請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56742
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林辰栖 | |
dc.contributor.author | Tze-Yu Wang | en |
dc.contributor.author | 汪姿妤 | zh_TW |
dc.date.accessioned | 2021-06-16T05:45:37Z | - |
dc.date.available | 2019-09-04 | |
dc.date.copyright | 2014-09-04 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-11 | |
dc.identifier.citation | References
1. Akira S. Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells 17: 138-146, 1999. 2. Allen S, Mahaffey E. Canine mammary neoplasia: prognostic indicators and response to surgical therapy. The Journal of the American Animal Hospital Association (USA) 1989. 3. Alt JR, Cleveland JL, Hannink M, Diehl JA. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1–dependent cellular transformation. Genes Dev 14: 3102-3114, 2000. 4. Altieri DC. Molecular cloning of effector cell protease receptor-1, a novel cell surface receptor for the protease factor Xa. J Biol Chem 269: 3139-3142, 1994. 5. Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22: 8581-8589, 2003. 6. Andersen A. Parameters of mammary gland tumors in aging beagles. Journal of the American Veterinary Medical Association 147: 1653-1654 December 15 1975 1965. 7. Atkinson GP, Nozell SE, Benveniste EN. NF-κB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother 10: 575-586, 2010. 8. Bareford MD, Park MA, Yacoub A, Hamed HA, Tang Y, Cruickshanks N, Eulitt P, Hubbard N, Tye G, Burow ME. Sorafenib enhances pemetrexed cytotoxicity through an autophagy-dependent mechanism in cancer cells. Cancer Res 71: 4955-4967, 2011. 9. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M. The landscape of somatic copy-number alteration across human cancers. Nature 463: 899-905, 2010. 10. Bollrath J, Greten FR. IKK/NF‐κB and STAT3 pathways: central signalling hubs in inflammation‐mediated tumour promotion and metastasis. EMBO Rep 10: 1314-1319, 2009. 11. Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis. Oncogene 19: 2000. 12. Brodey RS. Canine and feline neoplasia. Adv Vet Sci Comp Med 14: 309-354, 1970. 13. Bromberg J. Signal transducers and activators of transcription as regulators of growth, apoptosis and breast development. Breast Cancer Res 2: 86, 2000. 14. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, 71 Darnell Jr JE. Stat3 as an Oncogene. Cell 98: 295-303, 1999. 15. Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 8: 945-954, 2002. 16. Burish TG, Carey MP, Krozely MG, Greco FA. Conditioned side effects induced by cancer chemotherapy: prevention through behavioral treatment. J Consult Clin Psychol 55: 42, 1987. 17. Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, Factor VM, Thorgeirsson SS. Ubiquitous Activation of Ras and Jak/Stat Pathways in Human HCC. Gastroenterology 130: 1117-1128, 2006. 18. Catlett-Falcone R, Dalton WS, Jove R. STAT proteins as novel targets for cancer therapy. Curr Opin Oncol 11: 490, 1999. 19. Chang S-C, Chang C-C, Chang T-J, Wong M-L. Prognostic factors associated with survival two years after surgery in dogs with malignant mammary tumors: 79 cases (1998-2002). J Am Vet Med Assoc 227: 1625-1629, 2005. 20. Chang YS, Adnane J, Trail PA, Levy J, Henderson A, Xue D, Bortolon E, Ichetovkin M, Chen C, McNabola A. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol 59: 561-574, 2007. 21. Chen CL, Loy A, Cen L, Chan C, Hsieh FC, Cheng G, Wu B, Qualman SJ, Kunisada K, Yamauchi-Takihara K. Signal transducer and activator of transcription 3 is involved in cell growth and survival of human rhabdomyosarcoma and osteosarcoma cells. BMC Cancer 7: 111, 2007. 22. Chen K-F, Tai W-T, Hsu C-Y, Huang J-W, Liu C-Y, Chen P-J, Kim I, Shiau C-W. Blockade of STAT3 activation by sorafenib derivatives through enhancing SHP-1 phosphatase activity. Eur J Med Chem 55: 220-227, 2012. 23. Chen K-F, Tai W-T, Huang J-W, Hsu C-Y, Chen W-L, Cheng A-L, Chen P-J, Shiau C-W. Sorafenib derivatives induce apoptosis through inhibition of STAT3 independent of Raf. Eur J Med Chem 46: 2845-2851, 2011. 24. Chen K-F, Tai W-T, Liu T-H, Huang H-P, Lin Y-C, Shiau C-W, Li P-K, Chen P-J, Cheng A-L. Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin Cancer Res 16: 5189-5199, 2010. 25. Chiang YL LH, Liao AT, Chu RM, and Lin CS. KMO as a novel diagnostic and prognostic biomarker in canine mammary gland tumors. Cancer Res 72: 2012. 26. Coates A, Abraham S, Kaye S, Sowerbutts T, Frewin C, Fox R, Tattersall M. On the receiving end—patient perception of the side-effects of cancer chemotherapy. Eur J Cancer Clin Oncol 19: 203-208, 1983. 27. Cong XL, Han ZC. Survivin and leukemia. Int J Hematol 80: 232-238, 2004. 72 28. Darnell JE. STATs and gene regulation. Science 277: 1630-1635, 1997. 29. Decker T, Meinke A. Jaks, Stats and the immune system. Immunobiology 198: 99-111, 1997. 30. Diaz N, Minton S, Cox C, Bowman T, Gritsko T, Garcia R, Eweis I, Wloch M, Livingston S, Seijo E. Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res 12: 20-28, 2006. 31. Dobson J, Samuel S, Milstein H, Rogers K, Wood J. Canine neoplasia in the UK: estimates of incidence rates from a population of insured dogs. J Small Anim Pract 43: 240-246, 2002. 32. Dorn C, Taylor D, Schneider R, Hibbard H, Klauber M. Survey of animal neoplasms in Alameda and Contra Costa Counties, California. II. Cancer morbidity in dogs and cats from Alameda County. J Natl Cancer Inst 40: 307-318, 1968. 33. Dzhagalov I, Dunkle A, He Y-W. The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages. The Journal of Immunology 181: 521-528, 2008. 34. Egenvall A, Bonnett BN, Öhagen P, Olson P, Hedhammar Å, Euler Hv. Incidence of and survival after mammary tumors in a population of over 80,000 insured female dogs in Sweden from 1995 to 2002. Prev Vet Med 69: 109-127, 2005. 35. Epling-Burnette P, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, Li Y, Wang J-M, Yang-Yen H-F, Karras J. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 107: 351-362, 2001. 36. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA. Sorafenib in advanced clear-cell renal-cell carcinoma. New Engl J Med 356: 125-134, 2007. 37. Ferracini R, Angelini P, Cagliero E, Linari A, Martano M, Wunder J, Buracco P. MET oncogene aberrant expression in canine osteosarcoma. J Orth Res 18: 253-256, 2000. 38. Fisher DE. Apoptosis in cancer therapy: crossing the threshold. Cell 78: 539-542, 1994. 39. Fossey SL, Liao AT, McCleese JK, Bear MD, Lin J, Li P-K, Kisseberth WC, London CA. Characterization of STAT3 activation and expression in canine and human osteosarcoma. BMC Cancer 9: 81, 2009. 40. Fukuda S, Pelus LM. Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther 5: 1087-1098, 2006. 41. Germain D, Frank DA. Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for cancer therapy. Clin Cancer Res 13: 73 5665-5669, 2007. 42. Goldschmidt M, Pena L, Rasotto R, Zappulli V. Classification and grading of canine mammary tumors. Veterinary Pathology Online 48: 117-131, 2011. 43. Goldschmidt M SFS, Smelstoys J A. Neoplastic lesions of the mammary gland. In: Mohr U CWW, Dungworth D L, ed. Pathobiology of the aging dog, 1st ed. Ames, Iowa, 35-41, 2001. 44. Greten FR, Karin M. Peering into the aftermath: JAKi rips STAT3 in cancer. Nat Med 16: 1085-1087, 2010. 45. Gritsko T, Williams A, Turkson J, Kaneko S, Bowman T, Huang M, Nam S, Eweis I, Diaz N, Sullivan D. Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 12: 11-19, 2006. 46. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 140: 883-899, 2010. 47. Gu F, Dubé N, Kim JW, Cheng A, de Jesus Ibarra-Sanchez M, Tremblay ML, Boisclair YR. Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling. Mol Cell Biol 23: 3753-3762, 2003. 48. Gupta-Abramson V, Troxel AB, Nellore A, Puttaswamy K, Redlinger M, Ransone K, Mandel SJ, Flaherty KT, Loevner LA, O'Dwyer PJ. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol 26: 4714-4719, 2008. 49. Hahn K, Oglivie G, Rusk T, Devauchelle P, Leblanc A, Legendre A, Powers B, Leventhal P, Kinet JP, Palmerini F. Masitinib is safe and effective for the treatment of canine mast cell tumors. J Vet Intern Med 22: 1301-1309, 2008. 50. Hahn KA, Legendre AM, Shaw NG, Phillips B, Ogilvie GK, Prescott DM, Atwater SW, Carreras JK, Lana SE, Ladue T. Evaluation of 12-and 24-month survival rates after treatment with masitinib in dogs with nonresectable mast cell tumors. Am J Vet Res 71: 1354-1361, 2010. 51. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 100: 57-70, 2000. 52. Haspel R, Salditt-Georgieff M, Darnell Jr J. The rapid inactivation of nuclear tyrosine phosphorylated Stat1 depends upon a protein tyrosine phosphatase. The EMBO journal 15: 6262, 1996. 53. Hassa PO, Hottiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 13: 2008. 54. He G, Karin M. NF-κB and STAT3–key players in liver inflammation and cancer. Cell Res 21: 159-168, 2011. 55. Hoechtlen‐Vollmar W, Menzel G, Bartl R, Lamerz R, Wick M, Seidel D. Amplification of cyclin D1 gene in multiple myeloma: clinical and prognostic relevance. Br J Haematol 109: 30-38, 2000. 74 56. Ihle JN. The Stat family in cytokine signaling. Curr Opin Cell Biol 13: 211-217, 2001. 57. Ihle JN. STATs: signal transducers and activators of transcription. Cell 84: 331-334, 1996. 58. Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nature Reviews Cancer 6: 714-727, 2006. 59. Isotani M, Ishida N, Tominaga M, Tamura K, Yagihara H, Ochi S, Kato R, Kobayashi T, Fujita M, Fujino Y. Effect of tyrosine kinase inhibition by imatinib mesylate on mast cell tumors in dogs. J Vet Intern Med 22: 985-988, 2008. 60. Isotani M, Tamura K, Yagihara H, Hikosaka M, Ono K, Washizu T, Bonkobara M. Identification of a c-kit exon 8 internal tandem duplication in a feline mast cell tumor case and its favorable response to the tyrosine kinase inhibitor imatinib mesylate. Vet Immunol Immunopathol 114: 168-172, 2006. 61. Ito Y, Sasaki Y, Horimoto M, Wada S, Tanaka Y, Kasahara A, Ueki T, Hirano T, Yamamoto H, Fujimoto J. Activation of mitogen‐activated protein kinases/extracellular signal‐regulated kinases in human hepatocellular carcinoma. Hepatology 27: 951-958, 1998. 62. Kaltz-Wittmer C, Klenk U, Glaessgen A, Aust DE, Diebold J, Löhrs U, Baretton GB. FISH analysis of gene aberrations (MYC, CCND1, ERBB2, RB, and AR) in advanced prostatic carcinomas before and after androgen deprivation therapy. Lab Invest 80: 1455-1464, 2000. 63. Karayannopoulou M, Kaldrymidou E, Constantinidis T, Dessiris A. Adjuvant Post‐ operative Chemotherapy in Bitches with Mammary Cancer. J Vet Med Ser A 48: 85-96, 2001. 64. Kim HY, Park EJ, Joe E-h, Jou I. Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. The Journal of Immunology 171: 6072-6079, 2003. 65. Kim TK, Maniatis T. Regulation of interferon-γ-activated STAT1 by the ubiquitin-proteasome pathway. Science 273: 1717-1719, 1996. 66. Klampfer L. Signal transducers and activators of transcription (STATs): Novel targets of chemopreventive and chemotherapeutic drugs. Curr Cancer Drug Targets 6: 107-121, 2006. 67. Klopfleisch R, Von Euler H, Sarli G, Pinho S, Gärtner F, Gruber A. Molecular carcinogenesis of canine mammary tumors news from an old disease. Veterinary Pathology Online 48: 98-116, 2011. 68. Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. 75 Proceedings of the National Academy of Sciences 90: 3516-3520, 1993. 69. Król M, Pawłowski KM, Dolka I, Musielak O, Majchrzak K, Mucha J, Motyl T. Density of Gr1-positive myeloid precursor cells, p-STAT3 expression and gene expression pattern in canine mammary cancer metastasis. Vet Res Commun 35: 409-423, 2011. 70. Kumaraguruparan R, Karunagaran D, Balachandran C, Manohar BM, Nagini S. Of humans and canines: a comparative evaluation of heat shock and apoptosis-associated proteins in mammary tumors. Clin Chim Acta 365: 168-176, 2006. 71. Kunnumakkara AB, Nair AS, Sung B, Pandey MK, Aggarwal BB. Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1. Mol Cancer Res 7: 118-128, 2009. 72. Levy DE, Darnell J. Stats: transcriptional control and biological impact. Nature Reviews Molecular Cell Biology 3: 651-662, 2002. 73. Liu C-Y, Tseng L-M, Su J-C, Chang K-C, Chu P-Y, Tai W-T, Shiau C-W, Chen K-F. Novel sorafenib analogues induce apoptosis through SHP-1 dependent STAT3 inactivation in human breast cancer cells. Breast Cancer Res 15: R63, 2013. 74. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, de Oliveira AC, Santoro A, Raoul J-L, Forner A. Sorafenib in advanced hepatocellular carcinoma. New Engl J Med 359: 378-390, 2008. 75. London C, Mathie T, Stingle N, Clifford C, Haney S, Klein MK, Beaver L, Vickery K, Vail DM, Hershey B. Preliminary evidence for biologic activity of toceranib phosphate (Palladia®) in solid tumours. Vet Comp Oncol 10: 194-205, 2012. 76. London CA, Hannah AL, Zadovoskaya R, Chien MB, Kollias-Baker C, Rosenberg M, Downing S, Post G, Boucher J, Shenoy N. Phase I dose-escalating study of SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous malignancies. Clin Cancer Res 9: 2755-2768, 2003. 77. London CA, Malpas PB, Wood-Follis SL, Boucher JF, Rusk AW, Rosenberg MP, Henry CJ, Mitchener KL, Klein MK, Hintermeister JG. Multi-center, placebo-controlled, double-blind, randomized study of oral toceranib phosphate (SU11654), a receptor tyrosine kinase inhibitor, for the treatment of dogs with recurrent (either local or distant) mast cell tumor following surgical excision. Clin Cancer Res 15: 3856-3865, 2009. 78. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis 21: 485-495, 2000. 79. Merlo D, Rossi L, Pellegrino C, Ceppi M, Cardellino U, Capurro C, Ratto A, Sambucco P, Sestito V, Tanara G. Cancer incidence in pet dogs: findings of the Animal Tumor Registry of Genoa, Italy. J Vet Intern Med 22: 976-984, 2008. 76 80. Misdorp W. Tumors of the mammary gland. In: Meuten DJ, ed. Meuten DJ Tumors in domestic animals, 4th ed. Blackwell Publishing Company, Iowa, 575-606, 2002. 81. Moe L. Population-based incidence of mammary tumours in some dog breeds. J Reprod Fertil Suppl 57: 439-443, 2000. 82. Mol JA. Comparative breast cancer research, lessons from companion animals. In: BMC ProcBioMed Central Ltd, 2013, p. K9. 83. Moreno-Aspitia A, Morton RF, Hillman DW, Lingle WL, Rowland KM, Wiesenfeld M, Flynn PJ, Fitch TR, Perez EA. Phase II trial of sorafenib in patients with metastatic breast cancer previously exposed to anthracyclines or taxanes: North Central Cancer Treatment Group and Mayo Clinic Trial N0336. J Clin Oncol 27: 11-15, 2009. 84. Moreno-Bueno G, Rodríguez-Perales S, Sánchez-Estévez C, Hardisson D, Sarrió D, Prat J, Cigudosa JC, Matias-Guiu X, Palacios J. Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene 22: 6115-6118, 2003. 85. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21: 2000-2008, 2002. 86. Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S-i, Akashi K, Korsmeyer SJ. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 307: 1101-1104, 2005. 87. Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426: 671-676, 2003. 88. Ostrander EA, Wayne RK. The canine genome. Genome Res 15: 1706-1716, 2005. 89. Owen L. A comparative study of canine and human breast cancer. Invest Cell Pathol 2: 257-275, 1978. 90. Owen L. A comparative study of canine and human breast cancer. Invest Cell Pathol 2: 257-275, 1978. 91. Pandey MK, Sung B, Aggarwal BB. Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP‐1 in human multiple myeloma cells. Int J Cancer 127: 282-292, 2010. 92. Paoloni M, Khanna C. Translation of new cancer treatments from pet dogs to humans. Nature Reviews Cancer 8: 147-156, 2008. 93. Park IH, Li C. Characterization of molecular recognition of STAT3 SH2 domain inhibitors through molecular simulation. J Mol Recognit 24: 254-265, 2011. 94. Pellegrini S, Dusanter‐Fourt I. The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). 77 Eur J Biochem 248: 615-633, 1997. 95. Perciavalle RM, Stewart DP, Koss B, Lynch J, Milasta S, Bathina M, Temirov J, Cleland MM, Pelletier S, Schuetz JD. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol 14: 575-583, 2012. 96. Petterino C, Rossetti E, Drigo M. Immunodetection of the signal transducer and activator of transcription-3 in canine haemangioma and haemangiosarcoma. Res Vet Sci 80: 186-188, 2006. 97. Prasad S, Pandey MK, Yadav VR, Aggarwal BB. Gambogic acid inhibits STAT3 phosphorylation through activation of protein tyrosine phosphatase SHP-1: potential role in proliferation and apoptosis. Cancer Prevention Research 4: 1084-1094, 2011. 98. Queiroga FL, Raposo T, Carvalho MI, Prada J, Pires I. Canine mammary tumours as a model to study human breast cancer: most recent findings. In Vivo 25: 455-465, 2011. 99. Rinkenberger JL, Horning S, Klocke B, Roth K, Korsmeyer SJ. Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev 14: 23-27, 2000. 100.Rivera P, Melin M, Biagi T, Fall T, Häggström J, Lindblad-Toh K, von Euler H. Mammary tumor development in dogs is associated with BRCA1 and BRCA2. Cancer Res 69: 8770-8774, 2009. 101.Roy PG, Thompson AM. Cyclin D1 and breast cancer. The Breast 15: 718-727, 2006. 102.Russell A, Thompson MA, Hendley J, Trute L, Armes J, Germain D. Cyclin D1 and D3 associate with the SCF complex and are coordinately elevated in breast cancer. Oncogene 18: 1999. 103.Sah N, Khan Z, Khan G, Bisen P. Structural, functional and therapeutic biology of survivin. Cancer Lett 244: 164-171, 2006. 104.Schneider R, Dorn CR, Taylor D. Factors influencing canine mammary cancer development and postsurgical survival. J Natl Cancer Inst 43: 1249-1261, 1969. 105.Schraml P, Kononen J, Bubendorf L, Moch H, Bissig H, Nocito A, Mihatsch MJ, Kallioniemi O-P, Sauter G. Tissue microarrays for gene amplification surveys in many different tumor types. Clin Cancer Res 5: 1966-1975, 1999. 106.Sfacteria A, Bertani C, Costantino G, Del Bue M, Paiardini M, Cervasi B, Piedimonte A, De Vico G. Cyclin D1 expression in pre-cancerous and cancerous lesions of the canine mammary gland. J Comp Pathol 128: 245-251, 2003. 107.Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501-1512, 1999. 108.Shimizu S, Takehara T, Hikita H, Kodama T, Tsunematsu H, Miyagi T, Hosui A, 78 Ishida H, Tatsumi T, Kanto T. Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer 131: 548-557, 2012. 109.Simon D, Schoenrock D, Baumgärtner W, Nolte I. Postoperative adjuvant treatment of invasive malignant mammary gland tumors in dogs with doxorubicin and docetaxel. J Vet Intern Med 20: 1184-1190, 2006. 110.Simpson JF, Quan DE, O'Malley F, Odom-Maryon T, Clarke PE. Amplification of CCND1 and expression of its protein product, cyclin D1, in ductal carcinoma in situ of the breast. The American journal of pathology 151: 161, 1997. 111.Sorenmo K, Kristiansen V, Cofone M, Shofer F, Breen AM, Langeland M, Mongil C, Grondahl A, Teige J, Goldschmidt M. Canine mammary gland tumours; a histological continuum from benign to malignant; clinical and histopathological evidence*. Vet Comp Oncol 7: 162-172, 2009. 112.Sorenmo KU, Worley D, Glodschmidt MH. Tumor of Mammary Gland. In: Withrow SJ, Vail DM, and Page RL, ed. Withrow and MacEwen's Small Animal Clinical Oncology, 5th ed. Elsevier, Missouri, 538-556, 2013. 113.Steeg PS, Zhou Q. Cyclins and breast cancer. In: ed. Prognostic variables in node-negative and node-positive breast cancer, ed. Springer, 107-118, 1998. 114.Strandberg J, Goodman D. Animal model of human disease: canine mammary neoplasia. The American journal of pathology 75: 225, 1974. 115.Sui L, Dong Y, Ohno M, Watanabe Y, Sugimoto K, Tokuda M. Survivin expression and its correlation with cell proliferation and prognosis in epithelial ovarian tumors. Int J Oncol 21: 315-320, 2002. 116.Swana HS, Grossman D, Anthony JN, Weiss RM, Altieri DC. Tumor content of the antiapoptosis molecule survivin and recurrence of bladder cancer. New Engl J Med 341: 452-453, 1999. 117.Tai W-T, Cheng A-L, Shiau C-W, Huang H-P, Huang J-W, Chen P-J, Chen K-F. Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. J Hepatol 55: 1041-1048, 2011. 118.Tai W-T, Cheng A-L, Shiau C-W, Huang H-P, Huang J-W, Chen P-J, Chen K-F. Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. J Hepatol 55: 1041-1048, 2011. 119.Tai WT, Shiau CW, Chen PJ, Chu PY, Huang HP, Liu CY, Huang JW, Chen KF. Discovery of novel src homology region 2 domain‐containing phosphatase 1 agonists from sorafenib for the treatment of hepatocellular carcinoma. Hepatology 59: 190-201, 2014. 120.Tavares WL, Lavalle GE, Figueiredo MS, Souza AG, Bertagnolli AC, Viana FA, Paes PR, Carneiro RA, Cavalcanti GA, Melo MM. Evaluation of adverse effects in 79 tamoxifen exposed healthy female dogs. Acta Vet Scand 52: 6, 2010. 121.Thomas LW, Lam C, Edwards SW. Mcl-1; the molecular regulation of protein function. FEBS Lett 584: 2981-2989, 2010. 122.Turkson J, Jove R. STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19: 2000. 123.Ullén A, Farnebo M, Thyrell L, Mahmoudi S, Kharaziha P, Lennartsson L, Grandér D, Panaretakis T, Nilsson S. Sorafenib induces apoptosis and autophagy in prostate cancer cells in vitro. Int J Oncol 37: 15, 2010. 124.Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling pathways in hepatocellular carcinoma. In: Semin Liver DisCopyright© 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA., 2007, p. 055-076. 125.Vinkemeier U, Moarefi I, Darnell JE, Kuriyan J. Structure of the amino-terminal protein interaction domain of STAT-4. Science 279: 1048-1052, 1998. 126.Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW, Opferman JT, Sallan SE, den Boer ML, Pieters R. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10: 331-342, 2006. 127.Weinstat-Saslow D, Merino MJ, Manrow RE, Lawrence JA, Bluth RF, Wittenbel KD, Simpson JF, Page DL, Steeg PS. Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nat Med 1: 1257-1260, 1995. 128.Wen Z, Zhong Z, Darnell Jr JE. Maximal activation of transcription by Statl and Stat3 requires both tyrosine and serine phosphorylation. Cell 82: 241-250, 1995. 129.Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64: 7099-7109, 2004. 130.Wilson H, Huelsmeyer M, Chun R, Young K, Friedrichs K, Argyle D. Isolation and characterisation of cancer stem cells from canine osteosarcoma. The Veterinary Journal 175: 69-75, 2008. 131.Yamada O, Kobayashi M, Sugisaki O, Ishii N, Ito K, Kuroki S, Sasaki Y, Isotani M, Ono K, Washizu T. Imatinib elicited a favorable response in a dog with a mast cell tumor carrying a< i> c-kit</i> c. 1523A> T mutation via suppression of constitutive KIT activation. Vet Immunol Immunopathol 142: 101-106, 2011. 132.Yamagami T, Kobayashi T, Takahashi K, Sugiyama M. Influence of ovariectomy at the time of mastectomy on the prognosis for canine malignant mammary tumours. J Small Anim Pract 37: 462-464, 1996. 80 133.Yang W-Y, Liu C-H, Chang C-J, Lee C-C, Chang K-J, Lin C-T. Proliferative activity, apoptosis and expression of oestrogen receptor and Bcl-2 oncoprotein in canine mammary gland tumours. J Comp Pathol 134: 70-79, 2006. 134.Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews Cancer 9: 798-809, 2009. 135.Zaffaroni N, Pennati M, Colella G, Perego P, Supino R, Gatti L, Pilotti S, Zunino F, Daidone M. Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cellular and Molecular Life Sciences CMLS 59: 1406-1412, 2002. 136.Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nature Reviews Cancer 9: 28-39, 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56742 | - |
dc.description.abstract | 犬乳腺瘤在母犬是十分常見的癌症疾病,其中約有五成病例被診斷為惡性腫 瘤。目前的治療方針以手術切除為大宗,然而仍約有七成的惡性腫瘤在術後會有 復發的併發症,其他治療方式像是化學療法等輔助療法目前在犬乳腺瘤尚未建立 十分有效的治療結果,因此目前需要針對犬乳腺瘤來開發新的輔助療法如小分子 藥物以增進治療效果。STAT3 為一致癌蛋白,調控多種細胞反應如細胞增生、存 活以及組織血管新生等,在人及狗的多種腫瘤包含乳房腫瘤都顯示 STAT3 有過度 表現的情況。本研究探討現行用來治療肝癌的小分子藥物 Sorafenib 其衍生物 SC-43 於犬乳腺瘤的抗癌效果及機制。根據先前的文獻,SC-43 在人類乳癌上對於磷酸化 STAT3(p-STAT3)展現出比原型藥物 Sorafenib 更好的活性抑制,進而誘導腫瘤 細胞產生細胞凋亡。本研究指出,SC-43 在三株犬乳腺瘤細胞上都展現出藉由促進 細胞凋亡,以抑制腫瘤細胞生長的能力。此外,藉由轉殖 STAT3 基因到犬乳腺瘤 細胞上使其過度表現 STAT3 來逆轉藥物促細胞凋亡的結果,顯示 SC-43 乃經由負 調控 p-STAT3 以及下游相關蛋白如 Mcl-1 和 cyclin D1 來達到抑制腫瘤生長及細 胞凋亡的藥效。進一步的研究發現,給予 SHP-1 抑制劑後,SC-43 促細胞凋亡的 藥效亦被逆轉,可顯示出 SC-43 是藉由調升 SHP-1 的活性達到使 p-STAT3 去磷酸 化與負調控下游細胞傳訊路徑的作用。總結來說,SC-43 藉由調控 SHP-1 的活性 來抑制 STAT3 的活化,誘導細胞凋亡,進而在犬乳腺瘤細胞上達到抗癌作用的效 果。 | zh_TW |
dc.description.abstract | Canine mammary gland tumor (cMGT) is the most common malignancy in female dog. Approximately 50% of these neoplasms are diagnosed as malignant, and distant metastases are common causes of death in these patients. In Taiwan, the primary choice of therapy is surgical treatment, however, over 70% malignant cMGT dogs following lumpectomy have developed secondary mammary tumors and no single adjuvant chemotherapy protocol has been reported to be effective in the dog. Therefore, development of novel therapeutic agents against cMGT is necessary to improve the efficacy of existing therapy. Signal transducer and activator of transcription 3 (STAT3), which is considered as oncoprotein and play crucial role in cell proliferatioin, survival and angiogenesis, is constitutively activated in a verity of human and canine cancers including mammary neoplasms. SC-43, a novel sorafenib derivative targeted STAT3, is found more potency in phospho-STAT3 (p-STAT3) inhibition and apoptosis induction in human breast cancer compared to sorafenib. In this study, SC-43 demonstrated more apoptosis-inducing activity on cMGT cell lines in comparison with sorafenib and it presented in a does- and time-dependent manner. Our results validated by STAT3 transient overexpression suggest that down-regulation of p-STAT3 and its downdtream proteins Mcl-1 (myeloid cell leukemia 1) and cyclin D1 were attribute to antitumor
effect of SC-43. Additionally, inhibitor of SHP-1 (SH2-domain containing tyrosine III phosphatase 1) recued the apoptotic effect in cMGT cells via reversing down-regulation of p-STAT3. In conclusion, these finding may indicate that SC-43 induced apoptosis to suppress the growth of cMGT cells thought regulating the SHP-1-depenent STAT3 inhibition. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:45:37Z (GMT). No. of bitstreams: 1 ntu-103-R01629007-1.pdf: 10254455 bytes, checksum: ec64518931801b45f166598a89c1a2d4 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌謝.............................................................................................................. I 中文摘要 ....................................................................................................II
Abstract .................................................................................................... III Contents ...................................................................................................... V Chapter 1. Introduction .......................................................................... 1 Chapter 2. Background and Literature Review ................................... 3 2.1. Canine mammary gland tumor (cMGT) ............................................................... 3 2.1.1. Prevalence of cMGT.................................................................................... 3 2.1.2. Grading system of cMGT ............................................................................ 5 2.1.3. Therapies and prognosis of cMGT .............................................................. 6 2.1.4. Comparative medicine aspect...................................................................... 8 2.2. Signal Transducer and Activator of Transcription 3 (STAT3)......................... 11 2.2.1. STATs protein family ................................................................................ 11 2.2.2. Structural character of STATs protein....................................................... 12 2.2.3. Activation and function of STAT3 protein................................................ 14 2.2.4. STAT3 signaling-related proteins ............................................................. 15 2.2.5. STAT3 in human and canine cancer.......................................................... 17 2.3 SC-43 and Target therapy ..................................................................................... 19 2.3.1 Overview of target therapies....................................................................... 19 2.3.2 Small molecule drug in animal cancer ....................................................... 21 2.3.3 SC-43 and Sorafenib................................................................................... 23 Chapter 3. Materials and Methods ......................................................... 26 3.1. Reagents and antibodies .................................................................................... 26 3.2. Cell culture.......................................................................................................... 26 3.3. Cell viability analysis ......................................................................................... 27 3.4. Cell cycle and subG1 phase analysis................................................................. 28 3.5. Western Blotting................................................................................................. 29 3.6. CMT-1 with ectopic expression of STAT3....................................................... 31 3.7. Phosphatase activity assay................................................................................. 32 3.8. Xenograft model ................................................................................................. 33 V 3.9. Statistical analysis .............................................................................................. 34 Chapter 4. Results..................................................................................... 35 4.1. SC-43 suppressed cell viability on cMGT cells............................................... 35 4.2. SC-43 demonstrated more potent apoptotic activity than sorafenib in cMGT cells ..................................................................................................................... 36 4.3. Downregulation of p-STAT3 mediates by SC-43 contributed to apoptosis in cMGT cells......................................................................................................... 37 4.4. Overexpression of STAT3 showed protective effects on apoptosis induced by SC-43............................................................................................................. 38 4.5. SHP-1-dependent inhibition of STAT3 mediated the apoptotic effects of SC-43 in cMGT cells. ........................................................................................ 39 4.6. Therapeutic evaluation of SC-43 on cMGT xenograft tumor growth. ........ 40 Chapter 5. Discussion ............................................................................... 42 References.................................................................................................. 71 VI Tables Table 1. Histologic grading criteria and scoring system of canine mammary gland tumor .................................................................................................................. 51 Table 2. Staging system of canine mammary gland tumor (WHO)......................... 52 Table 3. STAT3 activation in human cancer* ........................................................... 53 VII Figures Figure 1. Chemical structure of Sorafenib and SC-43. ............................................. 54 Figure 2. SC-43 shows cytotoxicity on canine mammary gland tumor (cMGT) cells. ............................................................................................................................ 55 Figure 3. Effect of SC-43 and Sorafenib on cell viability of cMGT cells................. 56 Figure 4. Time-dependent effect of SC-43 on viability in cMGT cells..................... 57 Figure 5. SC-43 induced apoptosis in cMGT cells..................................................... 58 Figure 6. SC-43 inhibited pSTAT3 signaling pathway ............................................. 59 Figure 7. SC-43 triggered apoptosis and showed insignificant autophagy ............. 60 Figure 8. SC-43 inhibited pSTAT3 and induced inactivation of PARP on MPG and CF41.Mg cells. ................................................................................................... 61 Figure 9. Time-dependent effect of SC-43 on p-STAT3 and related proteins ........ 62 Figure 10. Over-expression of STAT3 rescued cMGT cells from apoptosis........... 63 Figure 11. SC-43 enhanced SHP-1 activity more than sorafenib in CMT-1 cells .. 64 Figure 12. SHP-1 inhibitor rescued apoptotic effect induced by SC-43. ................. 65 Figure 13. Xenograft CMT-1 tumor model on immunodeficient mouse................. 66 Figure 14. Therapeutic evaluation of SC-43 and Sorafenib on cMGT in vivo. ...... 67 Figure 15. Western blot analysis of STAT3 activation in CMT-1 tumors. ............. 68 Figure 16. The histopathology of excised tumor mass from xenografts mice. ........ 69 Figure 17. The histopathology analysis of excised tumor mass from xenografts mice. ................................................................................................................... 70 | |
dc.language.iso | en | |
dc.title | 探討SC-43在犬乳腺瘤上的抗癌效果 | zh_TW |
dc.title | Investigation of the Antitumor Effect of SC-43 on Canine Mammary Gland Tumor | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖泰慶,陳昆鋒 | |
dc.subject.keyword | 犬乳腺瘤,誘導訊息傳遞及轉錄因子 3,SHP-1 去磷酸?,Sorafenib,SC-43,細胞凋亡, | zh_TW |
dc.subject.keyword | Canine mammary gland tumor (cMGT),p-STAT3,SHP-1,SC-43,Sorafenib,Apoptosis, | en |
dc.relation.page | 81 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-11 | |
dc.contributor.author-college | 獸醫專業學院 | zh_TW |
dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 10.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。