請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56602完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡偉博(Wei-Bor Tsai) | |
| dc.contributor.author | Szu-Wei Fu | en |
| dc.contributor.author | 傅思維 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:37:12Z | - |
| dc.date.available | 2019-09-03 | |
| dc.date.copyright | 2014-09-03 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-12 | |
| dc.identifier.citation | [1] Williams DF. Consensus and definitions in biomaterials. De Putter, C, Et Al1988. p. 11-6.
[2] Ma ZW, Mao ZW, Gao CY. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloid Surf B-Biointerfaces. 2007;60:137-57. [3] Ikada Y. Surface modification of polymers for medical applications. Biomaterials. 1994;15:725-36. [4] Larsson C, Thomsen P, Aronsson BO, Rodahl M, Lausmaa J, Kasemo B, Ericson LE. Bone response to surface-modified titanium implants: Studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials. 1996;17:605-16. [5] Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385-415. [6] Elbert DL, Hubbell JA. Surface treatments of polymers for biocompatibility. Annual Review of Materials Science. 1996;26:365-94. [7] Kasemo B. Biological surface science. Surface Science. 2002;500:656-77. [8] Vogler EA. Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science. 1998;74:69-117. [9] Ono K, Saito Y, Yura H, Ishikawa K, Kurita A, Akaike T, Ishihara M. Photocrosslinkable chitosan as a biological adhesive. Journal of Biomedical Materials Research. 2000;49:289-95. [10] Tsai W-B, Chen Y-R, Liu H-L, Lai J-Y. Fabrication of UV-crosslinked chitosan scaffolds with conjugation of RGD peptides for bone tissue engineering. Carbohydrate Polymers. 2011;85:129-37. [11] Fleming SA. Chemical reagents in photoaffinity-labeling. Tetrahedron. 1995;51:12479-520. [12] Kotzybahibert F, Kapfer I, Goeldner M. Recent trends in photoaffinity-labeling. Angewandte Chemie-International Edition in English. 1995;34:1296-312. [13] Das M, Fox CF. Chemical cross-linking in biology. Annual Review of Biophysics and Bioengineering. 1979;8:165-93. [14] Thom VH, Altankov G, Groth T, Jankova K, Jonsson G, Ulbricht M. Optimizing cell-surface interactions by photografting of poly(ethylene glycol). Langmuir. 2000;16:2756-65. [15] Mecomber JS, Murthy RS, Rajam S, Singh PND, Gudmundsdottir AD, Limbach PA. Photochemical functionalization of polymer surfaces for microfabricated devices. Langmuir. 2008;24:3645-53. [16] Hermanson GT, Hermanson GT. Bioconjugate Techniques, 2nd Edition2008. [17] Bryant WA. Fundamentals of chemical vapor-deposition. J Mater Sci. 1977;12:1285-306. [18] Choy KL. Chemical vapour deposition of coatings. Progress in Materials Science. 2003;48:57-170. [19] Yang R, Asatekin A, Gleason KK. Design of conformal, substrate-independent surface modification for controlled protein adsorption by chemical vapor deposition (CVD). Soft Matter. 2012;8:31-43. [20] Gorham WF. A new general synthetic method for preparation of linear poly-p-xylylenes. Journal of Polymer Science Part a-1-Polymer Chemistry. 1966;4:3027-&. [21] Tsai M-Y, Chen Y-C, Lin T-J, Hsu Y-C, Lin C-Y, Yuan R-H, Yu J, Teng M-S, Hirtz M, Chen MH-C, Chang C-H, Chen H-Y. Vapor-Based Multicomponent Coatings for Antifouling and Biofunctional Synergic Modifi cations. Advanced Functional Materials. 2014;24:2281-7. [22] Hoyle CE, Lee TY, Roper T. Thiol-enes: Chemistry of the past with promise for the future. Journal of Polymer Science Part a-Polymer Chemistry. 2004;42:5301-38. [23] Hoyle CE, Bowman CN. Thiol-Ene Click Chemistry. Angewandte Chemie-International Edition. 2010;49:1540-73. [24] Kade MJ, Burke DJ, Hawker CJ. The Power of Thiol-ene Chemistry. Journal of Polymer Science Part a-Polymer Chemistry. 2010;48:743-50. [25] Aimetti AA, Machen AJ, Anseth KS. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials. 2009;30:6048-54. [26] Li G-Z, Randev RK, Soeriyadi AH, Rees G, Boyer C, Tong Z, Davis TP, Becer CR, Haddleton DM. Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts. Polymer Chemistry. 2010;1:1196-204. [27] Lowe AB. Thiol-ene 'click' reactions and recent applications in polymer and materials synthesis. Polymer Chemistry. 2010;1:17-36. [28] Gauthier MA, Klok H-A. Peptide/protein-polymer conjugates: synthetic strategies and design concepts. Chemical Communications. 2008:2591-611. [29] Horie K, Baron M, Fox RB, He J, Hess M, Kahovec J, Kitayama T, Kubisa P, Marechal E, Mormann W, Stepto RFT, Tabak D, Vohlidal J, Wilks ES, Work WJ, Allegra G, Baron M, Fradet A, Hatada K, He J, Hess M, Horie K, Jenkins AD, Jin JI, Jones RG, Kahovec J, Kitayama T, Kratochvil P, Kubisa P, Marcechal E, Meisel I, Metanomski WV, Moad G, Mormann W, Penczek S, Rebelo LP, Rinaudo M, Schopov I, Schubert M, Shibaev VP, Slomkowskj S, Stepto RFT, Tabak D, Vohlidal J, Wilks ES, Work WJ, Dorfner K, Frechet MJ, Harris WI, Hodge P, Nishikubo T, Ober CK, Reichmanis E, Sherrington DC, Tomoi M, Wohrle D. Definitions of terms relating to reactions of polymers and to functional polymeric materials - (IUPAC Recommendations 2003). Pure and Applied Chemistry. 2004;76:889-906. [30] Frechet JMJ. Functional polymers and dendrimers - reactivity, molecular architecture, and interfacial energy. Science. 1994;263:1710-5. [31] Schild HG. Poly (N-isopropylacrylamide) - experiment, theory and application. Progress in Polymer Science. 1992;17:163-249. [32] Kujawa P, Aseyev V, Tenhu H, Winnik FM. Temperature-sensitive properties of poly(N-isopropylacrylamide) mesoglobules formed in dilute aqueous solutions heated above their demixing point. Macromolecules. 2006;39:7686-93. [33] Okada Y, Tanaka F. Cooperative hydration, chain collapse, and flat LCST behavior in aqueous poly(N-isopropylacrylamide) solutions. Macromolecules. 2005;38:4465-71. [34] Mias S, Sudor J, Camon H. PNIPAM: a thermo-activated nano-material for use in optical devices. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems. 2008;14:747-51. [35] Okano T, Bae YH, Jacobs H, Kim SW. Thermally on off switching polymers for drug permeation and release. Journal of Controlled Release. 1990;11:255-65. [36] Yamato M, Utsumi M, Kushida A, Konno C, Kikuchi A, Okano T. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Engineering. 2001;7:473-80. [37] Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, Okano T. Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials. 2005;26:6415-22. [38] Matsuda N, Shimizu T, Yamato M, Okano T. Tissue engineering based on cell sheet technology. Advanced Materials. 2007;19:3089-99. [39] Hannachi IE, Yamato M, Okano T. Cell sheet technology and cell patterning for biofabrication. Biofabrication. 2009;1. [40] Akizuki T, Oda S, Komaki M, Tsuchioka H, Kawakatsu N, Kikuchi A, Yamato M, Okano T, Ishikawa I. Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. Journal of Periodontal Research. 2005;40:245-51. [41] Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circulation Research. 2002;90:E40-E8. [42] Matsuura K, Masuda S, Haraguchi Y, Yasuda N, Shimizu T, Hagiwara N, Zandstra PW, Okano T. Creation of mouse embryonic stem cell-derived cardiac cell sheets. Biomaterials. 2011;32:7355-62. [43] Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, Okano T. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsieve cell culture surface. Transplantation. 2004;77:379-85. [44] Otten E. Concepts and models of functional architecture in skeletal muscle. Anatomical Record. 1991;229:67A-A. [45] Wakelam MJO. THE FUSION OF MYOBLASTS. Biochem J. 1985;228:1-12. [46] Chung C-Y, Bien H, Entcheva E. The role of cardiac tissue alignment in modulating electrical function. Journal of Cardiovascular Electrophysiology. 2007;18:1323-9. [47] Takahashi H, Nakayama M, Itoga K, Yamato M, Okano T. Micropatterned Thermoresponsive Polymer Brush Surfaces for Fabricating Cell Sheets with Well-Controlled Orientational Structures. Biomacromolecules. 2011;12:1414-8. [48] Murata Y, Petrova V, Petrov I, Ciobanu CV, Kodambaka S. Role of ethylene on surface oxidation of TiO2(110). Applied Physics Letters. 2012;101. [49] Hess AP, Hamilton AE, Talbi S, Dosiou C, Nyegaard M, Nayak N, Genbecev-Krtolica O, Mavrogianis P, Ferrer K, Kruessel J, Fazleabas AT, Fisher SJ, Giudice LC. Decidual stromal cell response to paracrine signals from the trophoblast: Amplification of immune and angiogenic modulators. Biology of Reproduction. 2007;76:102-17. [50] Ghosh K, Pan Z, Guan E, Ge S, Liu Y, Nakamura T, Ren X-D, Rafailovich M, Clark RAF. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials. 2007;28:671-9. [51] Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming WY, Weaver V, Janmey PA. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motility and the Cytoskeleton. 2005;60:24-34. [52] Collin O, Tracqui P, Stephanou A, Usson Y, Clement-Lacroix J, Planus E. Spatiotemporal dynamics of actin-rich adhesion microdomains: influence of substrate flexibility. J Cell Sci. 2006;119:1914-25. [53] Manwaring ME, Walsh JF, Tresco PA. Contact guidance induced organization of extracellular matrix. Biomaterials. 2004;25:3631-8. [54] Choi C-H, Hagvall SH, Wu BM, Dunn JCY, Beygui RE, Kim C-J. Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials. 2007;28:1672-9. [55] Miller DC, Thapa A, Haberstroh KM, Webster TJ. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Biomaterials. 2004;25:53-61. [56] Campioni EG, Nobrega JN, Sefton MV. HEMA/MMMA microcapsule implants in hemiparkinsonian rat brain: biocompatibility assessment using H-3 PK11195 as a marker for gliosis. Biomaterials. 1998;19:829-37. [57] Lynn AD, Kyriakides TR, Bryant SJ. Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels. J Biomed Mater Res Part A. 2010;93A:941-53. [58] Ward WK, Slobodzian EP, Tiekotter KL, Wood MD. The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants. Biomaterials. 2002;23:4185-92. [59] Luk YY, Kato M, Mrksich M. Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir. 2000;16:9604-8. [60] Hayward JA, Chapman D. Biomembrane surfaces as models for polymer design: the potential for haemocompatibility. Biomaterials. 1984;5:135-42. [61] Nakabayashi N, Iwasaki Y. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Bio-Medical Materials and Engineering. 2004;14:345-54. [62] Feng W, Zhu SP, Ishihara K, Brash JL. Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir. 2005;21:5980-7. [63] Ma YH, Tang YQ, Billingham NC, Armes SP, Lewis AL, Lloyd AW, Salvage JP. Well-defined biocompatible block copolymers via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine in protic media. Macromolecules. 2003;36:3475-84. [64] Ladenheim H, Morawetz H. A new type of polyampholyte - poly(4-vinyl pyridine betaine). Journal of Polymer Science. 1957;26:251-4. [65] Carr L, Cheng G, Xue H, Jiang S. Engineering the Polymer Backbone To Strengthen Nonfouling Sulfobetaine Hydrogels. Langmuir. 2010;26:14793-8. [66] Jiang S, Cao Z. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Advanced Materials. 2010;22:920-32. [67] Keefe AJ, Jiang S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nature Chemistry. 2012;4:60-4. [68] Zhang Z, Chao T, Chen S, Jiang S. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir. 2006;22:10072-7. [69] Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules. 2008;9:1357-61. [70] Kuo W-H, Wang M-J, Chien H-W, Wei T-C, Lee C, Tsai W-B. Surface Modification with Poly(sulfobetaine methacrylate-co-acrylic acid) To Reduce Fibrinogen Adsorption, Platelet Adhesion, and Plasma Coagulation. Biomacromolecules. 2011;12:4348-56. [71] Chien H-W, Chang TY, Tsai W-B. Spatial control of cellular adhesion using photo-crosslinked micropatterned polyelectrolyte multilayer films. Biomaterials. 2009;30:2209-18. [72] Wang PY, Yu HT, Tsai WB. Modulation of Alignment and Differentiation of Skeletal Myoblasts by Submicron Ridges/Grooves Surface Structure. Biotechnol Bioeng. 2010;106:285-94. [73] Yang JY, Ting YC, Lai JY, Liu HL, Fang HW, Tsai WB. Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions. J Biomed Mater Res Part A. 2009;90A:629-40. [74] Takahashi H, Shimizu T, Nakayama M, Yamato M, Okano T. The use of anisotropic cell sheets to control orientation during the self-organization of 3D muscle tissue. Biomaterials. 2013;34:7372-80. [75] Hannachi IE, Itoga K, Kumashiro Y, Kobayashi J, Yamato M, Okano T. Fabrication of transferable micropatterned-co-cultured cell sheets with microcontact printing. Biomaterials. 2009;30:5427-32. [76] Michon C, Cuvelier G, Launay B. Concentration-dependence of the critical viscoelastic properties of gelatin at the gel point. Rheologica Acta. 1993;32:94-103. [77] Ayres C, Bowlin GL, Henderson SC, Taylor L, Shultz J, Alexander J, Telemeco TA, Simpson DG. Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform. Biomaterials. 2006;27:5524-34. [78] Chen Y-C, Chen H-Y. Quartz Crystal Microbalance Based on Vapor-Deposited Reactive Coatings. National Tawan University Master Thesis. 2014. [79] Sauerbrey G. Verwendung von schwingquarzen zur wagung dunner schichten und zur mikrowagung. Zeitschrift Fur Physik. 1959;155:206-22. [80] Da Silva RMP, Mano JF, Reis RL. Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends in Biotechnology. 2007;25:577-83. [81] Akiyama Y, Kikuchi A, Yamato M, Okano T. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir. 2004;20:5506-11. [82] Chang Y, Ko C-Y, Shih Y-J, Quemener D, Deratani A, Wei T-C, Wang D-M, Lai J-Y. Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization. Journal of Membrane Science. 2009;345:160-9. [83] Badia A, Singh S, Demers L, Cuccia L, Brown GR, Lennox RB. Self-assembled monolayers on gold nanoparticles. Chem-Eur J. 1996;2:359-63. [84] Zhu JM, Marchant RE. Dendritic saccharide surfactant polymers as antifouling interface materials to reduce platelet adhesion. Biomacromolecules. 2006;7:1036-41. [85] Long LX, Yuan XB, Li ZY, Li K, Cui ZD, Zhang XJ, Sheng J. Anti-fouling properties of polylactic acid film modified by pegylated phosphorylcholine derivatives. Mater Chem Phys. 2014;143:929-38. [86] Dalsin JL, Lin LJ, Tosatti S, Voros J, Textor M, Messersmith PB. Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir. 2005;21:640-6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56602 | - |
| dc.description.abstract | 在生醫材料表面改質(surface modification)領域中,常於基材表面接枝功能性高分子來改變表面性質以達到特定之目的。眾多接枝方式及功能性高分子讓表面改質擁有多樣化之選擇。在本研究中,我們嘗試兩種不同的表面改質組合。
在第一部分研究中,我們利用紫外光起始疊氮基(azide)交聯反應,將熱敏感高分子聚(N-異丙基丙烯酰胺) (poly(N-isopropylacrylamide) (PNIPAAm))接枝於高分子基材上,僅需溫度上之改變即可在避免破壞細胞外基質(extracellular matrix)及表面蛋白情況下取得完整之細胞薄片(cell sheet)。接著利用二甲基矽氧烷(dimethylsiloxane)模具轉印出具有次微米溝脊之聚(N-異丙基丙烯酰胺)表面(寬800奈米、深500奈米),溝脊表面將引導細胞方性性地排列(alignment),且此細胞薄片在轉移過程中可保存其方向性。 在第二部分研究中,我們利用化學氣相沉積(chemical vapor deposition)將表面接上馬來酰亞胺(maleimide)官能基,並將兩性離子磺基甜菜鹼甲基丙烯酸酯(sulfobetaine methacrylate)與半胱胺(cysteamine)以不同比例共聚合,透過半胱胺之硫醇(thiol)與馬來酰亞胺之雙鍵(ene)反應將高分子接枝於表面,並利用兩性離子之超親水性達到抗貼附(anti-fouling)之效果,在本研究探討之聚合比例中,於側練上具有較高硫醇官能基比例之高分子能較有效地降低表面上細胞及血小板之貼附量與蛋白質之吸附量。 | zh_TW |
| dc.description.abstract | In surface modification of biomaterials, grafting functional polymers to substrates is one strategy for tailoring surface property to meet the particular demand. It is various approach of conjugation and functional polymers lead to a diversity of surface modification. Here, we try to develop the following two kinds of surface modification.
In the first part of study, by a UV-activated azide-based crosslinking mechanism, we immobilized thermo-responsive polymer poly(N-isopropylacrylamide) (PNIPAAm) on plastic substrate. Cell sheets could be harvested by temperature change with an intact extracellular matrix. Next, grooved PNIPAAm substrates were fabricated by imprinting from grooved poly(dimethylsiloxane) (PDMS) molds (800 nm in groove width and 500 nm in depth). C2C12 cells formed aligned cell sheets on the grooved PNIPAAm surface. The aligned cell sheet could be transferred to a gelatin substrate without losing cell alignment. In the second part of study, we deposited double bond-containing maleimide onto substrate by chemical vapor deposition in a substrate independent manner. Also, thiol containing cysteamine were copolymerized with zwitterionic sulfobetaine methacrylate (SBMA) in different molar ratio, and surfaces were modified via thio-ene reaction. Thanks to the superhydrophilicity of SBMA, the modified surfaces possessed good efficacy of anti-fouling. Among the monomer ratios tested in the experiment, the amount of cell adhesion, platelet adhesion and protein adsorption were decreased more profoundly on the surface modified with polymer with higher thiol groups on the side chain. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:37:12Z (GMT). No. of bitstreams: 1 ntu-103-R01524035-1.pdf: 3892493 bytes, checksum: 95c85f6a00399e98d6885f3eeb95840f (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III Content V List of Figures X List of Tables XIII Chapter 1 Introduction 1 1.1 Surface Modification of Biomaterials 1 1.2 Immobilization Strategies for Surface Modification 3 1.2.1 Azide Crosslinking Chemistry 3 1.2.2 Chemical Vapor Deposition for Surface Functionalization 4 1.2.3 Thiol-ene Reaction 6 1.3 Functional Polymers 8 1.4 Thermo-responsive Polymer - Poly(N-isopropylacrylamide) (PNIPAAm) 9 1.4.1 Characteristic of Poly(N-isopropylacrylamide) 9 1.4.2 Cell Sheet Tissue Engineering 10 1.4.3 Cell Alignment in Tissue Engineering 11 1.4.4 Biological Responses to Patterned Surfaces 12 1.5 Zwitterionic Polymer - Poly(sulfobetaine methacrylate) (PSBMA) 13 1.5.1 Nonfouling Surface 13 1.5.2 Characteristics of Zwitterionic Polymers 13 1.6 Research Motivation 16 1.7 Research Specific Aims 17 Chapter 2 Materials and Methods 19 2.1 Chemicals 19 2.1.1 Synthesis of PAA-g-Az 19 2.1.2 Fabrication of PNIPAAm Films 19 2.1.3 Fabrication of Myoblast Sheets 19 2.1.4 Fluorescent Staining 20 2.1.5 Synthesis of P(SBMA-co-SH) 20 2.1.6 Cell Culture of Murine Skeletal Muscle Cell Line C2C12 and Mouse Fibroblast-Like Cell Line L929 20 2.1.7 Quantitation of Thiol (Ellman’s Assay) 21 2.1.8 Platelet Adhesion Experiment and Number Determination (Lactate Dehydrogenase, LDH Assay) 21 2.2 Experimental Instrument and Consumable Materials 22 2.2.1 Experimental Instrument 22 2.2.2 Consumable Materials 23 2.3 Solution Formula 24 2.3.2 Dulbecco’S Modified Eagle Medium (DMEM) High Glucose Culture Medium 24 2.3.3 Alpha Minimum Essential Medium (α-MEM) Culture Medium 24 2.3.4 Ellman’s Assay Reaction Buffer and Solution 25 2.3.5 Platelet Adhesion Experiment 25 2.4 Methods 26 2.4.1 Synthesis of PAA-g-Az 26 2.4.2 Fabrication of PNIPAAm Films 27 2.4.3 Surface Characterizaion 28 2.4.4 Fabrication of Myoblast Sheets 28 2.4.5 Fluorescent Staining 30 2.4.6 Alignment Analysis 30 2.4.7 Synthesis of Cysteamine-functionalized Poly(sulfobetaine methacrylate) (P(SBMA-co-SH)) 31 2.4.8 Fabrication of Nonfouling P(SBMA-co-SH) Surfaces 34 2.4.9 Quantitation of Thiol by Ellman’s Assay 35 2.4.10 Cell Adhesion Experiment for Determining Antifouling Ability 36 2.4.11 Platelet Purification, Adhesion and Quantitation by Lactate Dehydrogenase (LDH) Assay 37 2.4.12 Protein Adsorption and Quantitation by Quartz Crystal Microbalance (QCM) Assay 39 2.4.13 Statistical Analysis 40 Chapter 3 Surface Modification with Poly(N-isopropylacrylamide) (PNIPAAm) 41 3.1 Surface Characterization 41 3.2 Cell Detachment from UV-Cross-Linked PNIPAAm Surfaces 42 3.3 Fabrication of Aligned Cell Sheets on Grooved PNIPAAm Films 43 3.4 Conclusion 44 Chapter 4 Surface Modification with Cysteamine functionalized Poly(sulfobetaine methacrylate) (P(SBMA-co-SH)) 51 4.1 Polymer characterization 51 4.2 Surface characterization 52 4.3 Cell adhesion on P(SBMA-co-SH) modified surfaces 53 4.4 Platelet adhesion on P(SBMA-co-SH) modified surfaces 54 4.5 Protein adsorption on P(SBMA-co-SH) modified surfaces 55 4.6 Discussion 57 4.7 Conclusion 59 Chapter 5 Conclusions 68 Chapter 6 Future Works 69 Reference 70 Appendix 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | 疊氮基交聯 | zh_TW |
| dc.subject | 聚(N-異丙基丙烯?胺) | zh_TW |
| dc.subject | 細胞薄片 | zh_TW |
| dc.subject | 化學氣相沉積 | zh_TW |
| dc.subject | 硫醇-雙鍵反應 | zh_TW |
| dc.subject | 磺基甜菜鹼甲基丙烯酸酯 | zh_TW |
| dc.subject | 抗貼附 | zh_TW |
| dc.subject | poly(N-isopropylacrylamide) (PNIPAAm) | en |
| dc.subject | Anti-fouling | en |
| dc.subject | Cell sheet | en |
| dc.subject | Azide crosslinking | en |
| dc.subject | Sulfobetaine methacrylate (SBMA) | en |
| dc.subject | Surface modification | en |
| dc.subject | Thiol-ene reaction | en |
| dc.subject | Chemical vapor deposition (CVD) | en |
| dc.title | 基材表面接枝功能性高分子對細胞培養之影響 | zh_TW |
| dc.title | Effects of Grafting of Functional Polymers to Substrates on Cell Culture | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林睿哲(Jui-Che Lin),游佳欣(Jia-shing Yu) | |
| dc.subject.keyword | 表面改質,疊氮基交聯,聚(N-異丙基丙烯?胺),細胞薄片,化學氣相沉積,硫醇-雙鍵反應,磺基甜菜鹼甲基丙烯酸酯,抗貼附, | zh_TW |
| dc.subject.keyword | Surface modification,Azide crosslinking,poly(N-isopropylacrylamide) (PNIPAAm),Cell sheet,Chemical vapor deposition (CVD),Thiol-ene reaction,Sulfobetaine methacrylate (SBMA),Anti-fouling, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
