Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56614
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭尊仁(Tsun-Jen Cheng)
dc.contributor.authorSzu-Yuan Liuen
dc.contributor.author劉思源zh_TW
dc.date.accessioned2021-06-16T05:37:54Z-
dc.date.available2017-10-20
dc.date.copyright2014-10-20
dc.date.issued2014
dc.date.submitted2014-08-12
dc.identifier.citation1. Agency, U.S.E.P., Air quality criteria for particulate matter. National Center for Environmental Assessment-RTP Office, 2004.
2. Turpin, B.J. and J.J. Huntzicker, Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment, 1995. 29(23): p. 3527-3544.
3. Bernstein, J.A., et al., Health effects of air pollution. J Allergy Clin Immunol, 2004. 114(5): p. 1116-23.
4. Kelly, F.J. and J.C. Fussell, Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 2012. 60: p. 504-526.
5. Brook, R.D., et al., Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 2010. 121(21): p. 2331-78.
6. Douglas W. Dockery, C.A.P., Xiping Xu, John D. Spengler, James H. Ware, Martha E., <An Association between Air Pollution and Mortality in Six U.S. Cities.pdf>. N Engl J Med December 9, 1993. 1993(329): p. 1753-1759.
7. C. Arden Pope III, P.R.T.B., PhD; Michael J. Thun, MD; Eugenia E. Calle, PhD; Daniel Krewski, PhD; Kazuhiko Ito, PhD; George D. Thurston, ScD <Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution.pdf>. JAMA, 2002. 287(9): p. 1132-1141.
8. Jeremy A. Sarnat, J.S., Fine Particulate Air Pollution and Mortality in 20 U.S. Cities. New England Journal of Medicine, 2001. 344(16): p. 1253-1254.
9. Samet, J.M., et al., Fine Particulate Air Pollution and Mortality in 20 U.S. Cities, 1987–1994. New England Journal of Medicine, 2000. 343(24): p. 1742-1749.
10. Dockery, D.W., Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ Health Perspect, 2001. 109 Suppl 4: p. 483-6.
11. Ling, S.H. and S.F. van Eeden, Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2009. 4: p. 233-43.
12. Gauderman, W.J., et al., The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med, 2004. 351(11): p. 1057-67.
13. Clark, N.A., et al., Effect of early life exposure to air pollution on development of childhood asthma. Environ Health Perspect, 2010. 118(2): p. 284-90.
14. Gehring, U., et al., Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life. Am J Respir Crit Care Med, 2010. 181(6): p. 596-603.
15. Sin, D.D., L. Wu, and S.F. Man, The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest, 2005. 127(6): p. 1952-9.
16. Andersen, Z.J., et al., Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: a cohort study. Am J Respir Crit Care Med, 2011. 183(4): p. 455-61.
17. Ostro, B.D., S. Hurley, and M.J. Lipsett, Air Pollution and Daily Mortality in the Coachella Valley, California: A Study of PM10 Dominated by Coarse Particles. Environmental Research, 1999. 81(3): p. 231-238.
18. Ostro, B.D., R. Broadwin, and M.J. Lipsett, Coarse and fine particles and daily mortality in the Coachella Valley, California: a follow-up study. Journal of exposure analysis and environmental epidemiology, 2000. 10(5): p. 412-419.
19. Brunekreef, B. and B. Forsberg, Epidemiological evidence of effects of coarse airborne particles on health. European Respiratory Journal, 2005. 26(2): p. 309-318.
20. Schwartz, J., D.W. Dockery, and L.M. Neas, Is Daily Mortality Associated Specifically with Fine Particles? Journal of the Air & Waste Management Association, 1996. 46(10): p. 927-939.
21. Dominici, F., et al., FIne particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA, 2006. 295(10): p. 1127-1134.
22. Seaton, A., et al., Particulate air pollution and acute health effects. The Lancet, 1995. 345(8943): p. 176-178.
23. Ibald-Mulli, A., et al., Epidemiological evidence on health effects of ultrafine particles. J Aerosol Med, 2002. 15(2): p. 189-201.
24. Wichmann, H.-E., et al., Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: role of particle number and particle mass. Research report (Health Effects Institute), 2000(98): p. 5-86; discussion 87-94.
25. Stolzel, M., et al., Daily mortality and particulate matter in different size classes in Erfurt, Germany. Journal of Exposure Science and Environmental Epidemiology, 2006. 17(5): p. 458-467.
26. Atkinson, R.W., et al., Urban ambient particle metrics and health: a time-series analysis. Epidemiology, 2010. 21(4): p. 501-511.
27. Burnett, R.T., et al., The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases. Environmental health perspectives, 1997. 105(6): p. 614.
28. Host, S., et al., Short-term associations between fine and coarse particles and hospital admissions for cardiorespiratory diseases in six French cities. Occupational and environmental medicine, 2008. 65(8): p. 544-551.
29. Brown, D.M., et al., Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol, 2001. 175(3): p. 191-9.
30. de Haar, C., et al., Ultrafine carbon black particles cause early airway inflammation and have adjuvant activity in a mouse allergic airway disease model. Toxicol Sci, 2005. 87(2): p. 409-18.
31. Monteiller, C., et al., The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occupational and Environmental Medicine, 2007. 64(9): p. 609-615.
32. Becker, S., et al., RESPONSE OF HUMAN ALVEOLAR MACROPHAGES TO ULTRAFINE, FINE, AND COARSE URBAN AIR POLLUTION PARTICLES. Experimental Lung Research, 2003. 29(1): p. 29-44.
33. Jalava, P.I., et al., Heterogeneities in Inflammatory and Cytotoxic Responses of RAW 264.7 Macrophage Cell Line to Urban Air Coarse, Fine, and Ultrafine Particles From Six European Sampling Campaigns. Inhalation Toxicology, 2007. 19(3): p. 213-225.
34. Jalava, P.I., et al., Associations of urban air particulate composition with inflammatory and cytotoxic responses in RAW 246.7 cell line. Inhal Toxicol, 2009. 21(12): p. 994-1006.
35. Gilmour, M.I., et al., Comparative toxicity of size-fractionated airborne particulate matter obtained from different cities in the United States. Inhal Toxicol, 2007. 19 Suppl 1: p. 7-16.
36. Happo, M.S., et al., Seasonal variation in chemical composition of size-segregated urban air particles and the inflammatory activity in the mouse lung. Inhal Toxicol, 2010. 22(1): p. 17-32.
37. Harrison, R.M. and J. Yin, Particulate matter in the atmosphere: which particle properties are important for its effects on health? Science of The Total Environment, 2000. 249(1–3): p. 85-101.
38. Li, N., et al., Particulate air pollutants and asthma: A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clinical Immunology, 2003. 109(3): p. 250-265.
39. Dick, C.A., et al., Murine pulmonary inflammatory responses following instillation of size-fractionated ambient particulate matter. J Toxicol Environ Health A, 2003. 66(23): p. 2193-2207.
40. Becker, S., et al., Seasonal Variations in Air Pollution Particle-Induced Inflammatory Mediator Release and Oxidative Stress. Environmental Health Perspectives, 2005. 113(8): p. 1032-1038.
41. Maynard, A.D., D.B. Warheit, and M.A. Philbert, The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci, 2011. 120 Suppl 1: p. S109-29.
42. Schulz, H., et al., Cardiovascular effects of fine and ultrafine particles. Journal of aerosol medicine, 2005. 18(1): p. 1-22.
43. Araujo, J.A., et al., Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res, 2008. 102(5): p. 589-96.
44. Delfino, R.J., C. Sioutas, and S. Malik, Potential Role of Ultrafine Particles in Associations between Airborne Particle Mass and Cardiovascular Health. Environmental Health Perspectives, 2005. 113(8): p. 934-946.
45. Gong, H., et al., Exposures of Healthy and Asthmatic Volunteers to Concentrated Ambient Ultrafine Particles in Los Angeles. Inhalation Toxicology, 2008. 20(6): p. 533-545.
46. Samet, J.M., et al., A comparison of studies on the effects of controlled exposure to fine, coarse and ultrafine ambient particulate matter from a single location. Inhal Toxicol, 2007. 19 Suppl 1: p. 29-32.
47. Frampton, M.W., Does inhalation of ultrafine particles cause pulmonary vascular effects in humans? Inhal Toxicol, 2007. 19 Suppl 1: p. 75-9.
48. Grassian, V.H., et al., Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect, 2007. 115(3): p. 397-402.
49. Kaur, G., et al., Advances in pulmonary delivery of nanoparticles. Artif Cells Blood Substit Immobil Biotechnol, 2012. 40(1-2): p. 75-96.
50. Bourdon, J.A., et al., Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver. Part Fibre Toxicol, 2012. 9: p. 5.
51. Inoue, K., et al., Effects of nano particles on cytokine expression in murine lung in the absence or presence of allergen. Arch Toxicol, 2006. 80(9): p. 614-9.
52. Jonasson, S., et al., Inhalation exposure of nano-scaled titanium dioxide (TiO2) particles alters the inflammatory responses in asthmatic mice. Inhal Toxicol, 2013. 25(4): p. 179-91.
53. Rossi, E.M., et al., Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Part Fibre Toxicol, 2010. 7: p. 35.
54. Wang, X., et al., Modulation of lung inflammation by vessel dilator in a mouse model of allergic asthma. Respir Res, 2009. 10: p. 66.
55. Holgate, S.T. and R. Polosa, Treatment strategies for allergy and asthma. Nat Rev Immunol, 2008. 8(3): p. 218-30.
56. Simpson, J.L., C. Brooks, and J. Douwes, Innate immunity in asthma. Paediatr Respir Rev, 2008. 9(4): p. 263-70.
57. Taher, Y.A., P.A. Henricks, and A.J. van Oosterhout, Allergen-specific subcutaneous immunotherapy in allergic asthma: immunologic mechanisms and improvement. Libyan J Med, 2010. 5.
58. Meggs, W.J., et al., Prevalence and nature of allergy and chemical sensitivity in a general population. Arch Environ Health, 1996. 51(4): p. 275-82.
59. Bateman, E.D., et al., Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J, 2008. 31(1): p. 143-78.
60. Brauer, M., et al., Air pollution and development of asthma, allergy and infections in a birth cohort. Eur Respir J, 2007. 29(5): p. 879-88.
61. Brauer, M., et al., Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am J Respir Crit Care Med, 2002. 166(8): p. 1092-8.
62. Kim, K.H., S.A. Jahan, and E. Kabir, A review on human health perspective of air pollution with respect to allergies and asthma. Environ Int, 2013. 59C: p. 41-52.
63. Luttinger, D. and L. Wilson, A study of air pollutants and acute asthma exacerbations in urban areas: status report. Environmental Pollution, 2003. 123(3): p. 399-402.
64. Lin, R.S., et al., Role of urbanization and air pollution in adolescent asthma: a mass screening in Taiwan. J Formos Med Assoc, 2001. 100(10): p. 649-55.
65. Yang, S.-S.T.C.-C.C.C.-Y., Air Pollution and Postneonatal Mortality in a Tropical City: Kaohsiung, Taiwan. Inhalation Toxicology, 2006. 18(3): p. 185-189.
66. Gavett, S.H., et al., Metal Composition of Ambient PM2.5 Influences Severity of Allergic Airways Disease in Mice. Environmental Health Perspectives, 2003. 111(12): p. 1471-1477.
67. Li, N., et al., Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010. 299(3): p. L374-L383.
68. Maes, T., et al., Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation. Respir Res, 2010. 11: p. 7.
69. Selgrade, M.K., et al., Animal Models to Assess the Effects of Air Pollutants on Allergic Lung Disease. Annals of the New York Academy of Sciences, 2000. 919(1): p. 230-238.
70. Alessandrini, F., et al., Effects of ultrafine carbon particle inhalation on allergic inflammation of the lung. J Allergy Clin Immunol, 2006. 117(4): p. 824-30.
71. Zhao, C., et al., Involvement of TLR2 and TLR4 and Th1/Th2 shift in inflammatory responses induced by fine ambient particulate matter in mice. Inhal Toxicol, 2012. 24(13): p. 918-27.
72. Bezemer, G.F., et al., Activation of pulmonary dendritic cells and Th2-type inflammatory responses on instillation of engineered, environmental diesel emission source or ambient air pollutant particles in vivo. J Innate Immun, 2011. 3(2): p. 150-66.
73. Happo, M.S., et al., Dose and time dependency of inflammatory responses in the mouse lung to urban air coarse, fine, and ultrafine particles from six European cities. Inhal Toxicol, 2007. 19(3): p. 227-46.
74. Jiang, J., G. Oberdorster, and P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 2009. 11(1): p. 77-89.
75. Pichavant, M., et al., Animal Models of Airway Sensitization, in Current Protocols in Immunology. 2001, John Wiley & Sons, Inc.
76. Wegesser, T.C. and J.A. Last, Lung response to coarse PM: bioassay in mice. Toxicol Appl Pharmacol, 2008. 230(2): p. 159-66.
77. Zhang, Q., et al., Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes. Journal of Geophysical Research: Atmospheres, 2005. 110(D7): p. D07S09.
78. 李崇德, 王., 台灣地區大氣氣膠特性之研究-高雄、台北都會區氣膠特性與污染來源推估. 碩士論文,國立中央大學, 2000.
79. 吳義林, 俞., 大氣中懸浮微粒二次氣膠含量與生成速率之推估. 碩士論文,國立成功大學, 2003.
80. Turpin, B.J. and J.J. Huntzicker, Secondary formation of organic aerosol in the Los Angeles basin: A descriptive analysis of organic and elemental carbon concentrations. Atmospheric Environment. Part A. General Topics, 1991. 25(2): p. 207-215.
81. Turpin, B.J., et al., Los Angeles summer midday particulate carbon: primary and secondary aerosol. Environmental Science & Technology, 1991. 25(10): p. 1788-1793.
82. Hughes, L.S., et al., Physical and Chemical Characterization of Atmospheric Ultrafine Particles in the Los Angeles Area. Environmental Science & Technology, 1998. 32(9): p. 1153-1161.
83. 趙馨, 王., 台北地區大氣中內毒素與真菌過敏原之特性與決定因子. 碩士論文,台北醫學大學, 2007.
84. Samuelsen, M., U.C. Nygaard, and M. Lovik, Particle size determines activation of the innate immune system in the lung. Scand J Immunol, 2009. 69(5): p. 421-8.
85. Schwarze, P.E., et al., Importance of size and composition of particles for effects on cells in vitro. Inhal Toxicol, 2007. 19 Suppl 1: p. 17-22.
86. Guerra, R., et al., Exposure to inhaled particulate matter activates early markers of oxidative stress, inflammation and unfolded protein response in rat striatum. Toxicol Lett, 2013. 222(2): p. 146-54.
87. Barnett, A.G., et al., Air pollution and child respiratory health: a case-crossover study in Australia and New Zealand. Am J Respir Crit Care Med, 2005. 171(11): p. 1272-8.
88. Araujo, J.A. and A.E. Nel, Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Part Fibre Toxicol, 2009. 6: p. 24.
89. Floyd, H.S., et al., Fine ambient air particulate matter exposure induces molecular alterations associated with vascular disease progression within plaques of atherosclerotic susceptible mice. Inhal Toxicol, 2009. 21(5): p. 394-403.
90. Miyata, R. and S.F. van Eeden, The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol Appl Pharmacol, 2011. 257(2): p. 209-26.
91. Williams, M.A., et al., Ambient particulate matter directs nonclassic dendritic cell activation and a mixed TH1/TH2-like cytokine response by naive CD4+ T cells. J Allergy Clin Immunol, 2007. 119(2): p. 488-97.
92. Schroder, K., et al., Interferon-γ: an overview of signals, mechanisms and functions. Journal of Leukocyte Biology, 2004. 75(2): p. 163-189.
93. Orihara, K., et al., What’s new in asthma pathophysiology and immunopathology? Expert Review of Respiratory Medicine, 2010. 4(5): p. 605-629.
94. Holgate, S.T., Innate and adaptive immune responses in asthma. Nat Med, 2012. 18(5): p. 673-83.
95. Barnes, P.J. and A. Bush, Biology and Assessment of Airway Inflammation. 2012: p. 75-88.
96. Wang, Y.-H. and Y.-J. Liu, The IL-17 cytokine family and their role in allergic inflammation. Current Opinion in Immunology, 2008. 20(6): p. 697-702.
97. Brandt, E.B., et al., Diesel exhaust particle induction of IL-17A contributes to severe asthma. J Allergy Clin Immunol, 2013. 132(5): p. 1194-1204 e2.
98. CHO, et al., Comparative Toxicity of Size-Fractionated Airborne Particulate Matter Collected at Different Distances from an Urban Highway. Vol. 117. 2009, Research Triangle Park, NC, ETATS-UNIS: US Department of Health and Human Services.
99. Jalava, P., et al., Effects of Sample Preparation on Chemistry, Cytotoxicity, and Inflammatory Responses Induced by Air Particulate Matter. Inhalation Toxicology, 2005. 17(2): p. 107-117.
100. Soukup, J.M. and S. Becker, Human Alveolar Macrophage Responses to Air Pollution Particulates Are Associated with Insoluble Components of Coarse Material, Including Particulate Endotoxin. Toxicology and Applied Pharmacology, 2001. 171(1): p. 20-26.
101. Happo, M.S., et al., Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe. Inhal Toxicol, 2008. 20(14): p. 1215-31.
102. Creutzenberg, O., et al., Change in agglomeration status and toxicokinetic fate of various nanoparticles in vivo following lung exposure in rats. Inhal Toxicol, 2012. 24(12): p. 821-30.
103. Kendall, M. and S. Holgate, Health impact and toxicological effects of nanomaterials in the lung. Respirology, 2012. 17(5): p. 743-58.
104. Black, C., Particle fractionation and particle-size analysis. 1965, American Society of Agronomy Madison. p. 550-551.
105. Oberdorster, G., et al., Association of Particulate Air Pollution and Acute Mortality: Involvement of Ultrafine Particles? Inhalation Toxicology, 1995. 7(1): p. 111-124.
106. Oberdorster, G., Pulmonary effects of inhaled ultrafine particles. International Archives of Occupational and Environmental Health, 2000. 74(1): p. 1-8.
107. Shimada, A., et al., Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicol Pathol, 2006. 34(7): p. 949-57.
108. Peters, A., et al., Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol, 2006. 3: p. 13.
109. Kreyling, W.G., et al., TRANSLOCATION OF ULTRAFINE INSOLUBLE IRIDIUM PARTICLES FROM LUNG EPITHELIUM TO EXTRAPULMONARY ORGANS IS SIZE DEPENDENT BUT VERY LOW. Journal of Toxicology and Environmental Health, Part A, 2002. 65(20): p. 1513-1530.
110. Tong, H., et al., Differential cardiopulmonary effects of size-fractionated ambient particulate matter in mice. Cardiovasc Toxicol, 2010. 10(4): p. 259-67.
111. 李崇德, 黃., 台灣地區大氣氣膠特性之研究-台北高雄地區單顆粒氣膠與混合相氣膠污染來源推估. 碩士論文,國立中央大學, 2001.
112. Alessandrini, F., et al., Role of oxidative stress in ultrafine particle-induced exacerbation of allergic lung inflammation. Am J Respir Crit Care Med, 2009. 179(11): p. 984-91.
113. Alessandrini, F., et al., Effects of ultrafine particles-induced oxidative stress on Clara cells in allergic lung inflammation. Part Fibre Toxicol, 2010. 7: p. 11.
114. Saunders, V., et al., Particulate matter-induced airway hyperresponsiveness is lymphocyte dependent. Environ Health Perspect, 2010. 118(5): p. 640-6.
115. Walters, D.M., P.N. Breysse, and M. Wills-Karp, Ambient Urban Baltimore Particulate-induced Airway Hyperresponsiveness and Inflammation in Mice. American Journal of Respiratory and Critical Care Medicine, 2001. 164(8): p. 1438-1443.
116. Makela, M.J., et al., IL-10 is necessary for the expression of airway hyperresponsiveness but not pulmonary inflammation after allergic sensitization. Proc Natl Acad Sci U S A, 2000. 97(11): p. 6007-12.
117. Zhu, Z., et al., Immunomodulating effects of endotoxin in mouse models of allergic asthma. Clin Exp Allergy, 2010. 40(4): p. 536-46.
118. Delayre-Orthez, C., et al., Exposure to Endotoxins during Sensitization Prevents Further Endotoxin-Induced Exacerbation of Airway Inflammation in a Mouse Model of Allergic Asthma. International Archives of Allergy and Immunology, 2005. 138(4): p. 298-304.
119. Murakami, D., et al., Lipopolysaccharide inhalation exacerbates allergic airway inflammation by activating mast cells and promoting Th2 responses. Clin Exp Allergy, 2007. 37(3): p. 339-47.
120. Kuipers, H., et al., Lipopolysaccharide-Induced Suppression of Airway Th2 Responses Does Not Require IL-12 Production by Dendritic Cells. The Journal of Immunology, 2003. 171(7): p. 3645-3654.
121. Lei, Y.C., et al., Effects of concentrated ambient particles on airway responsiveness and pulmonary inflammation in pulmonary hypertensive rats. Inhal Toxicol, 2004. 16(11-12): p. 785-92.
122. Mantecca, P., et al., Comparative acute lung inflammation induced by atmospheric PM and size-fractionated tire particles. Toxicol Lett, 2010. 198(2): p. 244-54.
123. Wegesser, T.C., K.E. Pinkerton, and J.A. Last, California wildfires of 2008 coarse and fine particulate matter toxicity. Environ Health Perspect, 2009. 117(6): p. 893-7.
124. Happo, M.S., et al., Inflammation and tissue damage in mouse lung by single and repeated dosing of urban air coarse and fine particles collected from six European cities. Inhal Toxicol, 2010. 22(5): p. 402-16.
125. Kim, J., et al., Diesel exhaust particulates exacerbate asthma-like inflammation by increasing CXC chemokines. Am J Pathol, 2011. 179(6): p. 2730-9.
126. McDonald, J.D., et al., Engine-operating load influences diesel exhaust composition and cardiopulmonary and immune responses. Environ Health Perspect, 2011. 119(8): p. 1136-41.
127. Alberg, T., et al., Fine ambient particles from various sites in europe exerted a greater IgE adjuvant effect than coarse ambient particles in a mouse model. J Toxicol Environ Health A, 2009. 72(1): p. 1-13.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56614-
dc.description.abstract近年來空氣汙染造成的健康效應備受矚目。大氣懸浮微粒是空氣汙染中主要的汙染物,也被視為造成健康危害的元凶之一。過去大氣懸浮微粒健康效應之研究已有大量文獻,然而目前的研究對於細小粒徑之微粒(PM1、PM0.1)仍有待探討,尤其目前對於不同粒徑微粒之呼吸毒性及微粒造成過敏性免疫反應的相關研究仍有所缺乏,故本研究比較不同粒徑間以及微粒上成份造成之毒性進行探討。
本研究將蒐集於濾紙上之大氣懸浮微粒配製成懸浮溶液,以氣管灌注暴露方式,使健康小鼠暴露於大氣懸浮微粒,實驗分成五大組,分別為控制組、暴露超細懸浮微粒、暴露次微米懸浮微粒、暴露細懸浮微粒、暴露粗懸浮微粒並且依粒徑之不同分別暴露三種不同劑量之大氣懸浮微粒(1.75 mg/kg、5 mg/kg、12.5 mg/kg)。本研究於第二次暴露後進行連續二十四小時尿液採集,並且於四十八小時後進行呼吸道阻力測試,於七十二小時後進行動物犧牲。犧牲時進行血液樣本與肺泡灌洗液採集,並進行細胞計數、生化指標之分析。
本研究所採集之微粒特性,在粒徑較大者(PM1、PM2.5及PM10)其組成成分以硫酸根離子為主其餘為銨根離子與無機金屬離子。在最小微粒者(PM0.1)以有機碳與元素碳為主。於肺部發炎反應部分,微粒暴露後會造成肺泡灌洗液中嗜中性球、淋巴球之數量上升以及肺部發炎指標包含Th1 細胞相關激素TNF-α, IFN-γ及IL-6與總蛋白質含量及Th17之細胞激素IL-17A 之上升,過敏性免疫反應部份,指標包含嗜酸白血球,第二型輔助T細胞相關激素IL-5, IL-10及IL-13具有明顯上升,以整體趨勢而言皆以大粒徑之粗懸浮微粒(PM10)反應最為顯著。以成分而言,細菌內毒素以及海鹽相關離子Na+、Mg2+、Ca2+、Cl-與發炎反應、過敏性免疫反應具有高度相關性。
本研究提供不同粒徑微粒與微粒成分在呼吸毒理上的相關探討,並且對於未來在超細粒徑懸浮微粒毒理議題上提供相關資料。但毒性相關的微粒成份及微粒來源仍須後續深入研究。
zh_TW
dc.description.abstractEvidence suggests that particulate matter (PM) is associated with cardiopulmonary effect and exacerbation of asthma. However, it is unclear whether repeated exposure to PM would cause inflammatory and immunological effects.
The aim of this study is to evaluate the effects of size-fractioned PM on lung inflammation and immune responses in healthy BALB/c mice.
We collected PM10, PM2.5, PM1 and PM0.1 from October 2012 to August 2013 at Gongguan, Taipei. These particles represented urban traffic pollution. Samples were extracted and sonicated with phosphate-buffered saline (PBS). Female BALB/c mice exposed to PM10, PM2.5, PM1, PM0.1 and PBS via intratracheal instillation with three doses of 1.75 mg/kg (35μg/per mice), 5mg/kg (100 μg/per mice), 12.5mg/kg (250 μg/per mice). After exposures, cellular profile of plasma and expression of inflammation biomarkers, immune cytokines in bronchoalveolar lavage fluid (BALF), and pulmonary responses were assessed.
PM increased inflammatory responses including neutrophils, T helper 1 cell related cytokines, TNF-α, IFN-γ. Allergic immune responses including eosinophils, T helper 2 cell related cytokines, IL-5, IL-10, IL-13, IL-17A were also increased in BALF. These inflammatory and allergic immune markers were greater in PM10 high dose group.We also found that endotoxin, Na+, Mg2+, Ca2+ and Cl- were correlated with pulmonary inflammation and immune response.
Our results indicated that exposure to particulate matter would cause allergy-like immune responses in healthy mice. However the components of PM suspension for these immune responses needs further study.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:37:54Z (GMT). No. of bitstreams: 1
ntu-103-R01841015-1.pdf: 6806815 bytes, checksum: 5323d7157142b6525804b8dcaa43a26b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
誌謝 i
目錄 ii
表目錄 iv
圖目錄 v
中文摘要 1
ABSTRACT 2
第一章 前言與研究目的 3
第二章 背景介紹與文獻回顧 4
2.1 大氣懸浮微粒 4
2.2 微粒健康效應與流行病學研究 5
2.3 微粒粒徑毒性與成份毒性 6
2.4 超細粒徑大氣懸浮微粒毒性 8
2.5 過敏免疫反應與第二型輔助T細胞 9
2.6 過敏性呼吸道疾病 10
第三章 材料與方法 12
3.1 研究架構 12
3.2 研究流程 12
3.3 研究設計 13
3.4 實驗動物 13
3.5 微粒採集與成份特性分析 13
3.6 大氣微粒懸浮溶液製備 14
3.7 氣管灌注暴露 15
3.8 血液及肺泡灌洗液採集 15
3.9 肺部傷害與發炎指標 16
3.10 免疫反應評估 16
3.11 氣道過度反應測試 16
3.12 細菌內毒素測定 17
3.13 統計分析 17
第四章 結果.. 18
4.1 微粒特性與成分分析 18
4.2 氣道過度反應 19
4.3 肺部傷害與發炎指標 19
4.4 過敏免疫反應指標 20
4.5 微粒成份與發炎免疫指標相關性 20
4.6 內毒素測定 21
第五章 討論.. 22
5.1 微粒特性與成分分析 22
5.2 大氣懸浮微粒之肺部發炎損傷 23
5.2.1 粒徑成份對於肺部發炎損傷探討 24
5.3 大氣懸浮微粒與過敏性免疫反應 26
5.3.1 粒徑與成分對於過敏性免疫反應探討 28
5.3.2 過敏性免疫反應與呼吸道阻抗 29
第六章 結論與建議 30
參考文獻…… 31
表目錄
表 1大氣懸浮微粒肺部毒性動物研究 39
表 2大氣懸浮微粒與過敏性動物之毒性研究 40
表 3不同大氣懸浮微粒粒徑研究比較 41
表 4大氣懸浮微粒特性與化學成份 42
表 5大氣懸浮微粒暴露後之氣道過度反應測試結果 43
表 6呼吸道阻力Penh值相對增加倍數 44
表 7肺泡灌洗液中總細胞數、血球分類計數 45
表 8肺泡灌洗液中發炎相關細胞激素濃度 46
表 9血清中免疫球蛋白濃度與肺泡灌洗液中過敏性免疫相關細胞激素濃度 47
表 10發炎指標微粒成份相關性分析 48
表 11過敏性免疫指標微粒成份相關性分析 49
表 12微粒成份相關性分析 50
表 13等劑量濃度下內毒素活性濃度與各成份質量 51


圖目錄
圖 1秋季大氣懸浮微粒化學組成比例 52
圖 2綜合三季大氣懸浮微粒化學組成比例 53
圖 3 PM10與PM2.5 SEM結果 54
圖 4 PM1與PM0.1 SEM結果 55
圖 5 PM10、PM2.5與PM1 EDX成份分析結果 56
圖 6 PM0.1之呼吸道阻力Penh值相對增加比例 57
圖 7 PM1之呼吸道阻力Penh值相對增加比例 57
圖 8 PM2.5之呼吸道阻力Penh值相對增加比例 58
圖 9 PM10之呼吸道阻力Penh值相對增加比例 58
圖 10低劑量組之呼吸道阻力Penh值相對增加比例 59
圖 11中劑量組之呼吸道阻力Penh值相對增加比例 59
圖 12高劑量組之呼吸道阻力Penh值相對增加比例 60
圖 13嗜中性球於肺泡灌洗液中比率 61
圖 14嗜酸性球於肺泡灌洗液中比率 61
圖 15巨噬細胞於肺泡灌洗液中比率 62
圖 16淋巴球於肺泡灌洗液中比率 62
圖 17免疫球蛋白於血清中之濃度 63
圖 18 IL-6於血清中之濃度 63
圖 19 IFN-γ於肺泡灌洗液中之濃度 64
圖 20 TNF-α於肺泡灌洗液中之濃度 64
圖 21 IL-4於肺泡灌洗液中之濃度 65
圖 22 IL-5於肺泡灌洗液中之濃度 65
圖 23 IL-6於肺泡灌洗液中之濃度 66
圖 24 IL-10於肺泡灌洗液中之濃度 66
圖 25 IL-13於肺泡灌洗液中之濃度 67
圖 26 IL-17A於肺泡灌洗液中之濃度 67
圖 27懸浮溶液中內毒素活性濃度 68
dc.language.isozh-TW
dc.subject空氣汙染zh_TW
dc.subject大氣懸浮微粒zh_TW
dc.subject肺部發炎zh_TW
dc.subject過敏性免疫反應zh_TW
dc.subjectParticulate matteren
dc.subjectLung inflammationen
dc.subjectT helper 2 type immune responseen
dc.title大氣懸浮微粒粒徑對小鼠之呼吸毒理研究zh_TW
dc.titleInhalation Toxicity of Size-Segregated Ambient Particulate Matter in BALB/c Miceen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳焜裕(Kuen-Yuh Wu),周崇光(Charles C.-K. Chou),李珍珍(Chen-Chen Lee)
dc.subject.keyword空氣汙染,大氣懸浮微粒,肺部發炎,過敏性免疫反應,zh_TW
dc.subject.keywordParticulate matter,Lung inflammation,T helper 2 type immune response,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2014-08-12
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
6.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved