請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56606完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝宗霖 | |
| dc.contributor.author | Ching-Yu Chang | en |
| dc.contributor.author | 張競予 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:37:26Z | - |
| dc.date.available | 2017-09-04 | |
| dc.date.copyright | 2014-09-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-12 | |
| dc.identifier.citation | 1. 柯揚船.皮特斯壯, “聚合物:無機奈米複合材料” 五南: 臺北市, (2004)
2. H. O. Pierson, “Handbook of Carbon, Graphite, Diamonds and Fullerenes,” William Andrew, (1994). 3. D. D. L. Chung, “Review Graphite,” Journal of Materials Science,” 37 [8] 1475-89 (2002). 4. M. C. Sousa and J. W. Buchanan, “Observational Models of Graphite Pencil Materials,” Computer Graphics Forum, 19 [1] 27-49 (2000). 5. X. Chen and S. S. Mao, “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications,” Chemical Reviews, 107 [7] 2891-959 (2007). 6. A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surface Science Reports, 63 [12] 515-82 (2008). 7. S.-D. Mo and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Physical Review B, 51 [19] 13023-32 (1995). 8. D.H. Hanaor, C. Sorrell, “Review of the anatase to rutile phase transformation,” Journal of Materials Science, 46 [4] 855-874 (2011). 9. J.L. Murray, H.A. Wriedt, “The O−Ti (Oxygen-Titanium) system,” Journal of Phase Equilibria, 8 [2] 148-165 (1987). 10. G. Eriksson and A. Pelton, “Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MnO-TiO2, MgO-TiO2, FeO-TiO2, Ti2O3-TiO2, Na2O-TiO2, and K2O-TiO2 systems,” Metallurgical Transactions B, 24 [5], 795-805 (1993). 11. L.A. Bursill, B.G. Hyde, “Crystallographic shear in the higher titanium oxides: Structure, texture, mechanisms and thermodynamics,” Progress in Solid State Chemistry, 7 [0] 177-253 (1972). 12. S. Harada, K. Tanaka, H. Inui, “Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magneli phases,” Journal Applied Physics 108 [8] 083703 (2010). 13. J. L. Faria and W. Wang, “Carbon Materials in Photocatalysis,” pp. 481-506. in Carbon Materials for Catalysis. John Wiley & Sons, Inc., 2008. 14. R. Leary and A. Westwood, “Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis,” Carbon, 49 [3] 741-72 (2011). 15. L. W. Zhang, H.B. Fu, and Y.F. Zhu, “Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-like Carbon,” Advanced Functional Materials, 18 [15] 2180-89 (2008). 16. T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, M. Toyoda, and M. Inagaki, “Carbon coating of anatase-type TiO2 and photoactivity,” Journal of Materials Chemistry, 12 [5] 1391-96 (2002). 17. Z. Ren, Y. Lan, and Y. Wang, “Aligned Carbon Nanotubes.” Springer, (2013). 18. B. Kwiecińska and H. I. Petersen, “Graphite, semi-graphite, natural coke, and natural char classification—ICCP system,” International Journal of Coal Geology, 57 [2] 99-116 (2004). 19. M. Wissler, “Graphite and carbon powders for electrochemical applications,” Journal of Power Sources, 156 [2] 142-50 (2006). 20. W. Weltner and R. J. Van Zee, “Carbon molecules, ions, and clusters,” Chemical Reviews, 89 [8] 1713-47 (1989). 21. 韋進全, 張先鋒, 王昆林, “奈米碳管巨觀體:物理化學特性與應用: Macroscope of carbon nanotube.” 五南: 臺北市, (2009). 22. J. R. Stetter and G. J. Maclay, “Carbon Nanotubes and Sensors: a Review,” pp. 357-82. in Enabling Technology for MEMS and Nanodevices. Wiley-VCH Verlag GmbH, 2008. 23. A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chemical Reviews, 95 [3] 735-58 (1995). 24. A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 238 37-38 (1972). 25. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, “Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films,” Science Reports, 4 (2014). 26. G. Li, L. Chen, M. E. Graham, and K. A. Gray, “A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: The importance of the solid–solid interface,” Journal of Molecular Catalysis A: Chemical, 275 [1–2] 30-35 (2007). 27. D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, and M. C. Thurnauer, “Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR,” The Journal of Physical Chemistry B, 107 [19] 4545-49 (2003). 28. R. D. Shannon and J. A. Pask, “Kinetics of the Anatase–Rutile Transformation,” Journal of the American Ceramic Society, 48 [8] 391-398 (1965). 29. A. W. Czanderna, C. N. R. Rao, and J. M. Honig, “The anatase-rutile transition. Part 1.-Kinetics of the transformation of pure anatase,” Transactions of the Faraday Society, 54 [0] 1069-73 (1958). 30. A. Navrotsky and O. J. Kleppa, “Enthalpy of the Anatase-Rutile Transformation,” Journal of the American Ceramic Society, 50 [11] 626-26 (1967). 31. T. Mitsuhashi and O. J. Kleppa, “Transformation Enthalpies of the TiO2 Polymorphs,” Journal of the American Ceramic Society, 62 [7-8] 356-57 (1979). 32. H. Zhang and J. F. Banfield, “Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation,” Journal of Materials Research, 15 [02] 437-48 (2000). 33. H. Zhang and J. F. Banfield, “Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2,” The Journal of Physical Chemistry B, 104 [15] 3481-87 (2000). 34. M. R. Ranade et al., “Energetics of nanocrystalline TiO2,” Proceedings of the National Academy of Sciences, 99 6476-81 (2002). 35. R. L. Penn and J. F. Banfield, “Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation mechanism in nanocrystalline titania,” American Mineralogist, 84 [5-6] 871-76 (1999). 36. H. Zhang and J. F. Banfield, “Thermodynamic analysis of phase stability of nanocrystalline titania,” Journal of Materials Chemistry, 8 [9] 2073-76 (1998). 37. A. A. Gribb and J. F. Banfield, “Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2,” American Mineralogist, 82 [7] 717-28 (1997). 38. N. Serpone, “Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts?,” The Journal of Physical Chemistry B, 110 [48] 24287-93 (2006). 39. K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, and G. Madras, “Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity,” Langmuir, 20 [7] 2900-07 (2004). 40. Z. Zhang, C.C. Wang, R. Zakaria, and J. Y. Ying, “Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts,” The Journal of Physical Chemistry B, 102 [52] 10871-78 (1998). 41. Y. Iida and S. Ozaki, “Grain Growth and Phase Transformation of Titanium Oxide During Calcination,” Journal of the American Ceramic Society, 44 [3] 120-27 (1961). 42. R. van de Krol and M. Gratzel, “Photoelectrochemical hydrogen production,” Vol. 102. Springer, (2011). 43. M. K. Nowotny, L. R. Sheppard, T. Bak, and J. Nowotny, “Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts,” The Journal of Physical Chemistry C, 112 [14] 5275-300 (2008). 44. J. Nowotny, T. Bak, M. K. Nowotny, and L. R. Sheppard, “Titanium dioxide for solar-hydrogen II. Defect chemistry,” International Journal of Hydrogen Energy, 32 [14] 2630-43 (2007). 45. M. D. Earle, “The Electrical Conductivity of Titanium Dioxide,” Physical Review, 61 [1-2] 56-62 (1942). 46. D. C. Cronemeyer, “Infrared Absorption of Reduced Rutile TiO2 Single Crystals,” Physical Review, 113 [5] 1222-26 (1959). 47. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” Journal of Molecular Catalysis A: Chemical, 161 [1–2] 205-12 (2000). 48. A. B. Murphy, “Does carbon doping of TiO2 allow water splitting in visible light? Comments on Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting,” Solar Energy Materials and Solar Cells, 92 [3] 363-67 (2008). 49. S. Takeda, S. Suzuki, H. Odaka, and H. Hosono, “Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering,” Thin Solid Films, 392 [2] 338-44 (2001). 50. U. Diebold, “The surface science of titanium dioxide,” Surface Science Reports, 48 [5–8] 53-229 (2003). 51. F. M. Hossain, G. E. Murch, L. Sheppard, and J. Nowotny, “Ab initio electronic structure calculation of oxygen vacancies in rutile titanium dioxide,” Solid State Ionics, 178 [5–6] 319-25 (2007). 52. G. Mattioli, F. Filippone, P. Alippi, and A. Amore Bonapasta, “Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase TiO2,” Physical Review B, 78 [24] 241201 (2008). 53. M. Ramamoorthy, R. D. King-Smith, and D. Vanderbilt, “Defects on TiO2 (110) surfaces,” Physical Review B, 49 [11] 7709-15 (1994). 54. S. Fischer, A. W. Munz, K.-D. Schierbaum, and W. Gopel, “The geometric structure of intrinsic defects at TiO2(110) surfaces: an STM study,” Surface Science, 337 [1–2] 17-30 (1995). 55. R. A. Bennett, S. Poulston, P. Stone, and M. Bowker, “STM and LEED observations of the surface structure of TiO2 following crystallographic shear plane formation,” Physical Review B, 59 [15] 10341-46 (1999). 56. H. Onishi, K.-i. Fukui, and Y. Iwasawa, “Atomic-Scale Surface Structures of TiO2 (110) Determined by Scanning Tunneling Microscopy: A New Surface-Limited Phase of Titanium Oxide,” Bulletin of the Chemical Society of Japan, 68 [9] 2447-58 (1995). 57. C. L. Pang et al., “Added row model of TiO2,” Physical Review B, 58 [3] 1586-89 (1998). 58. L. A. Bursill, B. G. Hyde, O. Terasaki, and D. Watanabe, “On a new family of titanium oxides and the nature of slightly-reduced rutile,” Philosophical Magazine, 20 [164] 347-59 (1969). 59. L. A. Bursill and B. G. Hyde, “On the aggregation of wadsley defects in slightly reduced rutile,” Philosophical Magazine, 23 [181] 3-15 (1971). 60. K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, and R. Waser, “TiO2—a prototypical memristive material,” Nanotechnology, 22 [25] 254001 (2011). 61. R. James and C. Catlow, “The Energetics of Shear Plane Formation in Reduced TiO2,” Le Journal de Physique Colloques, 38 [C7] C7-32-C7-35 (1977). 62. L. Bursill, “Crystallographic shear in molybdenum trioxide,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 311 267-90 (1969). 63. A. Gusev, E. Avvakumov, and O. Vinokurova, “Synthesis of Ti4O7 magneli phase using mechanical activation,” Science of Sintering, 35 [3] 141-45 (2003). 64. L. A. Bursill and B. G. Hyde, “Crystal structures in the {132} CS family of higher titanium oxides TinO2n-1,” Acta Crystallographica Section B, 27 [1] 210-15 (1971). 65. J. S. Anderson and R. J. D. Tilley, “Crystallographic shear in oxygen-deficient rutile: An electron microscope study,” Journal of Solid State Chemistry, 2 [3] 472-82 (1970). 66. L. Bursill, B. Hyde, and D. Philp, “New crystallographic shear families derived from the rutile structure, and the possibility of continuous ordered solid solution,” Philosophical Magazine, 23 [186] 1501-13 (1971). 67. J. David, G. Trolliard, and A. Maitre, “Transmission electron microscopy study of the reaction mechanisms involved in the carbothermal reduction of anatase,” Acta Materialia, 61 [14] 5414-28 (2013). 68. J. Van Landuyt and S. Amelinckx, “On the generation mechanism for shear planes in shear structures,” Journal of Solid State Chemistry, 6 [2] 222-29 (1973). 