Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56695
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林沛群(Pei-Chun Lin)
dc.contributor.authorYu-Chen Linen
dc.contributor.author林昱辰zh_TW
dc.date.accessioned2021-06-16T05:42:42Z-
dc.date.available2019-09-04
dc.date.copyright2014-09-04
dc.date.issued2014
dc.date.submitted2014-08-11
dc.identifier.citation[1] W. McMahan, J. Gewirtz, D. Standish, P. Martin, J. A. Kunkel, M. Lilavois, A. Wedmid, D. I. Lee, and K. J. Kuchenbecker, 'Tool Contact Acceleration Feedback for Telerobotic Surgery,' Haptics, IEEE Transactions on, vol. 4, pp. 210-220, 2011.
[2] S. Chitta, J. Sturm, M. Piccoli, and W. Burgard, 'Tactile Sensing for Mobile Manipulation,' Robotics, IEEE Transactions on, vol. 27, pp. 558-568, 2011.
[3] H. Kawasaki, T. Komatsu, and K. Uchiyama, 'Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II,' Mechatronics, IEEE/ASME Transactions on, vol. 7, pp. 296-303, 2002.
[4] L. Li-Ren and H. Han-Pang, 'Integrating fuzzy control of the dexterous National Taiwan University (NTU) hand,' Mechatronics, IEEE/ASME Transactions on, vol. 1, pp. 216-229, 1996.
[5] M. Grebenstein, S. Albu, x, A. ffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Hoppner, S. Jorg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimbock, S. Wolf, T. Wusthoff, and G. Hirzinger, 'The DLR hand arm system,' in Robotics and Automation (ICRA), 2011 IEEE International Conference on, 2011, pp. 3175-3182.
[6] S. R. Company. Shadow Dexterous Hand. Available: http://www.shadowrobot.com/products/dexterous-hand/
[7] S. C. Jacobsen, E. K. Iversen, D. Knutti, R. Johnson, and K. Biggers, 'Design of the Utah/M.I.T. Dextrous Hand,' in Robotics and Automation. Proceedings. 1986 IEEE International Conference on, 1986, pp. 1520-1532.
[8] DARPA. DARPA ROBOTICS CHALLENGE. Available: http://www.theroboticschallenge.org/
[9] W. Ai and Q. Xu, 'Overview of flexure-based compliant microgrippers,' Advances in Robotics Research, vol. 1, pp. 001-019, 2014.
[10] L. Chao-Chieh, L. Che-Min, and F. Chen-Hsien, 'A Self-Sensing Microgripper Module With Wide Handling Ranges,' Mechatronics, IEEE/ASME Transactions on, vol. 16, pp. 141-150, 2011.
[11] SCHUNK, '2-Finger Parallel Grippers.'
[12] FESTO. Grippers. Available:
http://www.festo.com/cms/nl-be_be/9767_12353.htm#id_895
[13] A. Bicchi, 'Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity,' Robotics and Automation, IEEE Transactions on, vol. 16, pp. 652-662, 2000.
[14] A. M. Dollar and R. D. Howe, 'A robust compliant grasper via shape deposition manufacturing,' Mechatronics, IEEE/ASME Transactions on, vol. 11, pp. 154-161, 2006.
[15] L. U. Odhner, L. P. Jentoft, and M. R. Claffee, 'A compliant, underactuated hand for robust manipulation,' International Journal of Robotics Research, vol. 33, 2014.
[16] I. SPECTRUM, 'Willow Garage Introduces Velo 2G Adaptive Gripper.'
[17] B. Technology. BarrettHand. Available: http://www.barrett.com/robot/products-hand.htm
[18] SCHUNK. SDH servo-electric 3-Finger Gripping Hand. Available: http://mobile.schunk-microsite.com/en/produkte/produkte/sdh-servo-electric-3-finger-gripping-hand.html
[19] ROBOTIQ. 3-Finger Adaptive Robot Gripper. Available: http://robotiq.com/en/products/industrial-robot-hand
[20] K. Suzumori, S. Iikura, and H. Tanaka, 'Development of flexible microactuator and its applications to robotic mechanisms,' in Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference on, 1991, pp. 1622-1627 vol.2.
[21] R. Deimel and O. Brock, 'A Novel Type of Compliant, Underactuated Robotic Hand for Dexterous Grasping,' in Robotics: Science and Systems Conference, ed, 2014.
[22] J. R. Amend, E. M. Brown, N. Rodenberg, H. M. Jaeger, and H. Lipson, 'A Positive Pressure Universal Gripper Based on the Jamming of Granular Material,'
Robotics, IEEE Transactions on, vol. 28, pp. 341-350, 2012.
[23] K. Hsiao, S. Chitta, M. Ciocarlie, and E. G. Jones, 'Contact-reactive grasping of objects with partial shape information,' in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010, pp. 1228-1235.
[24] J. Felip and A. Morales, 'Robust sensor-based grasp primitive for a three-finger robot hand,' in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 2009, pp. 1811-1816.
[25] J. A. Alcazar and L. G. Barajas, 'Estimating object grasp sliding via pressure array sensing,' in Robotics and Automation (ICRA), 2012 IEEE International Conference on, 2012, pp. 1740-1746.
[26] J. M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchenbecker, 'Human-Inspired Robotic Grasp Control With Tactile Sensing,' Robotics, IEEE Transactions on, vol. 27, pp. 1067-1079, 2011.
[27] K. Suwanratchatamanee, M. Matsumoto, and S. Hashimoto, 'Robotic Tactile Sensor System and Applications,' Industrial Electronics, IEEE Transactions on, vol. 57, pp. 1074-1087, 2010.
[28] Z. Hong and N. N. Chen, 'Control of contact via tactile sensing,' Robotics and Automation, IEEE Transactions on, vol. 16, pp. 482-495, 2000.
[29] L. Hongbin, S. Xiaojing, T. Nanayakkara, L. D. Seneviratne, and K. Althoefer, 'A computationally fast algorithm for local contact shape and pose classification using a tactile array sensor,' in Robotics and Automation (ICRA), 2012 IEEE International Conference on, 2012, pp. 1410-1415.
[30] Z. Pezzementi, E. Plaku, C. Reyda, and G. D. Hager, 'Tactile-Object Recognition From Appearance Information,' Robotics, IEEE Transactions on, vol. 27, pp. 473-487, 2011.
[31] H. Nakamoto, W. Fukui, F. Kobayashi, F. Kojima, N. Imamura, and H. Shirasawa, 'Shape classification based on tactile information by Universal Robot Hand,' in Industrial Electronics, 2009. IECON '09. 35th Annual Conference of IEEE, 2009, pp. 2360-2365.
[32] A. Drimus, G. Kootstra, A. Bilberg, and D. Kragic, 'Classification of rigid and deformable objects using a novel tactile sensor,' in Advanced Robotics (ICAR), 2011 15th International Conference on, 2011, pp. 427-434.
[33] EPSON. Epson G3 SCARA Robots. Available: http://robots.epson.com/product-detail/2
[34] TBIMOTION. 滾珠螺桿 SFI系列. Available: http://www.tbimotion.com.tw/product/detail/2
[35] TBIMOTION. 滾珠花鍵 SLT系列. Available: http://www.tbimotion.com.tw/product/detail/128
[36] THK. 螺桿安裝與維護. Available: https://tech.thk.com/ct/products/pdf/tc_b15_104.pdf#1
[37] ROBOTIQ. 2-Finger Adaptive Robot Gripper. Available: http://robotiq.com/en/products/industrial-robot-gripper/
[38] K. S. GEARS. KHK標准齒輪 [蝸桿]. Available: https://www.khkgears.co.jp/khkweb/search/main.do?gearType=10&lang=zh_TW
[39] N. Instruments. NI sbRIO-9642/9642XT. Available: http://sine.ni.com/nips/cds/view/p/lang/en/nid/205900
[40] 游崴舜, '可側傾雙輪機器人之運動控制與其內部機器人泛用機電系統架構,' 碩士論文, 機械工程學系, 國立臺灣大學, 台北, 2012.
[41] I. Rectifier. IRS2004. Available: http://www.irf.com/part/_/A~IRS2004#tab-tab1
[42] N. Semiconductors. BUK7610-100B. Available: http://www.nxp.com/products/automotive/automotive_mosfets/BUK7610-100B.html
[43] A. DEVICE. ADXL327 Available: http://www.analog.com/en/mems-sensors/mems-inertial-sensors/adxl327/products/product.html
[44] T. techinques. MINI LOW PROFILE LOAD CELL UNIVERSAL/TENSION OR COMPRESSION. Available: http://www.transducertechniques.com/mlp-load-cell.aspx
[45] Bourns. PTV09 Series - 9 mm Potentiometer. Available: http://www.bourns.com/data/global/pdfs/PTV09.pdf
[46] R. D. H. Mark R. Cutkosky, William R. Provancher, Springer Handbook of Robotics-Chapter19 Force and Tactile Sensors.
[47] MiSUMi台灣. 各種橡膠的特性和特長. Available: https://tw.misumi-ec.com/pdf/fa/p1483.pdf
[48] MCMASTER-CARR. About Rubber and Polyurethane. Available: http://www.mcmaster.com/#standard-polyurethane-sheets/=ro5bvp
[49] M. R. Cutkosky, 'On grasp choice, grasp models, and the design of hands for manufacturing tasks,' Robotics and Automation, IEEE Transactions on, vol. 5, pp. 269-279, 1989.
[50] 董. 蘇芳慶. (2009) 萬能雙手的奧秘. 科學發展. 59-65.
[51] WIKIPEDIA. Friction. Available: http://en.wikipedia.org/wiki/Friction
[52] J. Yan-Bin and T. Jiang, 'Surface Patch Reconstruction From One Dimensional Tactile Data,' Automation Science and Engineering, IEEE Transactions on, vol. 7, pp. 400-407, 2010.
[53] T. Haase, Wo, x, and H. rn, 'Real-time collision detection for intrinsic safety of Multi-fingered SDH-2,' in Robotics and Automation (ICRA), 2010 IEEE International Conference on, 2010, pp. 3995-4000.
[54] M. Meier, M. Schopfer, R. Haschke, and H. Ritter, 'A Probabilistic Approach to Tactile Shape Reconstruction,' Robotics, IEEE Transactions on, vol. 27, pp. 630-635, 2011.
[55] ROBOTIQ. Robot Giving a Hand to Make... a Robot Hand! Available: http://blog.robotiq.com/bid/49391/Robot-Giving-a-Hand-to-Make-a-Robot-Hand
[56] ROBOTIQ. Bin picking. Available: http://robotiq.com/en/applications/electric-robot-gripper-bin-picking.php
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56695-
dc.description.abstract隨著科技的發展與產業結構的改變,產線自動化已成為製造業重要的發展方向,而其中物件的自動化夾取與放置,不僅是產線上物料移動與組裝任務中不可缺的一環,未來也更是進行如雙手裝配任務之類的複雜自動化操作的必要動作之一。本研究承襲國內自動化發展趨勢,開發新式具多重感測與智能的機械夾爪,並以此夾爪針對自動取放任務設計一系列演算法則。夾爪具有仿人類抓取的三指和兩指雙重使用模式,每一指上並具有被動適應性設計,綜合此兩項機械特性可以讓夾爪產生多種不同夾取姿態以適應各種物件。夾爪上亦配置壓力陣列、電位計、力感測器、與加速度規等共四種感測器,產生進行智能化夾取所需的豐富感測回饋資訊。除此之外,為能以實驗方式測試夾爪特性,本研究並設計製作SCARA(Selective Compliance Assembly Robot Arm)機械手臂,並為其規劃平穩運行軌跡,以提供夾爪在空間中四個自由度的運動。完成整體系統架設後,開發自動取放之演算法,使該系統能於既定空間中,找出物件位置並判別出物體形狀,再以夾爪最適合姿態進行穩定的物件夾取。物件位置搜尋主要依賴觸覺感測和加速度資訊,物件外形識別與尺寸估算則倚賴觸覺感測陣列與夾爪姿態資訊,從而分辨出不同尺寸之圓柱,圓球,正方體、以及長方體等物件。穩定物件抓取則同步利用感測器回饋與夾爪可變外形特性,來形成力控制穩定抓取或幾何封閉包覆夾取。前者配合演算機制能以接近最小的抓握力道夾取未知重量的物體,並在物體受到外在干擾時能自我調整夾取力道,以防止物體滑落。而後者則利用夾爪特有的被動元件適應特性,使夾爪包覆物體並限制其運動,達到穩定夾取的功能。總整上述各部分開發成果,以達到完整多尺寸多外形物件的自動取放任務。zh_TW
dc.description.abstractWith the change of industrial structure and the development of technology, automated production line has been the main role in manufacturing. Among automated production line techniques, automatic pick and place operation is an indispensable part in material transfer and assembly. It is also necessary for advanced applications such as dual arm assemblies. Following the trend of progress in automation, we develop a robotic hand with sensory capabilities and design a series of procedures for pick and place operation. Our robotic hand has three fingers with underactuation. Two of them are rotatable, thus it can mimic human grasping behaviors such as cylindrical grasp and spherical grasp. Utilizing various grasping patterns, our robot hand can grasp a wide range of objects. Furthermore, with sensor-rich feedback control involving instruments such as pressure arrays, potentiometers, FSR sensors and an accelerometer, our robotic hand has the ability to determine and adjust for different grasping scenarios. In order to test the robotic hand’s capabilities, we also design a SCARA (Selective Compliance Assembly Robot Arm) robotic arm and add trajectory planning functionality for smooth object manipulation. After finishing all the hardware, we create an automatic pick and place algorithm enabling the robotic hand to find the position of an object, recognize its geometry and select the most appropriate grasping posture for stable manipulation. FSR sensors and the accelerometer are crucial for performing the two main actions: object searching and geometric recognition. These two actions rely on pressure array sensing and the kinematics between fingers. The robotic hand can figure out different basic shapes such as cylinders, spheres, cubes and rectangular solids of different sizes. As for stable manipulation, the robotic hand implement force-closure and form-closure gripping. The former gripping pattern allows the robotic hand to grasp an object with minimal force and can also adjust grip force while receiving disturbance. The latter grasping pattern uses its passive ability to encompass objects and resist motion. To summarize the project, the robotic hand can automatically grasp objects of different sizes and shapes, which is effective for Pick and Place operation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:42:42Z (GMT). No. of bitstreams: 1
ntu-103-R01522832-1.pdf: 6465285 bytes, checksum: f58c6b2eee1186c0295a834603a86087 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 文獻回顧 2
1.4 貢獻 8
1.5 論文架構 9
第二章 實驗平台設計 10
2.1 機械手臂設計 10
2.1.1 SCARA機械手臂設計 11
2.1.2 軌跡規劃 17
2-2 機械夾爪設計 21
2.2.1 被動彈性設計 21
2.2.2 兩指三指轉換機制 29
2.3 機電系統: 31
2.3.1 機電系統架構 31
2.3.2 感測器的使用與校正 37
2.4 整體架構 44
2.4.1 SCARA機械手臂規格 44
2.4.2 機械夾爪規格 45
2.4.3 整體運動學 46
2.5 本章結論 47
第三章:物件姿態與幾何判斷 48
3.1 辨別形狀的方法 48
3.1.1 不同形狀的特徵與兩次夾取 49
3.1.2 以接觸特性判別不同特徵 51
3.2 軟墊的挑選與特性 53
3.2.1 不同軟墊與實驗平台 54
3.2.2 實驗結果與討論 56
3.3 姿態與幾何判斷實驗 59
3.3.1 選擇接觸特性之閥值 59
3.4 本章結論 62
第四章 觸覺於自動取放之應用 63
4.1 自動取放操作設計 63
4.2 物體位置搜尋 64
4.2.1 粗略位置判定 64
4.2.2 準確位置判定 68
4.2.3 機械手臂搜尋軌跡控制 70
4.2.4 搜尋之參數選定 74
4.2.5 實驗結果與討論 76
4.3 物件穩定取放 82
4.3.1 對應不同幾何的抓取模式 82
4.3.2 夾爪之速度與力控制 83
4.3.3 滑動偵測之穩定夾取 87
4.3.4 幾何封閉之穩定夾取 91
4.3.5 實驗結果與討論 93
4.4 整體自動取放設計 101
4.5 本章結論 106
第五章 結論與未來展望 107
5.1 結論 107
5.2 未來展望 109
參考文獻 111
dc.language.isozh-TW
dc.subject取放zh_TW
dc.subjectSCARA機械手臂zh_TW
dc.subject穩定抓取zh_TW
dc.subject夾爪zh_TW
dc.subject壓力陣列zh_TW
dc.subject形狀辨識zh_TW
dc.subject物件搜尋zh_TW
dc.subjectpressure arrayen
dc.subjectSCARA robot armen
dc.subjectpick and place operationen
dc.subjecttactile localizationen
dc.subjectobject recognitionen
dc.subjectstable manipulationen
dc.subjectrobot handen
dc.title可變與自順應外形多感測器夾爪之開發與其在多外形與多尺寸物件自動化取放任務之應用zh_TW
dc.titleDevelopment of a Sensor-rich and Configuration Active-changeable and Passive-adaptable Gripper as well as its Application in Automatic Pick-and-place of Objects with Various Shapes and Sizesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃光裕(Kuang-Yuh Huang),嚴明明(Ming-ming Yan),連豊力(Feng-Li Lian)
dc.subject.keyword夾爪,SCARA機械手臂,取放,物件搜尋,形狀辨識,穩定抓取,壓力陣列,zh_TW
dc.subject.keywordrobot hand,SCARA robot arm,pick and place operation,tactile localization,object recognition,stable manipulation,pressure array,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2014-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
6.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved