請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56658
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林亮音 | |
dc.contributor.author | An-Ni Wang | en |
dc.contributor.author | 王安妮 | zh_TW |
dc.date.accessioned | 2021-06-16T05:40:27Z | - |
dc.date.available | 2024-12-31 | |
dc.date.copyright | 2014-10-09 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-12 | |
dc.identifier.citation | 1. Bob Lowenberg MD, James R. Downing MD, Alan Burnett MD. Acute Myeloid Leukemia. N Engl J Med. 1999:1051-1062.
2. Tenen DG. Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer. 2003;3(2):89-101. 3. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937-951. 4. Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011;29(5):487-494. 5. Robak T, Wierzbowska A. Current and emerging therapies for acute myeloid leukemia. Clin Ther. 2009;31 Pt 2:2349-2370. 6. Yakes FM, Chen J, Tan J, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298-2308. 7. Zhang Y, Guessous F, Kofman A, Schiff D, Abounader R. XL-184, a MET, VEGFR-2 and RET kinase inhibitor for the treatment of thyroid cancer, glioblastoma multiforme and NSCLC. IDrugs. 2010;13(2):112–121. 8. Swords R, Freeman C, Giles F. Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia. Leukemia. 2012;26(10):2176-2185. 9. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532-1542. 10. Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003;3(9):650-665. 11. Yamamoto Y. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97(8):2434-2439. 12. Hayakawa F, Towatari M, Kiyoi H, et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene. 2000;19(5):624-631. 13. Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene. 2002;21(16):2555-2563. 14. Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood. 2010;116(24):5089-5102. 15. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9(3):231-241. 16. Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer. 2005;5(11):876-885. 17. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. 18. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25(34):4798-4811. 19. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26(9):1324-1337. 20. Selderslaghs IW, Van Rompay AR, De Coen W, Witters HE. Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo. Reprod Toxicol. 2009;28(3):308-320. 21. Dooley K, Zon LI. Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev. 2000;10(3):252-256. 22. Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 2005;4(1):35-44. 23. Pruvot B, Jacquel A, Droin N, et al. Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica. 2011;96(4):612-616. 24. Childs S, Chen JN, Garrity DM, Fishman MC. Patterning of angiogenesis in the zebrafish embryo. Development. 2002;129(4):973-982. 25. Tran TC, Sneed B, Haider J, et al. Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res. 2007;67(23):11386-11392. 26. Stirewalt DL, Kopecky KJ, Meshinchi S, et al. Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood. 2006;107(9):3724-3726. 27. DeAngelo DJ, Stone RM, Heaney ML, et al. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood. 2006;108(12):3674-3681. 28. Fischer T, Stone RM, Deangelo DJ, et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28(28):4339-4345. 29. Knapper S, Burnett AK, Littlewood T, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood. 2006;108(10):3262-3270. 30. Man CH, Fung TK, Ho C, et al. Sorafenib treatment of FLT3-ITD(+) acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood. 2012;119(22):5133-5143. 31. Smith CC, Wang Q, Chin CS, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485(7397):260-263. 32. Kurzrock R, Sherman SI, Ball DW, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29(19):2660-2666. 33. Adida C, Recher C, Raffoux E, et al. Expression and prognostic significance of survivin in de novo acute myeloid leukaemia. Br J Haematol. 2000;111(1):196-203. 34. Altieri DC. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer. 2008;8(1):61-70. 35. Fukuda S, Singh P, Moh A, et al. Survivin mediates aberrant hematopoietic progenitor cell proliferation and acute leukemia in mice induced by internal tandem duplication of Flt3. Blood. 2009;114(2):394-403. 36. Zhou J, Bi C, Janakakumara JV, et al. Enhanced activation of STAT pathways and overexpression of survivin confer resistance to FLT3 inhibitors and could be therapeutic targets in AML. Blood. 2009;113(17):4052-4062. 37. Opferman JT, Iwasaki H, Ong CC, et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science. 2005;307(5712):1101-1104. 38. Yoshimoto G, Miyamoto T, Jabbarzadeh-Tabrizi S, et al. FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood. 2009;114(24):5034-5043. 39. Mills JR, Hippo Y, Robert F, et al. mTORC1 promotes survival through translational control of Mcl-1. Proc Natl Acad Sci U S A. 2008;105(31):10853-10858. 40. De Biasio A, Vrana JA, Zhou P, et al. N-terminal truncation of antiapoptotic MCL1, but not G2/M-induced phosphorylation, is associated with stabilization and abundant expression in tumor cells. J Biol Chem. 2007;282(33):23919-23936. 41. Opferman JT. Unraveling MCL-1 degradation. Cell Death Differ. 2006;13(8):1260-1262. 42. Thomas LW, Lam C, Edwards SW. Mcl-1; the molecular regulation of protein function. FEBS Lett. 2010;584(14):2981-2989. 43. Inuzuka H, Fukushima H, Shaik S, Liu P, Lau AW, Wei W. Mcl-1 ubiquitination and destruction. Oncotarget. 2011;2(3):239-244. 44. O'Farrell AM, Abrams TJ, Yuen HA, et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood. 2003;101(9):3597-3605. 45. Yang LL, Li GB, Ma S, et al. Structure-activity relationship studies of pyrazolo[3,4-d]pyrimidine derivatives leading to the discovery of a novel multikinase inhibitor that potently inhibits FLT3 and VEGFR2 and evaluation of its activity against acute myeloid leukemia in vitro and in vivo. J Med Chem. 2013;56(4):1641-1655. 46. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669-676. 47. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401-410. 48. Fiedler W, Graeven U, Ergun S, et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood. 1997;89(6):1870-1875. 49. Zhou J, Mauerer K, Farina L, Gribben JG. The role of the tumor microenvironment in hematological malignancies and implication for therapy. Front Biosci. 2005;10:1581-1596. 50. Padro T, Bieker R, Ruiz S, et al. Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR-2) in the bone marrow of patients with acute myeloid leukemia. Leukemia. 2002;16(7):1302-1310. 51. Trujillo A, McGee C, Cogle CR. Angiogenesis in acute myeloid leukemia and opportunities for novel therapies. J Oncol. 2012;2012:128608. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56658 | - |
dc.description.abstract | FLT3內部串聯重複突變(FLT3-ITD)為AML最常見的突變之一,發生率約30%,臨床上帶有FLT3-ITD的AML病患預後不佳,因此FLT3-ITD被認為是很有潛力的治療標的。Cabozantinib (XL-184)為一口服的多激酶小分子抑制劑,可以抑制與癌症致病相關之MET、VEGFR2、RET、KIT、TIE-2以及FLT3的活性。
首先在細胞抑殺試驗(MTS assay)中,我們發現帶有FLT3-ITD的細胞株 MV4-11及MOLM-13對cabozantinib的感受性極高 (IC50 < 5 nM)。低濃度的cabozantinib對MV4-11細胞生長和FLT3及其下游訊息傳遞路徑之活化有抑制效果。利用流式細胞分析儀分析,發現cabozantinib會以dose-dependent的方式造成MV4-11及MOLM-13細胞停留在細胞週期中的G0/G1期,並引發細胞凋亡。於西方墨點法分析中也可以偵測到活化態的Caspase 3及PARP-1蛋白,亦證明cabozantinib能使MV4-11細胞走向細胞凋亡。進一步分析與細胞凋亡相關蛋白,顯示cabozantinib處理會down-regulate抗凋亡蛋白Survivin、Mcl-1及up-regulate促凋亡蛋白Bak之表現,尤其以Survivin表現量的變化最為明顯。 Cabozantinib除了對具有FLT3-ITD之血癌細胞株具有毒殺效果,我們發現cabozantinib亦能明顯抑制FLT3-ITD之AML病患骨髓單核細胞的存活。 目前斑馬魚已逐漸成為毒物測試及藥物篩選之實驗動物模式的另一種選擇。我們利用異種移植斑馬魚測試cabozantinib於in vivo的藥效,結果顯示cabozantinib低毒性且具有清除MV4-11細胞的能力。 總體而言,我們發現cabozantinib對FLT3-ITD AML細胞具有選擇性毒殺效果,藉由充分抑制FLT3異常活化而抑制AML細胞生長並促進細胞凋亡。 | zh_TW |
dc.description.abstract | FLT3 internal tandem duplication (ITD) mutations are found in approximately 30% of acute myeloid leukemia (AML) patients and are associated with poor prognosis. FLT3-ITD is therefore a potential target for therapy. Cabozantinib (XL-184) is an oral multikinase inhibitor that targets MET, VEGFR2, RET, KIT, TIE-2, and FLT3, all of which have been implicated in tumor pathogenesis.
We found both of the FLT3-ITD cell lines, MV4-11 and MOLM-13, were extremely sensitive to cabozantinib with IC50 of less than 5 nM by MTS assay. In MV4-11 cells, low concentration of cabozantinib treatment resulted in decreased cell proliferation and potent inhibition of FLT3 phosphorylayion and downstream signaling. G0/G1 cell cycle arrest and induction of apoptosis in a dose-dependent manner were observed upon treatment with cabozantinib in MV4-11 and MOLM-13 cells by flow cytometry analysis. Cleavage of Caspase 3 and PARP-1 were also observed in cabozantinib treated MV4-11 cells by western blot analysis. Further investigations on apoptosis-related proteins revealed that cabozantinib induced apoptosis through down-regulation of anti-apoptotic proteins Survivin and Mcl-1 and up-regulation of pro-apoptotic protein Bak. We also determined the sensitivity of primary bone marrow mononuclear cells to cabozantinib ex vivo by MTS assay. A significant reduction of cell viability was observed in FLT3-ITD AML cells. Zebrafish has emerged as an alternative model organism for toxicity testing and drug screening in vivo. Exposure of xenograft zebrafish to cabozantinib demonstrated low toxicity and a considerable anti-leukemic activity. Taken together, these results show that cabozantinib potently inhibited the phosphorylation of FLT3 and selectively induced cell cycle arrest and apoptosis in FLT3-ITD AML. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:40:27Z (GMT). No. of bitstreams: 1 ntu-103-R01424022-1.pdf: 4905165 bytes, checksum: 763c4cd2929e458b84318fac42b4a5e8 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目錄
目錄 I 圖目錄 IV 表目錄 V 縮寫表 VI 摘要 VII Abstract VIII 第一章 前言 1 1.1 急性骨髓性白血病簡介 1 1.1.1 急性骨髓性白血病之分類 1 1.1.2 急性骨髓性白血病之治療 1 1.2 Cabozantinib (XL-184)簡介 2 1.3 FLT3-ITD (FMS-like tyrosine kinase 3-internal tandem duplication) 3 1.4 細胞凋亡 (Apoptosis) 4 1.5 斑馬魚 4 第二章 研究目的 6 第三章 材料與方法 7 3.1. 材料 7 3.1.1. 細胞 7 3.1.2. 斑馬魚 7 3.1.3. 儀器設備 7 3.1.4. 藥品 9 3.1.5. 抗體 10 3.1.6. 試劑組 11 3.1.7. 藥品與試劑配置 12 3.2. 方法 14 3.2.1. 細胞培養 14 3.2.2. 斑馬魚之飼養 14 3.2.3. 細胞抑殺試驗 (MTS assay) 14 3.2.4. 細胞生長曲線 14 3.2.5. 細胞萃取物製備 15 3.2.6. 蛋白質定量 15 3.2.7. 西方墨點法 (Western blot analysis) 15 3.2.8. 細胞週期分析 (Cell cycle analysis) 16 3.2.9. 細胞凋亡分析-Annexin V-PI 雙染法 16 3.2.10. RNA萃取 17 3.2.11. 反轉錄聚合酶連鎖反應 (RT-PCR) 18 3.2.12. 即時監控聚合酶連鎖反應 (Real-time PCR) 18 3.2.13. 單核細胞分離 19 3.2.14. 斑馬魚異種移植 19 3.2.15. 統計方法 20 第四章 實驗結果 21 4.1. Cabozantinib (XL-184)對AML細胞生長的抑制效果 21 4.2. Cabozantinib對FLT3及其訊息傳遞路徑下游分子之活化的抑制效果 22 4.3. Cabozantinib對FLT3-ITD AML細胞之細胞週期的影響 22 4.4. Cabozantinib引發FLT3-ITD AML細胞凋亡 23 4.5. Cabozantinib藥物的分子作用機制 23 4.6. Cabozantinib對AML病人初代細胞的影響 24 4.7. Cabozantinib對斑馬魚之毒性測試 25 4.8. Cabozantinib具有清除異種移植斑馬魚體內MV4-11細胞的能力 25 第五章 討論 26 第六章 參考文獻 30 圖 37 附圖 52 表 54 附表 55 | |
dc.language.iso | zh-TW | |
dc.title | Cabozantinib對FLT3-ITD之急性骨髓性白血病細胞具有選擇性毒殺效果 | zh_TW |
dc.title | Cabozantinib is selectively cytotoxic in acute myeloid leukemia cells with internal tandem duplication of FLT3 (FLT3-ITD) | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 胡忠怡,歐大諒,鄭安理,陳建源 | |
dc.subject.keyword | 急性骨髓性白血病,FLT3-ITD,Cabozantinib (XL-184),細胞凋亡,MV4-11, | zh_TW |
dc.subject.keyword | Acute myeloid leukemia,FLT3-ITD,Cabozantinib (XL-184),Apoptosis,MV4-11, | en |
dc.relation.page | 56 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 4.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。