69. L. Liborio, N. Harrison, “Thermodynamics of oxygen defective Magneli phases in rutile: A first-principles study,” Physical Review B, 77 [10] 104104 (2008). 70. J. R. Smith, F. C. Walsh, and R. L. Clarke, “Electrodes based on Magneli phase titanium oxides: the properties and applications of EbonexR materials,” Journal of Applied Electrochemistry, 28 [10] 1021-33 (1998). 71. F. C. Walsh and R. G. A. Wills, “The continuing development of Magneli phase titanium sub-oxides and EbonexR electrodes,” Electrochimica Acta, 55 [22] 6342-51 (2010). 72. C. Hauf, R. Kniep, and G. Pfaff, “Preparation of various titanium suboxide powders by reduction of TiO2 with silicon,” Journal of Materials Science, 34 [6] 1287-92 (1999). 73. A. Afir, M. Achour, and N. Saoula, “X-ray diffraction study of Ti–O–C system at high temperature and in a continuous vacuum,” Journal of Alloys and Compounds, 288 [1–2] 124-40 (1999). 74. M. Radecka, A. Trenczek-Zajac, K. Zakrzewska, and M. Rekas, “Effect of oxygen nonstoichiometry on photo-electrochemical properties of TiO2−x,” Journal of Power Sources, 173 [2] 816-21 (2007). 75. Y. Lu, M. Hirohashi, and K. Sato, “Thermoelectric Properties of Non-Stoichiometric Titanium Dioxide TiO2-x Fabricated by Reduction Treatment Using Carbon Powder,” Materials Transactions, 47 1449-52 (2006). 76. Y. Lu, K. Sagara, L. Hao, Z. Ji, and H. Yoshida, “Fabrication of non-stoichiometric titanium dioxide by spark plasma sintering and its thermoelectric properties,” Materials Transactions, 53 [7] 1208-11 (2012). 77. R. A. Spurr and H. Myers, “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer,” Analytical Chemistry, 29 [5] 760-62 (1957). 78. P.I. Gouma, M.J. Mills, “Anatase-to-Rutile Transformation in Titania Powders,” Journal of the American Ceramic Society, 84 [3] 619-622 (2001). 79. K. A. Farrell, “Synthesis effects on grain size and phase content in the anatase-rutile TiO2 system.” Ph.D. thesis Worcester Polytechnic Institute (2001). 80. K. S. Krishnan and S. C. Jain, “Thermionic Constants of Graphite,” Nature, 169 [4304] 702-03 (1952). 81. H. Onishi, T. Aruga, C. Egawa, and Y. Iwasawa, “Photoelectron spectroscopic study of clean and CO adsorbed NI/TiO2 (110) interfaces,” Surface Science, 233 [3] 261-68 (1990). 82. F. Zhang, Y. Zheng, Y. Cao, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, and J. Zhu, “Ordered mesoporous Ag-TiO2-KIT-6 heterostructure: synthesis, characterization and photocatalysis,” Journal of Materials Chemistry, 19 [18] 2771-77 (2009). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56606 | - |
| dc.description.abstract | 本文探討以石墨作為基材(matrix)之陶瓷複合材料:石墨/銳鈦礦二氧化鈦(後簡稱為銳鈦礦)及石墨/金紅石二氧化鈦(後簡稱為金紅石),在95 % N2 + 5 % H2氣氛下高溫燒結成塊材後,其微結構與晶相的演化,並呈現此複合材料應用於導電塗料的成果,所使用的起始原料皆為粉末。
首先,本研究發現石墨的高還原能力,會增加複合系統中的氧空缺濃度,致使系統中的銳鈦礦及金紅石之晶體結構發生變化:其一,石墨/銳鈦礦複合系統中的銳鈦礦,其相轉變至金紅石之溫度低於純銳鈦礦系統,此現象源自於系統中氧空缺濃度的提高,使得鈦與氧原子重新排列的活化能降低;其二,本研究利用不同比表面積的石墨作為基材,製備石墨/金紅石複合系統,以探究石墨對於金紅石的影響為何。實驗結果顯示,此系統燒結過後皆會出現異於金紅石以及石墨的相,藉由TEM選區繞射圖形鑑定為缺乏氧離子的亞氧化鈦(TinO2n-1),隨著選用石墨的比表面積增加,所得到成分比例之缺氧量亦會隨之提高,分別為Ti20O39、Ti8O15以及Ti7O13。本研究推論,高比表面積的石墨,能夠吸附較多的金紅石粉末,增加金紅石內之氧空缺濃度。 另一方面,從石墨/二氧化鈦複合系統的電阻量測中發現,由於複合材料中的二氧化鈦能夠吸收紫外光波段,進而產生光致激發載子,使得複合材料之電阻值在照光前後發生改變。為了將此系統中,光致調控電阻之特性應用於導電塗料,本研究仿造鉛筆成分,於複合系統中添入高嶺土,其除了具備高導電性外,同樣具有敏銳的光致調控電阻特性。最後,我們根據研究成果提出兩種導電塗料的應用方法,適用於電腦閱卷讀卡系統之判讀,期能改善現今光學判讀之準確率。 | zh_TW |
| dc.description.abstract | In this study, we unveiled the evolution of the crystal structures and the unique application of several graphite-matrix composites: graphite/A-TiO2 (anatase TiO2) as well as graphite/R-TiO2 (rutile TiO2). All specimens were prepared through press-and-sinter process under 95 % N2 + 5 % H2 reducing atmosphere.
Initially, the crystal structures of A-TiO2 and R-TiO2 in the composites were quite abnormal. The phenomena should be attributed to large amounts of oxygen vacancies reduced by graphite. In graphite/A-TiO2 system, the phase transition temperature from A-TiO2 to R-TiO2 was lower than pure A-TiO2 system, since high concentration of oxygen vacancy would render rearrangement of Ti2+ and O2- easier. In the case of graphite/R-TiO2, some oxygen-deficient phase — TinO2n-1 was acquired. Interestingly, when graphite with higher specific surface area was used, TinO2n-1 with more oxygen deficiency would be correspondingly obtained, including Ti20O39, Ti8O15 and Ti7O13 respectively. According to this tendency, we proposed that graphite with higher surface area could absorb more R-TiO2 to induce more oxygen vacancies in the composites. Finally, the resistance of the composites would alter sensitively after illumination of UV light due to generation of photo-induced carriers from TiO2. Considering the application of this specific property to conductive paint, we added kaolin into the composites to make them real pencils. It was found that their resistance behavior was quite similar to the original composites. Based on this essential result, two kinds of application of the conductive paint we prepared were offered. By means of the application, improving accuracy of judging answering cards could be accomplished. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:37:26Z (GMT). No. of bitstreams: 1 ntu-103-R01527001-1.pdf: 29963921 bytes, checksum: 381a67ca932d8474322f0e9e489ec522 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iv Abstract v 目錄 vii 圖目錄 x 表目錄 xvii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與方向 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 碳的種類 4 2.1.1 石墨的基本性質 4 2.1.2 金剛石、富勒烯、奈米碳管的基本性質 10 2.2 二氧化鈦 12 2.2.1 二氧化鈦的基本性質 12 2.2.2 二氧化鈦相變化 15 2.2.3 缺陷化學 19 2.2.4 氧空缺對二氧化鈦晶體結構之影響 25 2.2.4.1 Magneli相 26 2.2.4.2 晶體剪切面形成機制 29 2.2.4.3 TinO2n-1製備與應用 30 第三章 實驗方法 33 3.1 陶瓷塊材製備 34 3.1.1 試片成形 34 3.1.2 燒結 34 3.2 導電塗料製備 36 3.3 材料物理性質與電性分析 38 3.3.1 X光繞射分析 38 3.3.2 掃描式電子顯微鏡 39 3.3.3 穿透式電子顯微鏡 39 3.3.4 重量損失 40 3.3.5 電性量測 40 3.3.5.1 石墨與石墨/二氧化鈦複合塊材 40 3.3.5.2 導電塗料 43 第四章 實驗結果與討論 46 4.1 石墨起始粉末相鑑定與微結構分析 47 4.2 Degussa P25起始粉末相鑑定與微結構分析 49 4.3 銳鈦礦與金紅石起始粉末定量分析 50 4.4 銳鈦礦粉末與塊材物理性質分析 55 4.4.1 相鑑定 55 4.4.2 微結構分析 58 4.5 金紅石粉末與塊材物理性質分析 63 4.5.1 相鑑定 63 4.5.2 微結構分析 64 4.6 複合塊材物理性質分析 67 4.6.1 石墨/銳鈦礦複合塊材 67 4.6.1.1 相鑑定 67 4.6.1.2 微結構分析 73 4.6.2 石墨/金紅石複合塊材 74 4.6.2.1 相鑑定 74 4.6.2.2 微結構分析 77 4.6.2.3 穿透式電子顯微鏡分析 78 4.6.3 石墨粉對金紅石晶體結構的影響 87 4.6.3.1 相鑑定 87 4.6.3.2 微結構分析 89 4.6.3.3 穿透式電子顯微鏡分析 90 4.6.3.4 重量損失分析 105 4.7 石墨與複合塊材電性分析 107 4.8 導電塗料電性分析與應用 116 4.9 綜合討論 122 4.9.1 石墨/二氧化鈦複合塊材 122 4.9.2 應用 124 第五章 結論 126 5.1 研究成果 126 5.2 未來研究方向 127 參考文獻 129 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 石墨 | zh_TW |
| dc.subject | 複合結構 | zh_TW |
| dc.subject | 氧空缺 | zh_TW |
| dc.subject | TinO2n-1 | zh_TW |
| dc.subject | 導電塗料 | zh_TW |
| dc.subject | conductive paint | en |
| dc.subject | TiO2 | en |
| dc.subject | composite | en |
| dc.subject | oxygen vacancy | en |
| dc.subject | TinO2n-1 | en |
| dc.subject | graphite | en |
| dc.title | 石墨與二氧化鈦複合材料在氧空缺影響下之晶體結構與微結構分析及其應用 | zh_TW |
| dc.title | The Crystal Structure, Microstructure and Application of Graphite-Titanium Dioxide Composites under the Influence of Oxygen Vacancies | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 段維新,薛景中,郭俞麟 | |
| dc.subject.keyword | 石墨,二氧化鈦,複合結構,氧空缺,TinO2n-1,導電塗料, | zh_TW |
| dc.subject.keyword | graphite,TiO2,composite,oxygen vacancy,TinO2n-1,conductive paint, | en |
| dc.relation.page | 137 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 29.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
