Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56714
標題: 一基於偏好學習排名的分治方法
A Practical Divide-and-Conquer Approach for Preference-Based Learning to Rank
作者: Yang-Han Jay
楊涵傑
指導教授: 林軒田(Lin-Hsuan Tien)
關鍵字: 機器學習,排名學習,偏好,分治,
machine learning,learning to rank,preference-based,divide-and-conquer,
出版年 : 2014
學位: 碩士
摘要: 在學習排名的方法中,有別於一般的基於分數得到排名的方法,一類基於偏好學習排名的模型先是利用二元分類模型去預測兩個待排序物件之間的偏好關係,再利用物件兩兩之間的偏好關係去產生排名。許多先前提出的偏好學習排名方法的共同問題便是在預測階段的時間效率不彰。為此,在這篇文章中,我們提出一新的分治方法 'Fuzzy Sort' 來解決偏好學習排名在預測階段的效率問題。我們的方法能在 O(W·N lg N) 的時間內完成預測,其中 W 是一可調整的參數,在一般的狀況下不超過 50。我們提出的演算法相對於其他偏好學習排名的方法,大幅改善了預測效率,並且在準確度勝過了大多數傳統基於分數得到排名的模型。
In preference-based learning to rank (LTR), rather than training a score- based prediction model, a binary prediction model (with probabilistic output) is trained over pairs of instances as a preference function. The ranking is then produced using the pairwise preference outputs in the prediction stage. In this paper we study the preference-based LTR problem and presents a practical approach we called the “Fuzzy Sort” which runs in O(W·N lg N), where W is typically no larger than 50 in practice. The algorithm shows promising results compared with other conventional ranking methods, and is query-efficient when competing against other preference-based LTR approaches.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56714
全文授權: 有償授權
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
630.89 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved