Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56677
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃德富(Tur-Fu Huang)
dc.contributor.authorTun-Min Luen
dc.contributor.author呂敦民zh_TW
dc.date.accessioned2021-06-16T05:41:36Z-
dc.date.available2014-10-15
dc.date.copyright2014-10-15
dc.date.issued2014
dc.date.submitted2014-08-11
dc.identifier.citationAggrey AA, Srivastava K, Ture S, Field DJ, Morrell CN (2013). Platelet induction of the acute-phase response is protective in murine experimental cerebral malaria. J Immunol.190(9): 4685-4691.
Andrews RK, Gardiner EE, Shen Y, Whisstock JC, Berndt MC (2003). Glycoprotein Ib-IX-V. The international journal of biochemistry & cell biology 35(8): 1170-1174.
Andrews RK, Shen Y, Gardiner EE, Dong JF, Lopez JA, Berndt MC (1999). The glycoprotein Ib-IX-V complex in platelet adhesion and signaling. Thrombosis and haemostasis 82(2): 357-364.
Blann AD, Nadar SK, Lip GY (2003). The adhesion molecule P-selectin and cardiovascular disease. European heart journal 24(24): 2166-2179.
Brass LF, Vassallo RR, Jr., Belmonte E, Ahuja M, Cichowski K, Hoxie JA (1992). Structure and function of the human platelet thrombin receptor. Studies using monoclonal antibodies directed against a defined domain within the receptor N terminus. The Journal of biological chemistry 267(20): 13795-13798.
Braud S, Bon C, Wisner A (2000). Snake venom proteins acting on hemostasis. Biochimie 82(9-10): 851-859.
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. (2004). Neutrophil extracellular traps kill bacteria. Science 303(5663): 1532-1535.
Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M, et al. (2012). Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. The Journal of clinical investigation 122(7): 2661-2671.
Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. (2007). Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature medicine 13(4): 463-469.
Clemetson KJ (2010). Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon : official journal of the International Society on Toxinology 56(7): 1236-1246.
Clemetson KJ, Navdaev A, Dormann D, Du XY, Clemetson JM (2001). Multifunctional snake C-type lectins affecting platelets. Haemostasis 31(3-6): 148-154.
Cohen J (2002). The immunopathogenesis of sepsis. Nature 420(6917): 885-891.
Coughlin SR (2000). Thrombin signalling and protease-activated receptors. Nature 407(6801): 258-264.
De Marco L, Mazzucato M, Masotti A, Fenton JW, 2nd, Ruggeri ZM (1991). Function of glycoprotein Ib alpha in platelet activation induced by alpha-thrombin. The Journal of biological chemistry 266(35): 23776-23783.
Dent JA, Galbusera M, Ruggeri ZM (1991). Heterogeneity of plasma von Willebrand factor multimers resulting from proteolysis of the constituent subunit. The Journal of clinical investigation 88(3): 774-782.
Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA (1996). Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 88(1): 146-157.
Frenette PS, Denis CV, Weiss L, Jurk K, Subbarao S, Kehrel B, et al. (2000). P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. The Journal of experimental medicine 191(8): 1413-1422.
Handa M, Titani K, Holland LZ, Roberts JR, Ruggeri ZM (1986). The von Willebrand factor-binding domain of platelet membrane glycoprotein Ib. Characterization by monoclonal antibodies and partial amino acid sequence analysis of proteolytic fragments. The Journal of biological chemistry 261(27): 12579-12585.
Hoylaerts MF, Nuyts K, Peerlinck K, Deckmyn H, Vermylen J (1995). Promotion of
binding of von Willebrand factor to platelet glycoprotein Ib by dimers of
ristocetin. Biochem J 306 ( Pt 2): 453-63.
Hu H, Zhu L, Huang Z, Ji Q, Chatterjee M, Zhang W, et al. (2010). Platelets enhance lymphocyte adhesion and infiltration into arterial thrombus. Thrombosis and haemostasis 104(6): 1184-1192.
Huang, T.F. & Yeh, C.H. (1994). Purification and Characterization of the platelet glycoprotein Ib antagonist, agkistin, from Agkistrodon acutus. Abstract of Sino-Japanese Symposium on Coagulation, Fibrinolysis and Platelets, Nagoya, Japan.
Hughes PE, Pfaff M (1998). Integrin affinity modulation. Trends in cell biology 8(9): 359-364.
Hung DT, Vu TK, Wheaton VI, Ishii K, Coughlin SR (1992). Cloned platelet thrombin receptor is necessary for thrombin-induced platelet activation. The Journal of clinical investigation 89(4): 1350-1353.
Ikeda Y, Handa M, Kawano K, Kamata T, Murata M, Araki Y, et al. (1991). The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. The Journal of clinical investigation 87(4): 1234-1240.
Jamieson GA, Okumura T (1978). Reduced thrombin binding and aggregation in Bernard-Soulier platelets. The Journal of clinical investigation 61(3): 861-864.
Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, et al. (2009). Netting neutrophils in autoimmune small-vessel vasculitis. Nature medicine 15(6): 623-625.
Lindemann S, Tolley ND, Dixon DA, et al (2001). Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol.154(3):485-490.
Looney MR, Nguyen JX, Hu Y, Van Ziffle JA, Lowell CA, Matthay MA (2009). Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. The Journal of clinical investigation 119(11): 3450-3461.
Ma AC, Kubes P (2008). Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. Journal of thrombosis and haemostasis : JTH 6(3): 415-420.
Marti-Carvajal AJ, Sola I, Lathyris D, Cardona AF (2012). Human recombinant activated protein C for severe sepsis. The Cochrane database of systematic reviews 3: CD004388.
Mazurov AV, Vinogradov DV, Vlasik TN, Repin VS, Booth WJ, Berndt MC (1991). Characterization of an antiglycoprotein Ib monoclonal antibody that specifically inhibits platelet-thrombin interaction. Thrombosis research 62(6): 673-684.
McEver RP (2001). Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thrombosis and haemostasis 86(3): 746-756.
Morrell CN, Aggrey AA, Chapman LM, Modjeski KL (2014). Emerging roles for platelets as immune and inflammatory cells. Blood 123(18): 2759-2767.
Nathan C (2006). Neutrophils and immunity: challenges and opportunities. Nature reviews. Immunology 6(3): 173-182.
Navdaev A, Dormann D, Clemetson JM, Clemetson KJ (2001). Echicetin, a GPIb-binding snake C-type lectin from Echis carinatus, also contains a binding site for IgMkappa responsible for platelet agglutination in plasma and inducing signal transduction. Blood 97(8): 2333-2341.
Peng M, Holt JC, Niewiarowski S (1994). Isolation, characterization and amino acid sequence of echicetin beta subunit, a specific inhibitor of von Willebrand factor and thrombin interaction with glycoprotein Ib. Biochemical and biophysical research communications 205(1): 68-72.
Peng M, Lu W, Beviglia L, Niewiarowski S, Kirby EP (1993). Echicetin: a snake venom protein that inhibits binding of von Willebrand factor and alboaggregins to platelet glycoprotein Ib. Blood 81(9): 2321-2328.
Rogers C, Edelman ER, Simon DI (1998). A mAb to the beta2-leukocyte integrin Mac-1 (CD11b/CD18) reduces intimal thickening after angioplasty or stent implantation in rabbits. Proceedings of the National Academy of Sciences of the United States of America 95(17): 10134-10139.
Romo GM, Dong JF, Schade AJ, Gardiner EE, Kansas GS, Li CQ, et al. (1999). The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. The Journal of experimental medicine 190(6): 803-814.
Ross R (1999). Atherosclerosis--an inflammatory disease. The New England journal of medicine 340(2): 115-126.
Ruggeri ZM (2001). Structure of von Willebrand factor and its function in platelet adhesion and thrombus formation. Best practice & research. Clinical haematology 14(2): 257-279.
Savage B, Almus-Jacobs F, Ruggeri ZM (1998). Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 94(5): 657-666.
Segal AW (2005). How neutrophils kill microbes. Annual review of immunology 23: 197-223.
Semple JW, Freedman J (2010). Platelets and innate immunity. Cellular and molecular life sciences : CMLS 67(4): 499-511.
Simon DI, Chen Z, Xu H, Li CQ, Dong J, McIntire LV, et al. (2000). Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). The Journal of experimental medicine 192(2): 193-204.
Smyth SS, McEver RP, Weyrich AS, Morrell CN, Hoffman MR, Arepally GM, et al. (2009). Platelet functions beyond hemostasis. Journal of thrombosis and haemostasis : JTH 7(11): 1759-1766.
Sporn LA, Marder VJ, Wagner DD (1989). Differing polarity of the constitutive and regulated secretory pathways for von Willebrand factor in endothelial cells. The Journal of cell biology 108(4): 1283-1289.
Subramaniam M, Frenette PS, Saffaripour S, Johnson RC, Hynes RO, Wagner DD (1996). Defects in hemostasis in P-selectin-deficient mice. Blood 87(4): 1238-1242.
Ware J, Russell S, Ruggeri ZM (2000). Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proceedings of the National Academy of Sciences of the United States of America 97(6): 2803-2808.
Wen-Jeng Wang and Tur-Fu Huang (2001). A novel tetrameric venom protein, agglucetin from Agkistrodon acutus, acts as a glycoprotein Ib agonist. Thromb Haemost Oct 86(4):1077-86
Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. (2009). Extracellular histones are major mediators of death in sepsis. Nature medicine 15(11): 1318-1321.
Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, et al. (1998). Cloning and characterization of human protease-activated receptor 4. Proceedings of the National Academy of Sciences of the United States of America 95(12): 6642-6646.
Yamamoto N, Kitagawa H, Tanoue K, Yamazaki H (1985). Monoclonal antibody to glycoprotein Ib inhibits both thrombin- and ristocetin-induced platelet aggregations. Thrombosis research 39(6): 751-759.
Yeh CH, Chang MC, Peng HC, Huang TF (2001). Pharmacological characterization and antithrombotic effect of agkistin, a platelet glycoprotein Ib antagonist. British journal of pharmacology 132(4): 843-850.
Youssefian T, Drouin A, Masse JM, Guichard J, Cramer EM (2002). Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood 99(11): 4021-4029.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56677-
dc.description.abstract許多研究顯示血小板在發炎反應中扮演著重要的角色,血小板醣蛋白受體GPIb-IX-V不只參與了止血機轉初期的黏附作用,而且還與leukocytes所表現的integrin Mac-1以及內皮細胞和血小板所表現的P-selectin產生交互作用。血小板醣蛋白受體GPIb-IX-V可能在發炎反應中扮演著重要的角色。
Agkistin是一個從百步蛇毒中純化而得的C型類凝血素蛋白家族之成員,其具有典型的α及β次單元。無論在含有vWF之血小板懸浮液或是富含血小板之血漿中,Agkistin皆能專一性的抑制由ristocetin所引發的醣蛋白Ib相關之血小板凝集。我們藉由這種醣蛋白Ib抑制劑Agkistin去評估其對於LPS所引發之敗血症之影響。我們觀察到投予Agkistin可以降低動物模式中LPS引發之敗血症的死亡率。然而在發炎相關的細胞激素釋放方面如TNF-α及IL-6,Agkistin並沒有顯著的抑制現象。另外,投予Agkistin會呈現更為顯著的血小板低下現象。Agkistin直接投予在正常的小鼠中,亦會發生血小板低下現象,而在其他的血球方面如白血球、紅血球並沒有顯著的影響。
我們進一步探討Agkistin引發之血小板低下的機轉,Agkistin在小鼠富含血小板血漿中沒有看到血小板凝集的現象。而且經常用於人類GPIb試驗的活化劑ristocetin也無法引起凝集現象。因此我們使用了Agglucetin 替代,Agglucetin為一種vWF非依賴性的GPIb活化劑,也是純化自百步蛇毒,希望藉此作為小鼠模式之活化劑。不論在人類血小板懸浮液或富含血小板血漿中Agkistin 皆可以有效的抑制由Agglucetin所引起的血小板凝集現象,不過在於小鼠富含血小板血漿中Agglucetin 僅呈現微小的活化現象,這一反應也可以藉由加入Agkistin 所抑制。我們也在大鼠富含血小板血漿中觀察Agkistin 及Agglucetin 之反應,Agkistin 如同在小鼠一樣沒有造成凝集現象,然而在大鼠中Agglucetin也無法產生凝集反應。在以上之試管試驗中,我們離開了血管的生理環境,且排除了血球細胞的交互作用,Agkistin所引發的血小板低下可能與血管中其他細胞所表現的受體產生的交互作用有關。
最後,適當的抑制血小板可能對於發炎性疾病是有幫助的,但是完全的排除血小板又會增加副作用的風險,如出血。專一性的阻斷血小板與中性球的交互作用,可能是對於敗血症所引起複雜的發炎性疾病一種新的治療策略。
zh_TW
dc.description.abstractAbstract
Many studies show that platelets play an important role in inflammation. The platelet receptor GPIb-IX-V complex not only involves in initial platelet adhesion at high shear stress but also interacts with integrin Mac-1 in leukocytes and P-selectin in platelets and endothelial cells. This multiple interactions suggest that GPIb-IX-V complex may play an important role under inflammatory conditions.
Agkistin, a heterodimer protein purified from the snake venom of Agkistrodon acutus and its amino acid sequencing of α- and β-subunits, are highly homologous to those of C-type lectin GPIb-binding proteins. Agkistin specifically inhibits ristocetin induced GPIb-dependent platelet aggregation in the presence of vWF in human platelet suspension or in platelet-rich plasma.
In this study, we used Agkistin, a GPIb antagonist, to evaluate its anti-inflammatory effects in the LPS-induced sepsis model. We found that administration of Agkistin reduced mortality of endotoxemia in vivo. However, LPS-stimulated cytokine release such as TNF-α and IL-6 was not significantly inhibited by Agkistin-pretreatment, and Agkistin treatment even caused a more marked thrombocytopenic effect. Administration of Agkistin in normal mice, we found that it caused a rapid reduction in platelet count, while it did not cause a significant change in the counts of white blood cells and red blood cells.
We further explored the mechanism of Agkistin-induced thrombocytopenia in mice. We tested Agkistin with mice platelet-rich plasma; however it did not cause platelet aggregation. Moreover, ristocetin, an inducer usually used in GPIb studies in humans, did not elicit the platelet agglutination in mice. Because ristocetin lost efficacy in mice, we used Agglucetin instead, a VWF independent inducer also purified from the Agkistrodon acutus snake venom, to activate platelet in mice platelet-rich plasma. In both of human platelet suspension and platelet-rich plasma Agkistin was shown to inhibit Agglucetin-induced platelet aggregation, but in mice platelet-rich plasma Agglucetin only showed slight activation, and this activation effect was still inhibited by pre-incubation of Agkistin. We also tested the effects of Agkistin in rat platelet-rich plasma. It did not cause platelet aggregation like in mice PRP. Moreover, Agglucetin did not trigger platelet agglutination in rat PRP. In our in vitro studies, we exclude the interaction of blood cells and not carry out in the vasculature, suggesting that the Agkistin-induced thrombocytopenia may involve in interaction with receptors or components present on other cells.
In conclusion, the proper inhibition of platelets may present benefit in inflammatory disease, but the total depletion of platelet would increase the risk of bleeding. The specific blockage of interactions between neutrophils and platelets may offer a new strategy of therapy towards sepsis-induced inflammatory disease.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:41:36Z (GMT). No. of bitstreams: 1
ntu-103-R01443012-1.pdf: 4964996 bytes, checksum: bab4489ba513bab344cac93f9c952f20 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要……………………………………………………………………………………1
Abstract………………………………………………………………………………..3
Abbreviation table……………………………………………………………………..5
Chapter 1 Introduction………………………………………………………………...7
1.1 Platelets in inflammation………………………………………………...7
1.2 Overview of platelet GPIb-IX-V complex……………………………….8
1.3 The GPIb-IX-V receptor complex and its ligands…...…….………….....9
1.4 Overview of sepsis……………………………………………………...13
1.5 Platelets and Neutrophil extracellular traps (NETs)...……...…………..14
1.6 Snake venom C-Type Lectins (Snacles)…………...……….………….16
1.7 GPIb-binding snaclecs and thrombocytopenic effect….……...……….17
1.8 Aim of this study……………………………………...……………….18
Chapter 2 Materials and Methods……………………………………………………26
2.1 Reagents and Animals…………………………………………………..26
2.2 Sephadex G-75 column chromatography……………………….………27
2.3 FPLC Mono-S column chromatography………………………….…….27
2.4 BCA assay for protein quantification…………………………………..28
2.5 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)………………..28
2.6 Coomassie blue staining……………………………………………….28
2.7 Preparation of human platelet-rich plasma……………………………29
2.8 Preparation of human platelet suspension……………………………..29
2.9 Platelet aggregation……………………………………………………30
2.10 LPS-induced sepsis model in vivo..…………………………………..30
2.11 Mice whole blood and serum collection……………………………..30
2.12 Cytokine assays………………………………………………………31
2.13 Platelet counts in mice……………………………………………….31
2.14 Histological examination…………………………………………….31
2.15 In vitro mice and rat platelet aggregation……………………………32
2.16 Statistical analysis…………………………………………………...32
Chapter 3 Results…………………………………………………………………….33
3.1 Purification of Agkistin from snake venom of Agkistrodon acutus….....33
3.2 Determination of molecular mass of Agkistin………………………….33
3.3 Inhibition of Agkistin on ristocetin-induced platelet aggregation of human platelet suspension and platelet-rich plasma……………………………34
3.4 Agkistin reduced mortality of endotoxemia in vivo………………….…34
3.5 Agkistin has no significant effect on cytokine production in vivo……...35
3.6 Agkistin caused a more marked LPS-induced thrombocytopenia……...35
3.7 The effects of Agkistin on tissue injury in endotoxemia examined by
histochemistry………………………………………………………...36
3.8 The effects of Agkistin on normal mice in vivo…….………………….36
3.9 The effects of Agkistin on platelet aggregation of mice platelet-rich plasma in vitro ……………………...…………...…………………….37
3.10 Agglucetin, a GPIb agonist, aggregate platelets in the absence of vWF in human platelet suspension…………………………………………38
3.11 Agkistin inhibited Agglucetin-induced platelet aggregation of human platelet suspension and platelet-rich plasma…………………………39
3.12 The effects of Agkistin and Agglucetin on platelet aggregation of mice platelet-rich plasma in vitro…………………………………...39
3.13 The effects of Agkistin and Agglucetin on platelet aggregation of rat platelet-rich plasma in vitro…………………………...………...…. 40
Chapter 4 Discussion…..……………………………………………………………..55
Chapter 5 Conclusion and Perspective…………………………………………….63
References……………………………………………………………………………66
dc.language.isoen
dc.title蛇毒蛋白Agkistin對於活體內毒素血症之效應及機轉之探討zh_TW
dc.titleThe effects and action mechanisms of snake venom protein Agkistin on the endotoxemic syndromes in vivoen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧哲明(Che-Ming Teng),顏茂雄(Mao-Hsiung Yen),楊春茂(Chuen-Mao Yang),吳文彬(Wen-Bin Wu)
dc.subject.keyword蛇毒蛋白,血小板醣蛋白受體GPIb-IX-V,Agkistin,血小板低下,內毒素血症,zh_TW
dc.subject.keywordsnake venom protein,platelet receptor GPIb-IX-V,Agkistin,thrombocytopenia,endotoxemic syndromes,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2014-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
4.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved