addison-Wesley Pub. Co. Advanced Book Program. 7. West, J.M., Basic corrosion and oxidation. 1986. 8. 黃柏榮, 烷基矽烷自組裝層於 ITO 薄膜之電化學特性及其於蝕刻製程之應用. 臺灣大學化學工程學研究所學位論文, 2009: p. 1-178. 9. Pourbaix, M., et al., Lectures on electrochemical corrosion. Vol. 870. 1973: Springer. 10. Xue-jun, X., ZHU Qing-sheng, FAN Hua, CAO Shun-an, PAN Ling, GONG Xun-jie, PENG Ke-ru, Corrosion of Tubular Copper Conductor in Water-cooling Generator. Corrosion Science and Protection Technology, 2005. 6. 11. Obrecht, M. and L. Quill, How Temperature, Treatment, and Velocity of Potable Water Affect Corrosion of Copper and Its Alloys--Cupro-Nickel, Admiralty Tubes Resist Corrosion Better. Heat Piping Air Cond, 1960. 32(9): p. 125-133. 12. MacQuarrie, D., D. Mavinic, and D. Neden, Greater Vancouver Water District drinking water corrosion inhibitor testing. Canadian Journal of Civil Engineering, 1997. 24(1): p. 34-52. 13. Boulay, N. and M. Edwards, Role of temperature, chlorine, and organic matter in copper corrosion by-product release in soft water. Water research, 2001. 35(3): p. 683-690. 14. Munoz, A.I., et al., Comparison of inorganic inhibitors of copper, nickel and copper–nickels in aqueous lithium bromide solution. Electrochimica acta, 2004. 50(4): p. 957-966. 15. Abdullah, A.M., F.M. Al-Kharafi, and B.G. Ateya, Intergranular corrosion of copper in the presence of benzotriazole. Scripta materialia, 2006. 54(9): p. 1673-1677. 16. Subramanian, R. and V. Lakshminarayanan, Effect of adsorption of some azoles on copper passivation in alkaline medium. Corrosion Science, 2002. 44(3): p. 535-554. 17. Zhang, S.-T., et al., Study on covering behavior of BTA inhibitor on pure copper surface. Corrosion Science and Protection Technology, 2006. 18(5): p. 313-316. 18. Lobnig, R.E., Mechanism of Atmospheric Corrosion of Copper in the Presence of Submicron Ammonium Sulfate Particles at 300 and 373 K. Journal of The Electrochemical Society, 1994. 141(11): p. 2935. 19. Thierry, D. and C. Leygraf, Simultaneous Raman spectroscopy and electrochemical studies of corrosion inhibiting molecules on copper. Journal of The Electrochemical Society, 1985. 132(5): p. 1009-1014. 20. Tromans, D. and J. Silva, Anodic behavior of copper in chloride/tolytriazole and chloride/benzotriazole solutions. Corrosion, 1997. 53(1): p. 16-25. 21. Battino, R., T.R. Rettich, and T. Tominaga, The solubility of oxygen and ozone in liquids. Journal of physical and chemical reference data, 1983. 12(2): p. 163-178. 22. 蔡子萱, 化學機械硏磨銅之硏磨液與硏磨模式硏究. 2003, National Taiwan University. 23. Cheung, R., Copper Interconnect Technology, in Applied Materials, AVS/CMP User Group Meeting. 2000: Santa Clara, CA. 24. Kaufman, F., et al., Chemical‐Mechanical Polishing for Fabricating Patterned W Metal Features as Chip Interconnects. Journal of the Electrochemical Society, 1991. 138(11): p. 3460-3465. 25. Stavreva, Z., et al., Characteristics in chemical-mechanical polishing of copper: comparison of polishing pads. Applied Surface Science, 1997. 108(1): p. 39-44. 26. Tsai, T.-H., Y.-F. Wu, and S.-C. Yen, A study of copper chemical mechanical polishing in urea–hydrogen peroxide slurry by electrochemical impedance spectroscopy. Applied Surface Science, 2003. 214(1): p. 120-135. 27. Tsai, T.-H. and S.-C. Yen, Localized corrosion effects and modifications of acidic and alkaline slurries on copper chemical mechanical polishing. Applied surface science, 2003. 210(3): p. 190-205. 28. Tsai, T.-H., Y.-F. Wu, and S.-C. Yen, Glycolic acid in hydrogen peroxide-based slurry for enhancing copper chemical mechanical polishing. Microelectronic engineering, 2005. 77(3): p. 193-203. 29. Song, M.-G., et al., Stabilization of gamma alumina slurry for chemical–mechanical polishing of copper. Journal of colloid and interface science, 2006. 300(2): p. 603-611. 30. Ahn, Y., et al., Chemical mechanical polishing by colloidal silica-based slurry for micro-scratch reduction. Wear, 2004. 257(7): p. 785-789. 31. Armini, S., C. Whelan, and K. Maex, Engineering polymer core–silica shell size in the composite abrasives for CMP applications. Electrochemical and solid-state letters, 2008. 11(10): p. H280-H284. 32. Pandija, S., D. Roy, and S. Babu, Chemical mechanical planarization of copper using abrasive-free solutions of oxalic acid and hydrogen peroxide. Materials chemistry and physics, 2007. 102(2): p. 144-151. 33. Deshpande, S., et al., Chemical mechanical planarization of copper: role of oxidants and inhibitors. Journal of The Electrochemical Society, 2004. 151(11): p. G788-G794. 34. Hong, Y., et al., Synergistic roles of dodecyl sulfate and benzotriazole in enhancing the efficiency of CMP of copper. Journal of The Electrochemical Society, 2007. 154(6): p. H444-H453. 35. Gasparac, R., C. Martin, and E. Stupnisek-Lisac, In situ studies of imidazole and its derivatives as copper corrosion inhibitors: I. Activation energies and thermodynamics of adsorption. Journal of the Electrochemical Society, 2000. 147(2): p. 548-551. 36. Kim, I.-K., et al., Effect of pH in Ru slurry with sodium periodate on Ru CMP. Journal of The Electrochemical Society, 2009. 156(3): p. H188-H192. 37. Pourbaix, M., Atlas of electrochemical equilibria in aqueous solutions. 1974. 38. Lee, W.-J., et al., Effects of ceric ammonium nitrate (CAN) additive in HNO3 solution on the electrochemical behaviour of ruthenium for CMP processes. Journal of applied electrochemistry, 2004. 34(1): p. 119-125. 39. Kim, I.-K., et al., Effect of Sodium Periodate in Alumina-Based Slurry on Ru CMP for Metal–Insulator–Metal Capacitor. Electrochemical and Solid-State Letters, 2008. 11(6): p. H150-H153. 40. Cui, H., J.-H. Park, and J.-G. Park, Study of ruthenium oxides species on ruthenium chemical mechanical planarization using periodate-based slurry. Journal of The Electrochemical Society, 2012. 159(3): p. H335-H341. 41. Peethala, B., D. Roy, and S. Babu, Controlling the Galvanic Corrosion of Copper during Chemical Mechanical Planarization of Ruthenium Barrier Films. Electrochemical and Solid-State Letters, 2011. 14(7): p. H306-H310. 42. Victoria, S.N., et al., Potassium Bromate as an Oxidizing Agent in a Titania-Based Ru CMP Slurry. Electrochemical and Solid-State Letters, 2010. 13(11): p. H385-H387. 43. Victoria, S.N., et al., Chemical Mechanical Planarization of Ruthenium with Oxone as Oxidizer. Electrochemical and Solid-State Letters, 2011. 15(3): p. H55-H58. 44. Cui, H., J.-H. Park, and J.-G. Park, Effect of Oxidizers on Chemical Mechanical Planarization of Ruthenium with Colloidal Silica Based Slurry. ECS Journal of Solid State Science and Technology, 2013. 2(1): p. P26-P30. 45. Zeidler, D., et al., The interaction between different barrier metals and the copper surface during the chemical-mechanical polishing. Microelectronic engineering, 1997. 37: p. 237-243. 46. Turk, M., et al., Investigation of Percarbonate Based Slurry Chemistry for Controlling Galvanic Corrosion during CMP of Ruthenium. ECS Journal of Solid State Science and Technology, 2013. 2(5): p. P205-P213. 47. Lu, Z., et al., The use of monodispersed colloids in the polishing of copper and tantalum. Journal of colloid and interface science, 2003. 261(1): p. 55-64. 48. Wrschka, P., et al., Development of a slurry employing a unique silica abrasive for the CMP of Cu damascene structures. Journal of The Electrochemical Society, 2001. 148(6): p. G321-G325. 49. Mazaheri, A.R. and G. Ahmadi, A model for effect of colloidal forces on chemical mechanical polishing. Journal of the electrochemical society, 2003. 150(4): p. G233-G239. 50. Hu, C.C. and Y.H. Huang, Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors. Journal of The Electrochemical Society, 1999. 146(7): p. 2465-2471. 51. 周宜欣, 釕的電沉積研究及過硫酸銨組成的研磨液對釕化學機械研磨之效應. 臺灣大學化學工程學研究所學位論文, 2013. 52. Jones, D.A., Principles and prevention of corrosion. 1996: Prentice Hall. 53. Hoar, T. and G. Rothwell, The potential/pH diagram for a copper-water-ammonia system: its significance in the stress-corrosion cracking of brass in ammoniacal solutions. Electrochimica Acta, 1970. 15(6): p. 1037-1045. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56753 | - |
| dc.description.abstract | 本研究主要探討銅的腐蝕研究以及在過硫酸銨系統下的Cu/Ru化學機械研磨。在銅腐蝕方面,利用電化學三極系統探討銅在硫酸銨溶液中的腐蝕情形。首先利用電化學還原銅在白金旋轉電極上,銅的厚度大約為0.98μm,接著在不同環境下測試其腐蝕情況。實驗發現氮氣除氧時間10分鐘以上就可將大部分的氧氣排除。在溫度方面,腐蝕速率隨著溫度的升高而變高。在電解液中通入不同氣體,發現通入氧氣的腐蝕速率最高,氮氣與氫氣差不多,而通入氬氣的腐蝕速率則最低,而在氮氣的環境下腐蝕速率也很低。在不同pH值的情況下,pH為5或6時的腐蝕速率相較於pH 7-9時低,因此不再添加其他溶液調整電解液之pH值。銅在純水中的腐蝕速率比在0.1 M硫酸銨或硫酸鈉溶液低,其值為1.07 × 10-3 nm/s。本實驗也添加了兩種抑制劑,探討其對銅腐蝕之抑制效果。Benzotriazole (BTA)為Cu CMP中常見之抑制劑,其抑制腐蝕效果也較benzimidazole為佳。而比較添加不同濃度的BTA,發現濃度為10 ppm即可以降低腐蝕速率,且效果佳,Cu的腐蝕速率為1.2 × 10-3 nm/s (在0.1 M (NH4)2SO4溶液)。
在銅/釕化學機械研磨方面,除了利用直流極化技術外,也使用交流阻抗分析研究研磨時的動力學機制,更透過原子力學顯微鏡(AFM)了解研磨後的表面平坦度。實驗結果顯示,研磨液為pH 6的情況為最佳,金屬銅與釕的研磨速率最為相近,分別為225.0 nm/min及63.9 nm/min,而且研磨後,銅的表面粗糙度下降至14.3 nm;釕的表面粗糙度下降至19.0 nm。在交流阻抗分析方面,探討在化學機械研磨時釕在pH 6的過硫酸銨研磨液中表面的動力學機制,由浸漬時間的不同,了解金屬釕表面鈍化層的生成,而在化學機械研磨時,以機械力移除其表面的鈍化層。 | zh_TW |
| dc.description.abstract | This study includes two parts: copper corrosion and effect of ammonium persulfate-based slurry on Cu/Ru chemical mechanical polishing. We used three electrode-system to investigate the corrosion of copper in various conditions. Copper was electrodeposited on a rotating disk electrode with the thickness of 0.98 μm. After the corrosion experiments, the remaining copper was measured. We found that sparging nitrogen for 10 minutes could remove 90% oxygen in the solution. The corrosion rate of copper increases as temperature increases. Sparging oxygen in the electrolytes has the highest corrosion rate; on the other hand, sparging argon has the lowest corrosion rate. At various pH values, the corrosion rates at pH 5 and 6 are lower than pH 7-9. Two organic inhibitors has also been investigated: benzotriazole and benzimidazole, and it was found that benzotriazol is better than benzimidazole for copper corrosion inhibitor. Adding 10 ppm BTA in the solution can decrease the corrosion rate, and the corrosion rate is 1.2 × 10-3 nm/s in 0.1 M (NH4)2SO4 solution.
In the Cu/Ru CMP experiments, by performing electrochemical measurements such as polarization and impedance spectroscopy, the electrochemical characteristics has been studied. Besides, surface morphological analysis after CMP was carried out by atomic force microscopy. The experimental results showed that the ammonium persulfate-based slurry at pH 6 has the best performance. At pH 6, there is the lowest galvanic corrosion, the removal rate of Ru was found to match that of Cu. After CMP in (NH4)2S2O8-based slurry, the copper surface roughness reduces to 14.3 nm; the ruthenium surface roughness reduces to 19.0 nm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:46:19Z (GMT). No. of bitstreams: 1 ntu-103-R01524046-1.pdf: 5023175 bytes, checksum: 98285ae37ff1b376004dceed3df7256c (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖目錄 VI 表目錄 XII 第一章 緒論 1 1-1 銅導線製程的發展與阻礙 1 1-2 釕阻障層的發展 5 1-3 化學機械研磨介紹 7 1-4 CMP後清洗介紹 11 1-5 研究動機 12 第二章 電化學理論分析 13 2-1 旋轉盤電極系統 13 2-2 三電極電化學測試系統 14 2-3 極化曲線與腐蝕電化學理論 15 2-4 電位-PH關係圖 21 2-5 交流阻抗 22 第三章 銅的防腐蝕研究 29 3-1 簡介和文獻回顧 29 3-2 實驗裝置與方法 32 3-2-1 旋轉電極前處理 32 3-2-2 電沉積之實驗裝置與方法 32 3-2-3 銅腐蝕之實驗裝置與方法 32 3-2-4 設備、儀器、藥品及耗材 33 3-3 結果與討論 35 3-3-1 溶液中之溶氧量 35 3-3-2 電鍍銅之效率 36 3-3-3 溫度之影響 36 3-3-4 通入不同氣體之影響 36 3-3-5 pH之影響 38 3-3-6 添加抑制劑之影響 38 3-4 結論 50 第四章 過硫酸銨研磨液之銅/釕化學機械研磨 51 4-1 簡介和文獻回顧 51 4-2 實驗裝置與方法 62 4-2-1 鈦箔前處理 62 4-2-2 鈦基材旋轉盤電極之製備 62 4-2-3 電沉積之實驗裝置與方法 62 4-2-4 CMP之實驗裝置與方法 63 4-2-5 極化曲線的量測 63 4-2-6 移除速率的估算 63 4-2-7 交流阻抗 64 4-2-8 SEM分析 64 4-2-9 AFM分析 64 4-2-10 設備、儀器、藥品及耗材 66 4-3 結果與討論 69 4-3-1 直流極化曲線分析 69 4-3-2 腐蝕效應與移除速率 71 4-3-3 表面形態 72 4-3-4 交流阻抗 73 4-4 結論 96 第五章 結論 97 參考文獻 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 銅腐蝕 | zh_TW |
| dc.subject | 釕 | zh_TW |
| dc.subject | 化學機械研磨 | zh_TW |
| dc.subject | ruthenium | en |
| dc.subject | copper corrosion | en |
| dc.subject | chemical mechanical polishing (CMP) | en |
| dc.title | 銅的腐蝕研究與過硫酸銨研磨液對銅/釕化學機械研磨之效應 | zh_TW |
| dc.title | The Study of Copper Corrosion and Effects of Ammonium Persulfate-Based Slurry on Cu/Ru Chemical Mechanical Polishing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高振宏,周偉龍,蔡子萱 | |
| dc.subject.keyword | 釕,銅腐蝕,化學機械研磨, | zh_TW |
| dc.subject.keyword | ruthenium,copper corrosion,chemical mechanical polishing (CMP), | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-103-1.pdf Restricted Access | 4.91 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
