請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56591
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳俊達(Chun-Ta Wu) | |
dc.contributor.author | Chen-Wei Chao | en |
dc.contributor.author | 趙晨崴 | zh_TW |
dc.date.accessioned | 2021-06-16T05:36:34Z | - |
dc.date.available | 2019-09-04 | |
dc.date.copyright | 2014-09-04 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-13 | |
dc.identifier.citation | 林慧玲. 1998. 番石榴果實後熟生理之研究, 國立臺灣大學園藝學研究所博士論文. 臺北.
林慧玲、黃瑞華、王自存. 2005. 番石榴果實之貯運技術. p. 21-41. 刊於: 黃肇家、黃錦杰、歐錫坤、林俊義 (主編) 園產品採後處理技術之研究與應用研討會專刊. 行政院農業委員會農業試驗所編印. 李長沛、黃守宏、陳哲仁、曾東海、賴明信、古新梅. 2011 野生稻Oryza officinalis基因導入系統褐飛蝨抗性的研究. 臺灣農業研究 60:263-278 張明郎. 2011. 番石榴產業發展概況. p.1-9. 刊於: 蔡宜峰、陳彥樺 (主編) 番石榴栽培技術與經營管理研討會論文輯台中區農業改良場特刊 108:1-9. 張哲嘉、林宗賢. 1998. 臺灣番石榴生產之現況與改進. 中國園藝 44:116-124. 張瑞炘、楊嘉凌、許志聖. 2011. 水稻抗白葉枯病之分子標記輔助育種. 臺中區農業改良場研究彙報 110:55-70. 陳國恩. 2009. 不同後熟特性番石榴品種ACC合成酶cDNA選殖與分析. 國立臺灣大學生物資源暨農學院園藝學系碩士論文. 臺北. 陳國憲、楊渮華. 2001. 應用ACC合成酶(CcACS1G)分子標記於全雌胡瓜育種之探討.南潭區農業改良場研究會報57:20-27 劉育昌.2013‘珍珠拔’番石榴後熟特性與系統二ACC合成酶PgACS1基因表現之研究. 國立臺灣大學生物資源暨農學院園藝暨景觀學系碩士論文. 臺北. 劉德駿. 2010. 不同後熟特性番石榴品種ACC氧化酶cDNA之選殖與分析, 國立臺灣大學生物資源暨農學院園藝學系碩士論文. 臺北. 顏秀芬. 1986. 番石榴果實呼吸型式及控制大氣組成貯藏延長其櫃架壽命之研究, 國立臺灣大學園藝學研究所碩士論文. 臺北 謝鴻業. 1998. 臺灣番石榴品種的演進與發展. 農業世界 174:23-25. 謝鴻業. 2011. 臺灣番石榴品種改良與產業發展. p.9-19. 刊於:蔡宜峰、陳彥樺 (主編)番石榴栽培技術與經營管理研討會. 行政院農業委員會臺中區農業改良場. Abdi, N., Holford, P., McGlasson, W., and Mizrahi, Y. 1997. Ripening behaviour and responses to propylene in four cultivars of Japanese type plums. Postharvest Biology and Technology 12:21-34. Abeles, F.B., Morgan, P.W., and Saltveit Jr, M. E. 1992. Ethylene in plant biology. Academic press. Adams, D. and Yang, S., 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences,USA.76:170-174. Akamine, E.K. and Goo, T. 1979. Respiration and ethylene production in fruits of species and cultivars of Psidium and species of Eugenia. Journal of the American Society for Horticultural Science 104:632-635. Alexander, F.W., Sandmeier, E., Mehta, P.K., and Christen, P. 1994. Evolutionary relationships among pyridoxal‐5′‐phosphate‐dependent enzymes. European Journal of Biochemistry 219:953-960. Alexander, L. and Grierson, D. 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany 53:2039-2055. Alonso, J.M., Hirayama, T., Roman, G. Nourizadeh, S., and Ecker, J.R., 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148-2152. Argueso, C.T., Hansen, M., and Kieber, J.J. 2007. Regulation of ethylene biosynthesis. Journal of Plant Growth Regulation 26:92-105. Barry, C.S., Blume, B., Bouzayen, M., Cooper, W., Hamilton, A.J. and Grierson, D. 1996. Differential expression of the 1‐aminocyclopropane‐1‐carboxylate oxidase gene family of tomato. The Plant Journal 9:525-535. Barry, C.S. and Giovannoni, J.J. 2007. Ethylene and fruit ripening. Journal of Plant Growth Regulation 26:143-159. Barry, C.S., Llop-Tous, M.I., and Grierson, D. 2000. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiology 123:979-986. Biale, J.B. 1964. Growth maturation and senescence in fruits. Science 146:880-888. Binder, B.M. 2008. The ethylene receptors: Complex perception for a simple gas. Plant Science 175:8-17. Binder, B.M. and Bleecker, A. 2002. A model for ethylene receptor function and 1-methylcyclopropene action.International horticultural congress:Issues and advances in Postharvest Horticulture 628. p117-187 Bleecker, A.B. and Kende, H. 2000. Ethylene: a gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology 16:1-18. Burg, S.P. and Burg, E.A. 1965. Relationship between ethylene production and ripening in bananas. Botanical Gazette 126:200-204. Capitani, G., Hohenester, E., Feng, L., Storici, P., Kirsch, J.F., and Jansonius, J.N. 1999. Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. Journal of Molecular Biology 294:745-756. Chae, H.S. and Kieber, J.J. 2005. Eto Brute Role of ACS turnover in regulating ethylene biosynthesis. Trends in Plant Science 10:291-296. Chang, S., Puryear, J., and Cairney, J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11:113-116. Chen, Y.-F., Randlett, M.D., Findell, J.L., and Schaller, G.E. 2002. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. Journal of Biological Chemistry 277:19861-19866. Christensen, A.H. and Quail, P.H. 1996. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research 5:213-218. Despres, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., and Fobert, P.R. 2003. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. The Plant Cell .15:2181-2191. Dong, J.G., Kim, W.T., Yip, W.K., Thompson, G.A., Li, L., Bennett, A.B., and Yang, S.F. 1991. Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta 185:38-45. Fusada, N., Masuda, T., Kuroda, H., Shimada, H., Ohta, H., and Takamiya, K.-i. 2005. Identification of a novel cis-element exhibiting cytokinin-dependent protein binding in vitro in the 5′-region of NADPH-protochlorophyllide oxidoreductase gene in cucumber. Plant Molecular Biology 59:631-645. Gagne, J.M., Smalle, J., Gingerich, D.J., Walker, J.M., Yoo, S.-D., Yanagisawa, S., and Vierstra, R.D., 2004. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proceedings of the National Academy of Sciences USA .101:6803-6808. Giovannoni, J. 2001. Molecular biology of fruit maturation and ripening. Annual Review of Plant Biology 52:725-749. Golding, J., Shearer, D., McGlasson, W., and Wyllie, S. 1999. Relationships between respiration, ethylene, and aroma production in ripening banana. Journal of Agricultural and Food Chemistry 47:1646-1651. Grierson, D., 2013. Ethylene and the Control of Fruit Ripening. The Molecular Biology and Biochemistry of fruit ripening. p.43-73. in: Graham B. Seymour, Mervin Poole, James J. Giovannoni, Gregory A. Tucker, and Don Grierson. (eds). Weily NewYork .USA. Guo, H. and Ecker, J.R., 2004. The ethylene signaling pathway: new insights. Current opinion in plant biology 7:40-49. Hajdukiewicz, P., Svab, Z., and Maliga, P. 1994. The small, versatilep PZP family of Agrobacterium binary vectors for plant transformation. Plant Molecular Biology 25:989-994. Harada, T., Sunako, T., Wakasa, Y., Soejima, J., Satoh, T., and Niizeki, M. 2000. An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theoretical and Applied Genetics 101:742-746. Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic acids research 27:297-300. Hongxing, Z., Benzhong, Z., Bianyun, Y., Yanling, H., Daqi, F., Wentao, X., and Yunbo, L. 2005. Cloning and DNA-binding properties of ethylene response factor, LeERF1 and LeERF2, in tomato. Biotechnology letters 27:423-428. Hua, J. and Meyerowitz, E.M. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261-271. Huang, Y., Li, H., Hutchison, C.E., Laskey, J., and Kieber, J.J. 2003. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. The Plant Journal 33:221-233. Itai, A. and Fujita, N. 2008. Identification of climacteric and nonclimacteric phenotypes of Asian pear cultivars by CAPS analysis of 1-aminocyclopropane-1-carboxylate synthase genes. HortScience 43:119-121. Itai, A., Kawata, T., Tanabe, K., Tamura, F., Uchiyama, M., Tomomitsu, M., and Shiraiwa, N. 1999. Identification of 1-aminocyclopropane-1-carboxylic acid synthase genes controlling the ethylene level of ripening fruit in Japanese pear (Pyrus pyrifolia Nakai). Molecular and General Genetics 261:42-49. Itai, A., Kotaki, T., Tanabe, K., Fukuda, M., Kawata, Y., Amano, Y., and Fujita, N. 2005. Determination of ethylene synthetic genotypes related to ripening in Japanese pear (Pyrus pyrifolia) cultivars. Journal of the Japanese Society for Horticultural Science 74.:335-363 Itai, A., Kotaki, T., Tanabe, K., Tamura, F., Kawaguchi, D., and Fukuda, M., 2003. Rapid identification of 1-aminocyclopropane-1-carboxylate (ACC) synthase genotypes in cultivars of Japanese pear (Pyrus pyrifolia Nakai) using CAPS markers. Theoretical and Applied Genetics 106:1266-1272. Ito, Y., Kitagawa, M., Ihashi, N., Yabe, K., Kimbara, J., Yasuda, J., Ito, H., Inakuma, T., Hiroi, S., and Kasumi, T. 2008. DNA‐binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit‐ripening regulator RIN. The Plant Journal 55:212-223. Jakubowicz, M. and Pacak, A. 2004. Relationships between ACC synthase isozymes calculated using phenetic data. The catalytical and evolutionary aspects. Acta Physiologiae Plantarum 26:5-27. Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant molecular Biology Reporter 5:387-405. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal 6:3901. Jepson, I., Martinez, A., and Sweetman, J.P. 1998. Chemical‐inducible gene expression systems for plants — a review. Pesticide Science 54:360-367. Joo, S., Liu, Y., Lueth, A., and Zhang, S. 2008. MAPK phosphorylation‐induced stabilization of ACS6 protein is mediated by the non‐catalytic C‐terminal domain, which also contains the cis‐determinant for rapid degradation by the 26S proteasome pathway. The Plant Journal 54:129-140. Kader, A.A. 2002. Biology and technology: an overview. Postharvest technology of horticultural crops 3311:39-48. Kamachi, S.i., Sekimoto, H., Kondo, N., and Sakai, S. 1997. Cloning of a cDNA for a 1-aminocyclopropane-1-carboxylate synthase that is expressed during development of female flowers at the apices of Cucumis sativus L. Plant and Cell Physiology 38:1197-1206. Kays, S.J. 1991. Metabolic processes in harvested products, p. 75-142, Postharvest physiology of perishable plant products. Springer. Kende, H. 1993. Ethylene biosynthesis. Annual Review of Plant Biology 44:283-307. Kengaku, M., Misawa, H., and Deguchi, T. 1993. Multiple mRNA species of choline acetyltransferase from rat spinal cord. Molecular Brain Research 18:71-76. Kevany, B.M., Tieman, D.M., Taylor, M.G., Cin, V.D., and Klee, H.J. 2007. Ethylene receptor degradation controls the timing of ripening in tomato fruit. The Plant Journal 51:458-467. Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A., and Ecker, J.R. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427-441. Kim, W.T. and Yang, S.F. 1992. Turnover of 1-aminocyclopropane-1-carboxylic acid synthase protein in wounded tomato fruit tissue. Plant Physiology 100:1126-1131. Konze, J.R. and Kende, H. 1979. Interactions of methionine and selenomethionine with methionine adenosyltransferase and ethylene-generating systems. Plant Physiology 63:507-510. Lin, Z., Hong, Y., Yin, M., Li, C., Zhang, K., and Grierson, D. 2008. A tomato HD‐Zip homeobox protein, LeHB‐1, plays an important role in floral organogenesis and ripening. The Plant Journal 55:301-310. Liu, T.-C., Liu, Y.-C., Chen, K.-E., Chao, C.-W., and Wu, C.-T. 2012. The nonclimacteric guava cultivar ‘Jen-Ju Bar’ is defective in System 2 1-aminocyclopropane-1-carboxylate synthase activity. Postharvest Biology and Technology 67:10-18. Liu, Y. and Zhang, S. 2004. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. The Plant Cell 16:3386-3399. Lopez-Molina, L. and Chua, N.-H. 2000. A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant and Cell Physiology 41:541-547. McElroy, D., Blowers, A.D., Jenes, B., and Wu, R. 1991. Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Molecular and General Genetics 231:150-160. McMurchie, E., McGlasson, W., and Eaks, I. 1972. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature 237:235-236. Mena, M., Cejudo, F.J., Isabel-Lamoneda, I., and Carbonero, P. 2002. A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiology 130:111-119. Mibus, H. and Tatlioglu, T. 2004. Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 109:1669-1676. Millar, A.J., Short, S.R., Hiratsuka, K., Chua, N.-H., and Kay, S.A. 1992. Firefly luciferase as a reporter of regulated gene expression in higher plants. Plant Molecular Biology Reporter 10:324-337. Montgomery, J., Goldman, S., Deikman, J., Margossian, L., and Fischer, R.L., 1993. Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proceedings of the National Academy of Sciences 90:5939-5943. Nakatsuka, A., Murachi, S., Okunishi, H., Shiomi, S., Nakano, R., Kubo, Y., and Inaba, A. 1998. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiology 118:1295-1305. Negi, S. and Rajan, S. 2007. Improvement of guava through breeding. Acta Horticulturae 735:31-37. Odell, J.T., Nagy, F., and Chua, N.-H. 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. 313:810-812 Oetiker, J.H., Olson, D.C., Shiu, O.Y., and Yang, S.F. 1997. Differential induction of seven 1-aminocyclopropane-1-carboxylate synthase genes by elicitor in suspension cultures of tomato (Lycopersicon esculentum). Plant molecular biology 34:275-286. Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., and Ohme-Takagi, M., 2001. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. The Plant Cell 13:1959-1968. Parkinson, J.S. and Kofoid, E.C. 1992. Communication modules in bacterial signaling proteins. Annual Review of Genetics 26:71-112. Picton, S., Gray, J.E., and Grierson, D. 1995. Ethylene genes and fruit ripening, p. 372-394, Plant Hormones. Springer. NewYork .USA Pommer, C.V. and Murakami, K.R. 2009. Breeding guava (Psidium guajava L.), p. 83-120, Breeding Plantation Tree Crops: Tropical Species. Springer. Potenza, C., Aleman, L., and Sengupta-Gopalan, C. 2004. Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In vitro cellular & developmental biology-Plant 40:1-22. Qiao, H., Chang, K.N., Yazaki, J., and Ecker, J.R. 2009. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes & Development 23:512-521. Rai, M.K., Asthana, P., Jaiswal, V., and Jaiswal, U. 2010. Biotechnological advances in guava (Psidium guajava L.): recent developments and prospects for further research. Trees 24:1-12. Richards, E., Reichardt, M., and Rogers, S. 1994. Preparation of genomic DNA from plant tissue. Current protocols in molecular biology:2.3. 1-2.3. 7. Riechmann, J.L. and Meyerowitz, E.M. 1998. The AP2/EREBP family of plant transcription factors. Biological chemistry 379:633-646. Rodrıguez, F.I., Esch, J.J., Hall, A.E., Binder, B.M., Schaller, G.E., and Bleecker, A.B. 1999. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996-998. Rojas, A., Almoguera, C., and Jordano, J. 1999. Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI3 and heat shock factors. The Plant Journal 20:601-610. Rottmann, W.H., Peter, G.F., Oeller, P.W., Keller, J.A., Shen, N.F., Nagy, B.P., Taylor, L.P., Campbell, A.D., and Theologis, A. 1991. 1-Aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. Journal of Molecular Biology 222:937-961. Sanmiguel, P. and Bennetzen, J.L. 1998. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annals of Botany 82:37-44. Sato, T., Oeller, P.W., and Theologis, A. 1991. The 1-aminocyclopropane-1-carboxylate synthase of Cucurbita. Purification, properties, expression in Escherichia coli, and primary structure determination by DNA sequence analysis. Journal of Biological Chemistry 266:3752-3759. Satoh, S., Mori, H., and Imaseki, H. 1993. Monomeric and dimeric forms and the mechanism-based inactivation of 1-aminocyclopropane-1-carboxylate synthase. Plant and Cell Physiology 34:753-760. Sebastia, C.H., Hardin, S.C., Clouse, S.D., Kieber, J.J., and Huber, S.C. 2004. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Archives of Biochemistry and Biophysics 428:81-91. Shakeel, S.N., Wang, X., Binder, B.M., and Schaller, G.E. 2013. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB Plants 5. Shigekawa, K. and Dower, W.J. 1988. Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells. BioTechniques 6:742-751. Shimizu-Sato, S., Huq, E., Tepperman, J.M., and Quail, P.H. 2002. A light-switchable gene promoter system. Nature biotechnology 20:1041-1044. Solano, R., Stepanova, A., Chao, Q., and Ecker, J.R. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes & Development 12:3703-3714. Spanu, P., Grosskopf, D.G., Felix, G., and Boller, T. 1994. The apparent turnover of 1-aminocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein phosphorylation and dephosphorylation. Plant Physiology 106:529-535. Spolaore, S., Trainotti, L., and Casadoro, G. 2001. A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. Journal of experimental botany 52:845-850. Srisvastava, H. and Narasimhan, P. 1967. Physiological studies during the growth and development of different varieties of guava (Psidium guajava L.). Journal of Horticultural Science 48:97-104. Stepanova, A.N. and Alonso, J.M. 2009. Ethylene signaling and response: where different regulatory modules meet. Current Opinion in Plant Biology 12:548-555. Sunako, T., Sakuraba, W., Senda, M., Akada, S., Ishikawa, R., Niizeki, M., and Harada, T. 1999. An allele of the ripening-specific 1-aminocyclopropane-1-carboxylic acid synthase gene (ACS1) in apple fruit with a long storage life. Plant physiology 119:1297-1304. Tatsuki, M. and Mori, H. 2001. Phosphorylation of tomato 1-aminocyclopropane-1-carboxylic acid synthase, Le-ACS2, at the C-terminal region. Journal of Biological Chemistry 276:28051-28057. Tieman, D.M., Taylor, M.G., Ciardi, J.A., and Klee, H.J. 2000. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proceedings of the National Academy of Sciences of the USA 97:5663-5668. Tran, L.-S.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress promoter. The Plant Cell 16:2481-2498. Trusov, Y. and Botella, J.R. 2005. Delayed flowering in pineapples (Ananas comosus L.) caused by co-suppression of the AcACS2 gene. Tsuchisaka, A. and Theologis, A. 2004. Heterodimeric interactions among the 1-aminocyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proceedings of the National Academy of Sciences of the USA 101:2275-2280. Van der Hoeven, R., Ronning, C., Giovannoni, J., Martin, G., and Tanksley, S. 2002. Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. The Plant Cell 14:1441-1456. Wakasa, Y., Kudo, H., Ishikawa, R., Akada, S., Senda, M., Niizeki, M., and Harada, T. 2006. Low expression of an endopolygalacturonase gene in apple fruit with long-term storage potential. Postharvest Biology and Technology 39:193-198. Wang, K.L.-C., Li, H., and Ecker, J.R. 2002. Ethylene biosynthesis and signaling networks. The Plant Cell 14:S131-S151. Wu, C.Y., Suzuki, A., Washida, H., and Takaiwa, F. 1998. The GCN4 motif in a rice glutelin gene is essential for endosperm‐specific gene expression and is activated by Opaque‐2 in transgenic rice plants. The Plant Journal 14:673-683. Wu, K., Tian, L., Hollingworth, J., Brown, D.C., and Miki, B. 2002. Functional analysis of tomato Pti4 in Arabidopsis. Plant Physiology 128:30-37. Wurgler-Murphy, S.M. and Saito, H. 1997. Two-component signal transducers and MAPK cascades. Trends in Biochemical Sciences 22:172-176. Xiao, H., Jiang, N., Schaffner, E., Stockinger, E.J., and van der Knaap, E. 2008. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527-1530. Yamagami, T., Tsuchisaka, A., Yamada, K., Haddon, W.F., Harden, L.A., and Theologis, A. 2003. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. Journal of Biological Chemistry 278:49102-49112. Yamagata, H., Yonesu, K., Hirata, A., and Aizono, Y. 2002. TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of thecucumisin gene. Journal of Biological Chemistry 277:11582-11590. Yamaguchi-Shinozaki, K. and Shinozaki, K. 2005. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends in Plant Science 10:88-94. Yamane, M., Abe, D., Yasui, S., Yokotani, N., Kimata, W., Ushijima, K., Nakano, R., Kubo, Y., and Inaba, A. 2007. Differential expression of ethylene biosynthetic genes in climacteric and non-climacteric Chinese pear fruit. Postharvest Biology and Technology 44:220-227. Yang, S.F. and Hoffman, N.E. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology 35:155-189. Yip, W.-K., Dong, J.-G., Kenny, J.W., Thompson, G.A., and Yang, S.F. 1990. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase. Proceedings of the National Academy of Sciences USA 87:7930-7934. Yip, W.-K., Dong, J.-G., and Yang, S.F., 1991. Purification and characterization of 1-aminocyclopropane-1-carboxylate synthase from apple fruits. Plant Physiology 95:251-257. Yokotani, N., Nakano, R., Imanishi, S., Nagata, M., Inaba, A., and Kubo, Y., 2009. Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. Journal of Experimental Botany 60:3433-3442. Yoo, S.-D., Cho, Y.-H., Tena, G., Xiong, Y., and Sheen, J. 2008. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789-795. Zarembinski, T.I. and Theologis, A. 1994. Ethylene biosynthesis and action: a case of conservation p. 343-361. In: Zarembinski, T.I. and Theologis (eds) Signals and Signal Transduction Pathways in Plants. Springer.Weily.NewYork USA Zhang, Z., Zhang, H., Quan, R., Wang, X.-C., and Huang, R. 2009. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiology 150:365-377. Zhu, Q., Dabi, T., and Lamb, C. 1995. TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro. The Plant Cell 7:1681-1689. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56591 | - |
dc.description.abstract | ‘珍珠拔’番石榴(Psidium guajava L.)呈現非更年型後熟特性源於‘系統二’ACC合成酶基因PgACS1無法表現,而缺乏大量自動催化乙烯合成。利用染色體步移(Genomic Walking)技術,分別選殖‘珍珠拔’與更年型‘梨仔拔’PgACS1、2基因組選殖系進行比對分析。兩參試品種PgACS1轉錄區域(transcribed region)皆為3120 bp,其中包含三個插入子(intron)呈現典型ACS基因結構,其核苷酸序列相同度為99%。反之,‘梨仔拔’PgACS1(LTB PgACS1)與‘珍珠拔’(JJB PgACS1)啟動子(promoter)核苷酸序列相同度僅為48%,將兩段序列於NCBI資料庫進行比對,LTB PgACS1啟動子並無相似序列;JJB PgACS1啟動子則可比對到多種物種相似序列,且皆集中在-2315~-800區域,相同度皆介於64~71%間,其中比對得分最高之序列為葡萄反轉錄轉位子(retrotransposon)V12,此結果暗示JJB PgACS1啟動子序列異於LTB PgACS1者可能源於反轉錄轉位子插入所致。以PLACE軟體分析啟動子,LTB PgACS1具有2個 ERE(ethylene response element)順式元件(cis-element);反之, JJB PgACS1選殖出的2310 bp啟動子區域則無任何ERE存在。生長調節劑indole-3-acetic acid、gibberellinA4+7、6-benzylaminopurine、乙烯、abscisic acid、methyl jasmonate處理,皆可誘導‘梨仔拔’綠熟果PgACS1表現,然而‘珍珠拔’綠熟果PgACS1則表現低,推測因反轉錄轉位子插入JJB PgACS1啟動子造成調控關鍵區域順式元件大規模位移所致。以PgACS1驅動β-glucuronidase(GUS)報導基因暫時性表現評估啟動子活性,JJB PgACS1啟動子在‘梨仔拔’與‘珍珠拔’果實背景活性差異不顯著,且LTB PgACS1啟動子活性於兩參試品種果實背景皆高於JJB PgACS1啟動子,暗示PgACS1品種間表現量差異主要源於啟動子順式元件變異而非反式元件(trans-element)因素所致。依據PgACS1序列設計專一性PCR引子,以葉片抽取DNA為模板,可成功鑑別10個番石榴品種後熟特性,可應用於育種後裔果實後熟特性早期篩選分子標誌。 | zh_TW |
dc.description.abstract | ‘Jen-Ju Bar’ (JJB) guava(Psidium guajava L.)exhibited a nonclimacteric ripening behavior resulting from lacking ofPgACS1, a System Ⅱ ACC synthase (ACS) gene, expression and, therefore, autocatalytic ethylene production. Genomic clones of PgACS1 isolated from ‘Jen-Ju Bar’ and ‘Li-Tzy Bar’ (LTB) guava, a climacteric variety, via Genomic Walking technique were alignmented and analyzed. The transcribed regions for both clones were 3120 bp cotaining 3 introns, which displayed a typical ACS characteristic, and sharing 99% nucleotide sequence identity. However, the identity of promoter sequences of LTB PgACS1 and JJB PgACS1 was only 46%. Blasting analysis on NCBI database showed no similar sequence for the promoter of LTB PgACS1. In contrast, several hits from various species similar to the -2310 ~ -800 promoter region of JJB PgACS1 with 64~71% identity were found; and grape (Vitis vinifera L.) retrotransposon V12 possessed the highest score, which implied that the sequence differences of PgACS1promoter region between LTB and JJB were very likely caused by insertion of a retrotransposon. The promoter sequences of LTB and JJB PgACS1 analyzed by PLACE software revealed that there were two Ethylene Response Elements (ERE) in the former; and no ERE was detected in the isolated promoter region (-1~ -2310) of the latter. PgACS1was up-regulated in mature-green LTB fruit after all treatments of plant growth regulators tested, including indole-3-acetic acid, gibberellin A4+7, 6-benzylaminopurine, ethylene, abscisic acid, and methyl jasmonate; but no or low response of the gene expression in the case of JJB fruit, which may be a result from massive shift of the cis-elements after retrotransposon insertion. The facts that the activity of JJB PgACS1 promoter displayed no significant difference between LTB and JJB fruit background in transient expression assay ofβ-glucuronidase (GUS) reporter gene driven byPgACS1 promoters, as well as that LTB PgACS1promoter was more active than that of JJB one in both fruit backgrounds, suggested the cis-element difference, rather than trans-element variation, was the major reason of the activity variation of PgACS1promoterbetween the cultivars tested. Based on the results of PCR assessments, which utilized specific PCR primers designed according to PgACS1 genomic clones and the DNA extracted from guava leaves, successfully discriminated the ripening behavior among the 10 guava cultivars examined, the primers was suggested to apply as molecular markers to assist early ripening-behavior screening among progenies of a guava breeding project. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:36:34Z (GMT). No. of bitstreams: 1 ntu-103-R00628209-1.pdf: 3265691 bytes, checksum: 106cf74380baa40fde9afd291c9ad517 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目錄
口試委員審定書……………………………………………………………………….i 誌謝……………………………………………………………………………………ii 中文摘要……………………………………………………………………………...iii 英文摘要……………………………………………………………………………iv 第一章 前 言………………………………………………………………………1 第二章 前人研究…………………………………………………………………..3 2.1果實後熟與乙烯……………………………………………………………3 2.2 ACC合成酶與調控…………………………………………………………5 2.3啟動子與基因轉錄調控………………………………………………….7 2.4乙烯於高等植物之生合成與訊息傳導……………………………………9 2.5番石榴品種與後熟特性………………………………………………12 2.6 ACC合成酶基因分子標記應用……………………………………........15 第三章 材料方法…………………………………………………………………17 第四章 結果……………………………………………………………………27 4.1 PgACS基因組選殖系特徵………………………………………………...27 4.2 PgACS啟動子比對分析……………………………………………………27 4.3 PgACS1組織表現與誘導試驗……………………………………………28 4.4 PgACS1啟動子驅動GUS報導基因暫時性表現分析…………….……29 4.5番石榴後熟特性分子標記之建立………………………………………30 第五章 討論…………………………………………………………………..31 5.1‘梨仔拔’與‘珍珠拔’PgACS1啟動子核苷酸序列相同度僅48%..…31 5.2‘珍珠拔’PgACS1基因組選殖系啟動子缺乏乙烯反應順式元件ERE………………………………………………………………………33 5.3‘珍珠拔’PgACS1對生長調節劑反應程度低落………………………34 5.4‘珍珠拔’PgACS1啟動子是造成基因表現低落主因…………………35 5.5‘梨仔拔’PgACS1啟動子序列具有建立區分後熟特性的潛力………36 5.6 結論……………………………………………………………………… ..37 參考文獻……………………………………………………………………………..52 圖目錄 圖1. ‘梨仔拔’ (LTB) 與‘珍珠拔’ (JJB) 番石榴ACC合成酶PgACS1基因組選殖系啟動子與5’UTR (A)、轉錄區域 (B) 核苷酸序列。……………………….40 圖2. ‘梨仔拔’ (LTB) 與‘珍珠拔’ (JJB) 番石榴ACC合成酶PgACS2啟動子與5’UTR核苷酸序列。……………………………………….…………41 圖 3. ‘梨仔拔’與‘珍珠拔’番石榴ACC 合成酶PgACS1、2基因組選殖系示意圖。…………………………………………………………………………...42 圖 4.‘‘珍珠拔’番石榴 PgACS1啟動子序列於NCBI資料庫BLAST結果。…………………………………………………………………………..…43 圖 5. PLACE軟體分析‘梨仔拔’(LTB) 與‘珍珠拔’(JJB) 番石榴ACC 合成酶PgACS1、2啟動子區域順式元件(cis-element)種類及位置。………44 圖 6.‘即時定量 PCR分析番石榴ACC合成酶基因PgACS1於‘梨仔拔’與‘珍珠拔’組織基因相對表現量之比較。………..……………………45 圖7. 即時定量PCR分析生長調節劑處理對‘梨仔拔’(A)與‘珍珠拔’(B)綠熟果實於20℃ ACC合成酶基因PgACS1表現之影響。………………46 圖8. 梨仔拔’(LTB)與‘珍珠拔’(JJB)番石榴ACC合成酶PgACS1基因啟動子驅動β-glucuronidase(GUS)報導基因,經農桿菌轉染兩參試品種綠熟果暫時性表現GUS組織染色(A)與GUS相對活性表現(B)。………………………………………………………..……………..…48 圖9. 番石榴ACC合成酶基因PgACS1更年型(A)或非更年型專一性引子對(B)聚合酶連鎖反應分析更年型(climacteric)與非更年型(nonclimacteric)番石榴品種葉片DNA增幅產物之膠體電泳圖譜。………………………………………………………….…………………..49 表目錄 表1. 本試驗使用之PCR引子序列………………………………………………50 表2. . PLACE軟體分析NCBI發表之更年型物種ACC合成酶(ACS)基因啟動子區域GCC box與Ethylene Response Element(ERE)順式元件(cis-element)數量與位置。………………………………………………………51 | |
dc.language.iso | zh-TW | |
dc.title | 不同後熟特性番石榴ACC合成酶啟動子之選殖、分析與應用 | zh_TW |
dc.title | Cloning, Analysis and Application of Promoter Region of ACC Synthase Genes, PgACS, from Guava (Psidium guajava L.)Cultivars with Different Ripening Characteristics | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王隆棋(Long-Chi Wang),葉信宏(Hsin-Hung Yeh),陳仁治(Jen-Chih Chen) | |
dc.subject.keyword | 番石榴,ACC合成?,後熟,反轉錄轉位子,啟動子, | zh_TW |
dc.subject.keyword | guava,acc synthase,ripening,retrotransposon,promoter, | en |
dc.relation.page | 70 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-13 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 3.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。